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Abstract
Federated Learning (FL) is a distributed learning
framework, in which the local data never leaves
clients’ devices to preserve privacy, and the server
trains models on the data via accessing only the
gradients of those local data. Without further pri-
vacy mechanisms such as differential privacy, this
leaves the system vulnerable against an attacker
who inverts those gradients to reveal clients’ sen-
sitive data. However, a gradient is often insuffi-
cient to reconstruct the user data without any prior
knowledge. By exploiting a generative model pre-
trained on the data distribution, we demonstrate
that data privacy can be easily breached. Further,
when such prior knowledge is unavailable, we in-
vestigate the possibility of learning the prior from
a sequence of gradients seen in the process of FL
training. We experimentally show that the prior
in a form of generative model is learnable from
iterative interactions in FL. Our findings demon-
strate that additional mechanisms are necessary
to prevent privacy leakage in FL.

1. Introduction
Federated learning (FL) is an emerging framework for dis-
tributed learning, where central server aggregates model
updates, rather than user data, from end users (Brisimi et al.,
2018; McMahan et al., 2017). The main premise of fed-
erated learning is that this particular way of distributed
learning can protect users’ data privacy as there is no ex-
plicit data shared by the end users with the central server.
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However, a recent line of work (Zhu et al., 2019; Zhao et al.,
2020; Geiping et al., 2020; Yin et al., 2021) demonstrates
that one may recover the private user data used for training
by observing the gradients. This process of recovering the
training data from gradients, so-called gradient inversion,
poses a huge threat to the federated learning community as
it may imply the fundamental flaw of its main premise.

Even more worryingly, recent works suggest that such gra-
dient inversion attacks can be made even stronger if certain
side-information is available. For instance, Geiping et al.
(2020) show that if the attacker knows a prior that user data
consists of natural images, then the gradient inversion attack
can leverage such prior, achieving a more accurate recov-
ery of the user data. Another instance is when batch norm
statistics are available at the attacker in addition to gradients.
This can actually happen if the end users share their local
batch norm statistics as in (McMahan et al., 2017). Yin et al.
(2021) show that such batch normalization statistics can
significantly improve the strength of the gradient inversion
attack, enabling precise recovery of high-resolution images.

In this paper, we systematically study how one can maxi-
mally utilize and even obtain the prior information when
inverting gradients. We first consider the case that the at-
tacker has a generative model pretrained on the exact or
approximate distribution of the user data as a prior. For this,
we propose an efficient gradient inversion algorithm that
utilizes the generative model prior. In particular, the algo-
rithm consists of two steps, in which the first step searches
the latent space (of lower dimension) defined by the gener-
ative model instead of the ambient input space (of higher
dimension), and then the second step adapts the generative
model to each input given the gradient. Each step provides
substantial improvement in the reconstruction. We name the
algorithm as gradient inversion in alternative spaces (GIAS).

We then consider a realistic scenario in which the user data
distribution is not known in advance, and thus the attacker
needs to learn it from gradients. For this scenario, we de-
velop a meta-learning framework, called gradient inversion
to meta-learn (GIML), which learns a generative model on
user data from observing and inverting multiple gradients
computed on the data, e.g. across different FL epochs or par-
ticipating nodes. Our experimental results demonstrate that
one can learn a generative model via GIML and reconstruct
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data by making use of the learned generative model.

This implies a great threat on privacy leakage in FL since
our methods can be applied for any data type in most FL sce-
narios unless a specialized architecture prevents the gradient
leakage explicitly, e.g., (McMahan et al., 2018).

Our main contributions are as follows:

• We introduce GIAS that fully utilizes a pretrained gen-
erative model to invert gradient. In addition, we pro-
pose GIML which can train generative model from
gradients only in FL.

• We demonstrate significant privacy leakage using
GIAS with pretrained generative model in various chal-
lenging scenarios, where our method provides sub-
stantial gain additionally to other any other existing
methods (Geiping et al., 2020; Yin et al., 2021).

• We experimentally show that GIML can learn a genera-
tive model on the user data from only gradients, which
provides the same level of data recovery with a given
pretrained model. To our best knowledge, GIML is
the first capable of learning explicit prior on a set of
gradient inversion tasks.

2. Related work
Early works (Melis et al., 2019; Shokri et al., 2017) inves-
tigate membership inference from gradients to check the
possibility of privacy leakage in FL. Phong et al. (2018)
demonstrate that it is possible to reconstruct detailed input
image when FL trains a shallow network such as single-
layer perceptron. Fan et al. (2020) and Zhu and Blaschko
(2021) consider a wider class of learning model and propose
analytical approach solving a sequence of linear systems to
reveal output of each layer recursively. To study the limit
of the gradient inversion in practical scenarios of training
deep networks via FL, a sequence of effort has been made
formulating optimization problem to minimize discrepancy
comparing gradients from true data and reconstructed data
(Wang et al., 2019; Zhu et al., 2019; Zhao et al., 2020;
Geiping et al., 2020; Yin et al., 2021).

The optimization-based approaches are particularly useful
as one can easily utilize prior knowledge by adding reg-
ularization terms, e.g., total variation (Wang et al., 2019)
and BN statistics (Yin et al., 2021), or changing discrep-
ancy measure (Geiping et al., 2020). In (Wang et al., 2019;
Yin et al., 2021), privacy attack techniques using generative
model are introduced. They however require a pretrained
model or a set of user data examples to train one, while
we propose a meta learning framework training generative
model from gradients only. In addition, our method of in-
verting gradient maximally exploit a given generative model

by alternating search spaces, which are analogous to the
state-of-the-art GAN inversion techniques (Zhu et al., 2020;
Bau et al., 2019a;b).

3. Problem formulation
In this section, we formally describe the gradient inversion
(GI) problem. Consider a standard supervised learning for
classification, which optimizes neural network model fθ
parameterized by θ as follows:

min
θ

∑
(x,y)∈D

`(fθ(x), y) , (1)

where ` is a point-wise loss function and D is a dataset of
input x ∈ Rm and label y ∈ {0, 1}L (one-hot vector). In
federated learning framework, each node reports the gra-
dient of `(fθ(x), y) for sampled data (x, y)’s instead of
directly transferring the data. The problem of inverting gra-
dient is to reconstruct the sampled data used to compute
the reported gradient. Specifically, when a node computes
the gradient g using a batch {(x∗1, y∗1), ..., (x∗B , y

∗
B)}, i.e.,

g = 1
B

∑B
j=1∇`(fθ(x∗j ), y∗j ), we consider the following

problem of inverting gradient:

min
(x1,y1),··· ,(xB ,yB)

∈Rm×{0,1}L

d

 1

B

B∑
j=1

∇`(fθ(xj), yj), g

 , (2)

where d(·, ·) is a measure of the discrepancy between two
gradient, e.g., `2-distance (Zhu et al., 2019; Yin et al., 2021)
or negative cosine similarity (Geiping et al., 2020). It is
known that label y can be almost accurately recovered by
simple methods just observing the gradient at the last layer
(Zhao et al., 2020; Yin et al., 2021), while reconstruct-
ing input x remains still challenging as it is often under-
determined even when the true label is given. For simplicity,
we hence focus on the following minimization to reveal the
inputs from the gradient given the true labels:

min
x1,...,xB∈Rm

c (x1, ..., xB ; θ, g) , (3)

where we denote by c (x1, ..., xB ; θ, g) the cost function in
(2) given yj = y∗j for each j = 1, ..., B.

4. Methods
The key challenge of inverting gradient is that solving (2) is
often under-determined, i.e., a gradient contains only insuffi-
cient information to recover data. Such an issue is observed
even when the dimension of gradient is much larger than
that of input data. Indeed, Zhu and Blaschko (2021) show
that there exist a pair of different data having the same gra-
dient, so called twin data, even when the learning model is
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large. To alleviate this issue, a set of prior knowledge on the
nature of data can be considered.

When inverting images, Geiping et al. (2020) propose to add
the total variation regularizationRTV(x) to the cost function
in (3) since neighboring pixels of natural images are likely
to have similar values. More formally,

RTV(x) :=
∑
(i,j)

∑
(i′,j′)∈∂(i,j)

‖x(i, j)− x(i′, j′)‖2 , (4)

where ∂(i, j) is the set of neighbors of (i, j). This method
is limited to the natural image data.

For general type of data, one can consider exploiting the
batch normalization (BN) statistics from nodes. This is
available in the case that the server wants to utilize batch
normalization (BN) in FL, and thus collects the BN statistics
(mean and variance) of batch from each node, in addition,
with every gradient report (McMahan et al., 2017). To be
specific, Yin et al. (2021) propose to employ the regular-
izer RBN(x1, ..., xB ; θ) which quantifies the discrepancy
between the BN statistics of estimated xj’s and those of true
x∗j ’s on each layer of the learning model. More formally,

RBN(x1, ..., xB ; θ) :=
∑
l

‖µl−µl,exact‖2 + ‖σ2
l −σ2

l,exact‖2,

where µl(x1, ..., xB ; θ) and σ2
l (x1, ..., xB ; θ) (resp.

µl,exact(x
∗
1, ..., x

∗
B ; θ) and σ2

l,exact(x
∗
1, ..., x

∗
B ; θ)) are the

mean and variance of l-th layer feature maps for the
estimated batch x1, ..., xB (resp. the true batch x∗1, ..., x

∗
B )

given θ. This is available only if clients agreed to report
their exact BN statistics at every round. But not every FL
framework report BN statistics (Li et al., 2021; Andreux
et al., 2020). In that case, Yin et al. (2021) also propose
to use the BN statistics over the entire data distribution
as a proxy of the true BN statistics, and reports that the
gain from the approximated BN statistics is comparable
to that from the exact ones. The applicability of RBN
with the approximated BN statistics is still limited as
the proxy needs to be additionally recomputed over the
entire data distribution at every change of θ. However, this
demonstrates the significant impact of knowing the data
distribution in the gradient inversion and motivates our
methods using and learning a generative model on the user
data, described in what follows.

4.1. Gradient inversion with trained generative model

Consider a decent generative modelGw : Rk 7→ Rm trained
on the approximate (possibly exact) distribution of user data
D such that x∗ ≈ Gw(z∗) for (x∗, ·) ∈ D and its latent
code z∗ = arg minz ‖Gw(z) − x∗‖. To fully utilize such
a pretrained generative model, we propose gradient inver-
sion in alternative spaces (GIAS), of which pseudocode is

presented in Appendix, which performs latent space search
over z and then parameter space search over w.

Latent space search Note that the latent space is typically
much smaller than the ambient input space, i.e., k � m, for
instances, DCGAN (Simonyan and Zisserman, 2015) of k =
100 and StyleGAN (Karras et al., 2019) of k = 512 × 16
for image data of m = (width)× (height)× (color) such as
32×32×3, 256×256×3, or larger. Using such a pretrained
generative model with k � m, the under-determined issues
of (3) can be directly mitigated by narrowing down the
searching space from Rm to {Gw(z) : z ∈ Rk}. Hence,
GIAS first performs the latent space search in the followings:

min
z1,...,zB∈Rk

c (Gw(z1), ..., Gw(zB)) . (5)

Considering a canonical class of neural network model fθ,
we can show that the reconstruction of x∗ by latent space
search in (5) aligns with that by input space search in (3)
if the generative model Gw approximates input data with
small enough error.

Property 1. For an input data x∗ ∈ [0, 1]m consider the
gradient inversion problem of minimizing cost c in (3),
where a canonical form of deep learning for classification
is considered and the discrepancy measure d is `2-distance.
Suppose that it has the unique global minimizer at x∗. Let
ε ≥ 0 be the approximation error bound on x∗ for gen-
erative model Gw : [0, 1]k 7→ [0, 1]m Then, there exists
δ(ε) ≥ 0 such that for any z∗ ∈ arg minz c(Gw(z)),

‖Gw(z∗)− x∗‖ ≤ δ(ε) , (6)

of which upper bound δ(ε)→ 0 as ε→ 0.

A rigorous statement of Property 1 and its proof are pro-
vided in Appendix, where we prove and use that the cost
function is continuous around x∗ under the assumptions.
This property justifies solving the latent space search in (5)
for FL scenarios training neural network model while it
requires an accurate generative model.

Parameter space search Using the latent space search
only, there can be inevitable reconstruction error due to the
imperfection of generative model. This is mainly because
we cannot perfectly prepare the generative model for every
plausible data in advance. Similar difficulty of the latent
space search has been reported even when inverting GAN
(Zhu et al., 2020; Bau et al., 2019a;b) for plausible but new
data directly, i.e., minz ‖Gw(z)− x∗‖ given x∗, rather than
inverting gradient. Bau et al. (2019a) propose an instance-
specific model adaptation, which slightly adjusts the model
parameter w to (a part of source image) x∗ after obtaining a
latent code z∗ for x∗. Inspired by such an instance-specific
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adaptation, GIAS performs the following parameter space
search over w preceded by the latent space search over z:

min
w1,...,wB

c (Gw1
(z1), ..., GwB

(zB)) , (7)

where z1, . . . , zB are obtained from (5).

Remark. We propose the optimization over w followed
by that over z sequentially This is to maximally utilize the
benefit of mitigating the under-determined issue from reduc-
ing the searching space on the pretrained model. However,
the benefit would be degenerated if z and w are optimized
jointly or w is optimized first. We provide an empirical jus-
tification on the proposed searching strategy in Section 5.1.

We perform each search in GIAS using a standard gradient
method to the cost function directly. It is worth noting that
those optimizations (5) and (7) with generative model can be
tackled in a recursive manner as R-GAP (Zhu and Blaschko,
2021) reconstructs each layer from output to input. We
provide details and performance of the recursive procedure
in Appendix, where employing generative model improves
the inversion accuracy of R-GAP substantially, while R-
GAP apparently suffers from an error accumulation issue
when fθ is deep neural network.

4.2. Gradient inversion to meta-learn generative model

For the case that pretrained generative model is unavailable,
we devise an algorithm to train a generative model Gw for
a set S = {(θi, gi)} of gradient inversion tasks. Since each
inversion task can be considered as a small learning task to
adapt generative model per data, we hence call it gradient
inversions to meta-learn (GIML). The detailed procedure of
GIML is presented in Appendix. We start with an arbitrary
initialization of w, and iteratively update toward w′ from a
variant of GIAS for N tasks sub-sampled from S , which is
different than multiple applications of GIAS for each task
in two folds: (i) `2-regularization in latent space search; and
(ii) an integrated optimization on model parameter. The vari-
ant first finds optimal latent codes z∗i = (z∗i1, ..., z

∗
iB) for

each task i with respect to the same cost function of GIAS
but additional `2-regularization. Note that the latent space
search with untrained generative model easily diverges. The
`2-regularization is added to prevent the divergence of z∗i .
Once we obtained z∗i ’s, w′ is computed by few steps of
gradient descents for an integrated parameter search to mini-
mize

∑
i c(Gw′(z

∗
i1), ..., Gw′(z

∗
iB); θi, gi). This is because

in GIML, we want meta information w to help GIAS for
each task rather than solving individual tasks, while after
performing GIML to train w, we perform GIAS to invert
gradient with the trained w. This is analogous to the model-
agnostic meta learning in (Finn et al., 2017).

Latent Space Search
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Figure 1. Comparison of different searching spaces, in which the
first three rows share the same latent space search of 1, 500 itera-
tions, and GI-z/w is verified to be the best option to fully exploits
the knowledge inside the generative model. (a) Reconstructed
image over iterations of different optimization domains. (b) Cost
function over iterations of different optimization domains.

5. Experiments
Setup. Unless stated otherwise, we consider the image
classification task on the validation set of ImageNet (Rus-
sakovsky et al., 2015) dataset scaled down to 64× 64 pixels
(for computational tractability) and use ResNet18 (He et al.,
2016) for training. For deep generative models in GIAS, we
use StyleGAN2(Karras et al., 2020) trained on ImageNet.
We use a batch size of B = 4 as default and use the nega-
tive cosine to measure the gradient dissimilarity d(·, ·). We
present detailed setup in the appendix.

Algorithms. We evaluate several algorithms for the gradi-
ent inversion (GI) task in (3). They differ mainly in which
spaces each algorithm searches over: the input x, the la-
tent code z, and/or the model parameter w. Each algorithm
is denoted by GI-(·), where the suffix indicates the search
space(s). For instances, GI-z/w is identical to the proposed
method, GIAS, and GI-x is the one proposed by Geiping
et al. (2020).

5.1. Justification of GIAS design

We first provide an empirical justification of the specific
order of searching spaces in GIAS (corresponding to GI-
z/w) to fully utilize a pretrained generative model. To
do so, we provide Figure 2b comparing algorithms with
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Figure 2. Comparison of state-of-the-art models and ablation study, in which replacing GI-x with GI-z/w (GIAS) regardless of using BN
(Yin et al., 2021) or not (Geiping et al., 2020) provides substantial improvement in the reconstruction accuracy. (a) Average PSNR and
best PSNR in a batch throughout the experiments. (b) Comparison of reconstruction results with our models and state-of-the-art models.
We highlight proposed models in bold.

Table 1. Comparison of our methods with state-of-the-art methods. Adding our method makes performance improvement versus two
baseline methods. PSNR, SSIM, and LPIPS(Zhang et al., 2018) are used to evaluate reconstruction results. We highlight the best
performances in bold.

Method GI-x (Geiping et al., 2020) GI-z (ours) GI-w (ours) GI-z/w (GIAS, ours) GI-x+BN (Yin et al., 2021) GI-z/w+BN (ours)

PSNR ↑ 13.78 14.27 14.70 15.58 15.52 16.31
SSIM ↑ 0.2542 0.3106 0.3519 0.3895 0.3513 0.4311
LPIPS ↓ 0.4376 0.3233 0.5121 0.3023 0.3645 0.2861
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Figure 3. Comparison of reconstruction methods with varying dif-
ficulties. GI-z/w always surpasses GI-x thanks to the pretrained
generative model.

different searching spaces: GI-z/w, GI-z/x, GI-z, and GI-
x, of which the first three share the same latent space search
over z for the first 1, 500 iterations.

As shown in Figure 1(a), the latent space search over z
quickly finds plausible image in a much shorter number of
iterations than GI-x, while it does not improve after a certain
point due to the imperfection of pretrained generative model.
Such a limitation of GI-z is also captured in Figure 1(b),
where the cost function of GI-z is not decreasing after a
certain number of optimization steps. To further minimize
the cost function, one alternative to GI-z/w (GIAS) is GI-
z/x, which can further reduce the loss function whereas the
parameter search in GI-z/w seems to provide more natural
reconstruction of the image than GI-z/x. The superiority
of GI-z/w over GI-z/x may come from that the parameter
space search exploits an implicit bias from optimizing a

good architecture for expressing images, c.f., deep image
prior (Ulyanov et al., 2018). In Appendix, we also present
the same comparison on FFHQ (human-face images) (Kar-
ras et al., 2019) where diversity is much smaller than that of
ImageNet. On such a less diverse dataset, the distribution
can be easily learned, and the gain from training a generative
model is larger.

5.2. The gain from fully exploiting pretrained
generative model

Evaluation in different FL settings We evaluate the gain
of using generative models for various FL scenarios with
varying levels of difficulty in the inversion. As batch size
and gradient sparsity1 (Wei et al., 2020) increase, the risk of
having under-determined inversion increase and the inver-
sion task becomes more challenging. Figure 3 shows that
for all the levels of difficulty, the generative model provides
significant gain in reconstruction quality. In particular, the
quality of GI-x (Geiping et al., 2020) with a batch size of
one (resp. gradient sparsity 0%) is comparable to that of
GIAS with a batch size of eight (resp. gradient sparsity
99%).

Comparison with state-of-the-art models Our method
can be easily added to previous methods (Geiping et al.,

1Having gradient sparsity 0.99% implies that we reconstruct
data from 1% of the gradient after removing 99% elements with
the smallest magnitudes at each layer.
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Figure 4. Results validating generative model trained with GIML. (a) Images sampled from different GIML training steps. Initial
generative model is untrained DCGAN, and meta-learned with gradients computed on FFHQ images. same z was used to sample images
in same rows. (b) Results of GI-z and GI-z/w using generative model trained with GIML. Experiments were done with gradient sparsity
0.95 for comparison in difficult setting. GI-z/w, GI-z with CIFAR10 pretrained model and GI-w with untrained model is in comparison.
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Figure 5. Gain of using generative model trained with GIML. (a) Comparison of PSNR. With GIML iteration step increases, performance
of GI-z and GI-z/w with GIML surpass GI-z and GI-z/w with other models. (b) A typical loss curve of reconstruction process.
Meta-learned model converges faster than other model’s results. Note that GI-w does not perform latent space search of 0 to 1000
iterations.

2020; Yin et al., 2021). In Table 1 and Figure 2, we com-
pare the state-of-the-art methods both with and without the
proposed generative modelling. In Table 1, comparing GI-x
to GI-z/w and GI-x + BN to GI-z/w + BN, adding the
proposed generative modelling provides additional gain in
terms of all the measures (PSNR, SSIM, LPIPS) of recon-
struction quality. GI-z/w without BN has lower reconstruc-
tion error than GI-x + BN, which is the method of (Yin
et al., 2021). This implies that the gain from the generative
model is comparable to that from BN statistics. However,
while the generative model only requires a global (and hence
coarse) knowledge on the entire dataset, BN statistics are
local to the batch in hand and hence requires significantly
more detailed information on the exact batch used to com-
pute gradient. As shown in Figure 2, the superiority of
our method compared to the others is clear in terms of the
best-in-batch performance than the average one, where the
former is more suitable to show actual privacy threat in
the worst case than the latter. It is also interesting to note
that GI-w with untrained w provides substantial gain com-
pared to GI-x. This may imply that there is a gain of the
implicit bias, c.f., (Ulyanov et al., 2018), from training the
architecture of deep generative model.

5.3. Learning generative models from gradients

In this section, we demonstrate the possibility of training
a generative model only with gradients. For computational
tractability, we use DCGAN and images from FFHQ (Kar-
ras et al., 2019) resized to 32x32. We generate a set of
gradients from 4 rounds of gradient reports from 200 nodes,
in which node computes gradient for a classification task
based on the annotation provided in (DCGM, 2019). From
the set of gradients, we perform GIML to train a DCGAN
to potentially generate FFHQ data.

Figure 4(a) shows that the quality of images from the gener-
ative model is evolving in the training process of GIML. As
the step t of GIML increases, the generative model Gw(t)(z)
for arbitrary z outputs more plausible image of human face.
As shown in Figure 4(b) and Figure 5(a), the evolution of
generative model improves the reconstruction quality when
performing either GI-z and GI-z/w. In Figure 4(b), when
using generative model trained on wrong dataset (CIFAR10),
GI-z completely fails at recovering data and GI-z/w shows
similar quality to GI-w which starts with an untrained gener-
ative model. GI-z/w with GIML to train generative model
on right data shows the best performance in terms of not
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only quality (Figure 4(b)) but also convergence speed (Fig-
ure 5(b)).

6. Conclusion
We propose GIAS fully exploit the prior information on
user data from a pretrained generative model when inverting
gradient. We demonstrate significant privacy leakage using
GIAS with pretrained generative model in various challeng-
ing scenarios, where our method provides substantial gain
additionally to any other existing methods (Geiping et al.,
2020; Yin et al., 2021). In addition, we propose GIML
which can train a generative model using only the gradients
seen in the FL classifier training. We experimentally show
that GIML can meta-learn a generative model on the user
data from only gradients, which improves the quality of
each individual recovered image. To our best knowledge,
GIML is the first capable of learning explicit prior on a set
of gradient inversion tasks.

References
R. Abdal, Y. Qin, and P. Wonka. Image2stylegan++: How

to edit the embedded images? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

M. Andreux, J. O. du Terrail, C. Beguier, and E. W. Tramel.
Siloed federated learning for multi-centric histopathol-
ogy datasets. In S. Albarqouni, S. Bakas, K. Kamnitsas,
M. J. Cardoso, B. Landman, W. Li, F. Milletari, N. Rieke,
H. Roth, D. Xu, and Z. Xu, editors, Domain Adaptation
and Representation Transfer, and Distributed and Collab-
orative Learning, pages 129–139, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-60548-3.

D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J.-Y.
Zhu, and A. Torralba. Semantic photo manipulation
with a generative image prior. ACM Trans. Graph.,
38(4), July 2019a. ISSN 0730-0301. doi: 10.1145/
3306346.3323023. URL https://doi.org/10.
1145/3306346.3323023.

D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou,
and A. Torralba. Seeing what a gan cannot generate. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019b.

T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Pascha-
lidis, and W. Shi. Federated learning of predictive models
from federated electronic health records. IJMI, 2018.

DCGM. ffhq-features-dataset, 2019.
URL https://github.com/DCGM/
ffhq-features-dataset.

L. Fan, K. W. Ng, C. Ju, T. Zhang, C. Liu, C. S. Chan, and
Q. Yang. Rethinking privacy preserving deep learning:
How to evaluate and thwart privacy attacks. In Q. Yang,
L. Fan, and H. Yu, editors, Federated Learning: Privacy
and Incentive, pages 32–50. Springer, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. Interna-
tional Conference on Machine Learning (ICML), 2017.

J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller.
Inverting gradients–How easy is it to break privacy in
federated learning? In NeurIPS, 2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

T. Karras, S. Laine, and T. Aila. A style-based genera-
tor architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and
T. Aila. Analyzing and improving the image quality of
StyleGAN. In Proc. CVPR, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In Y. Bengio and Y. LeCun, edi-
tors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou. FedBN:
Federated learning on non-IID features via local batch
normalization. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/pdf?id=6YEQUn0QICG.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. Deep
Gradient Compression: Reducing the communication
bandwidth for distributed training. In The International
Conference on Learning Representations, 2018.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas. Communication-efficient learning of deep
networks from decentralized data. In A. Singh and J. Zhu,
editors, Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages 1273–
1282, 2017.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private recurrent language models.
In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/
forum?id=BJ0hF1Z0b.

https://doi.org/10.1145/3306346.3323023
https://doi.org/10.1145/3306346.3323023
https://github.com/DCGM/ffhq-features-dataset
https://github.com/DCGM/ffhq-features-dataset
http://arxiv.org/abs/1412.6980
https://openreview.net/pdf?id=6YEQUn0QICG
https://openreview.net/pdf?id=6YEQUn0QICG
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b


Gradient Inversion with Generative Image Prior

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov.
Exploiting unintended feature leakage in collaborative
learning. In IEEE Symp. Security and Privacy (SP), pages
691–706, 2019. doi: 10.1109/SP.2019.00029.

L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai.
Privacy-preserving deep learning via additively homo-
morphic encryption. IEEE Transactions on Information
Forensics and Security, 13(5):1333–1345, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Member-
ship inference attacks against machine learning models.
In 2017 IEEE Symposium on Security and Privacy (SP),
pages 3–18, 2017. doi: 10.1109/SP.2017.41.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR,
2015.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi.
Beyond inferring class representatives: User-level privacy
leakage from federated learning. In IEEE INFOCOM
2019 - IEEE Conference on Computer Communications,
pages 2512–2520, 2019.

W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy,
S. Truex, and Y. Wu. A framework for evaluating client
privacy leakages in federated learning. In L. Chen, N. Li,
K. Liang, and S. Schneider, editors, Computer Security –
ESORICS 2020, pages 545–566, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-58951-6.

H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz,
and P. Molchanov. See through gradients: Image batch
recovery via gradinversion. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPR), 2021.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a per-
ceptual metric. In CVPR, 2018.

B. Zhao, K. R. Mopuri, and H. Bilen. iDLG: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610,
2020.

J. Zhu and M. B. Blaschko. R-GAP: Recursive gradient at-
tack on privacy. In International Conference on Learning
Representations, 2021.

J. Zhu, Y. Shen, D. Zhao, and B. Zhou. In-domain gan inver-
sion for real image editing. In Proceedings of European
Conference on Computer Vision (ECCV), 2020.

L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients.
In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2019.



Gradient Inversion with Generative Image Prior

Appendix

A. Detailed algorithms

Algorithm 1 Gradient Inversion in Alternative Spaces
(GIAS)

Require: learning model fθ; target gradient g =
∇θ

∑B
j=1 `(fθ(x

∗
j ), y

∗
j ) to be inverted; batch size B;

pre-trained generative model Gw;
1: Initialize z := (z1, ..., zB) randomly
2: Find z ∈ arg minz c(Gw(z1), ..., Gw(zB))

// Latent space search
3: Set w := (w1, . . . , wB)← (w, . . . , w)
4: Find w ∈ arg minw c(Gw1(z1), . . . , GwB

(zB))
// Parameter space search

5: Return result: Gw′1(z1), . . . , Gw′B (zB)

Algorithm 2 Gradient Inversion to Meta-Learn generative
model (GIML)

Require: inversion task set S; task batch sizeN ; data batch
size B (per gradient); number of local iterations τ ; z-
regularizer coefficient λ; step sizes α, β;

1: Initialize w randomly
2: while not done do
3: Sample a batch of inversion tasks

(θ1, g1), ..., (θN , gN ) from S
4: w′ ← w
5: for all i = 1, . . . , N do
6: z∗i ← argminzi

c(Gw′(zi1), . . . , Gw′(ziB); θi, gi)+
λ
∑
j ‖zij‖2 // Regularized latent space searching

7: end for
8: for all t = 1, . . . , τ do
9: w′ ← w′ − α∇w′

∑
i c (Gw′(z

∗
i1), . . . , Gw′(z

∗
iB); θi, gi)

// Meta parameter space search
10: end for
11: Update w ← w − β(w − w′) = (1− β)w + βw′

12: end while

B. Proof of Property 1
To prove Property 1, we first conclude the same statement
of Property 1 assuming the inversion problem is continuous
at x∗ (Lemma 1), and then show that the standard scenario
described in Property 1 guarantees the desired continuity
(Lemma 2). The canonical form of learning model men-
tioned in 1 is described by the assumptions of Lemma 2.

Lemma 1 (An extension of Property 1 in the main text).
For an input data x∗ ∈ [0, 1]m, consider the gradient inver-
sion problem of minimizing cost c(x) in (3) where c(x) is
continuous. Suppose that it has the unique global minimizer
at x∗. Let ε ≥ 0 be the approximation error bound on x∗ for

generative model Gw : [0, 1]k 7→ [0, 1]m with k ≤ m, i.e.,
minz∈[0,1]k ‖x∗−Gw(z)‖ ≤ ε. Then, there exists δ(ε) ≥ 0
such that for any z∗ ∈ arg minz c(Gw(z)),

‖Gw(z∗)− x∗‖ ≤ δ(ε) , (8)

of which upper bound δ(ε)→ 0 as ε→ 0.

Proof of Lemma 1. From the assumptions that x∗ is the
unique minimizer and c(x) is continuous on [0, 1]m, it fol-
lows that for x ∈ [0, 1]m, if c(x) → c(x∗), then x → x∗.
This can be proved by contradiction. Then we have that
for ε > 0, there exists δ(ε) > 0 such that if c(x) ≤ ε,
then ‖x − x∗‖ ≤ δ(ε) where δ(ε) → 0 as ε → 0. From
the continuity of c(x), it is straightforward to check that
c(Gw(z∗(ε))) → c(x∗) as ε → 0. This completes the
proof.

Lemma 2. For an input data x∗ ∈ Rm, consider the gra-
dient inversion problem of minimizing cost c in (3), where
the learning model fθ is a standard form of R-layer neu-
ral network fθ(x) = ΘRσR−1(ΘR−1σR−2(...Θ1x)) with
Θr ∈ Rmr×mr−1 for each r, where mR = L and m0 = m,
and C1 (continuously differentiable) activation σ’s (e.g.,
sigmoid and exponential linear), loss function ` is C1 (e.g.,
logistic and exponential), and the discrepancy measure d is
`2-distance. Then, the corresponding cost function c(x) is
continuous with respect to x ∈ Rm.

Proof of Lemma 2. Note that the standard model fθ in-
cludes multi-layer perceptron or convolutional neural net-
work. It is C1 since the composition of Ck2 functions is
Ck. Hence, the gradient is continuous w.r.t. x. In addition,
the cost function c(x) is continuous since the gradient and
the choice of discrepancy measure are continuous. This
concludes the proof.

The proof of Property 1 is straightforward from Lem-
mas 1 and 2.

C. Another method for gradient inversion:
R-GAP (Zhu and Blaschko, 2021)

In the main text, to solve the inversion problem in (2), we
use gradient descent method directly to the cost function,
while we alternate the searching space. Meanwhile, Zhu
and Blaschko (2021) propose another approach, called R-
GAP (recursive gradient attack on privacy), to solve the
optimization in (2), although it is limited to the case when
the learning model fθ is given as a standard form described
in Lemma 2. R-GAP decomposes the optimization (2) into
a sequence of linear programming to reconstruct the output
of each layer except the last layer’s, and then it solves them

2the k-th derivative is continuous
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Ground Truth

# of layers 
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# of layers 
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Figure A1. Comparison of R-GAP and R-GAP with a generative model. The second convolution layer is rank-deficient and R-GAP
should solve under-determined problem. An under-determined problem is solved by using generative model. However, the error per layer
increases much faster than R-GAP.
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Figure A2. Layer-wise errors of convolution layers in gradient
inversion attack results. layer-by-layer method shows cumulative
exploding error. CNN6 denotes a neural network consists of six
convolution layers and one FC layer. CNN10 denotes a neural
network consists of ten convolution layers and one FC layer.

recursively from the penultimate layer to the input layer.
The linear programming to find the output xr of the r-th
layer can be written as follows:

Arxr = br (9)

where Ar and br is a matrix and vector depending on the
previously reconstructed xr+1, the parameter Θr of the r-
the layer and its gradients. For the definition of Ar and br,
we refer to (Zhu and Blaschko, 2021). Since each linear pro-
gramming has a closed-form solution A†rbr, this approach
can be sometimes useful in terms of reducing computational
cost.

R-GAP with generative model Note that the problem in
(9) can be rewritten as follows:

min
xr

‖Arxr − br‖ . (10)

Let fθ,r(x) be the output of the r-th layer. Then, we can
interpret fθ,r(Gw(z)) as a generative model for xr. Hence,
the recursive reconstruction can be partially or fully replaced
with the following optimization:

min
z,w
‖Arfθ,r(Gw(z))− br‖ (11)

where the search space can be alternated arbitrarily.

A limitation of R-GAP Such a use of generative model in
(11) provides the same gain from reducing searching space.
We however want to note that it inherits the limitation of
R-GAP, in which the reconstruction error in upper layers
propagates to that in lower layer. Hence, as the learning
model becomes deeper, the reconstruction quality decreases
while the number of parameters is increasing. Figure A2
shows the phenomenon of error accumulation of R-GAP. It
is possible that the optimization method in (11) can have
lager error than the closed-form solution A†rbr due to imper-
fection in generative model. Therefore, it is better to not use
the generative model when the original linear programming
is over-determined or determined. Indeed, in Figure A1,
we present a trade-off between the linear programming in
(11) and the optimization with generative model in (11),
in which to emphasize the trade-off, we perform the la-
tent space search over z only. We obtain a substantial gain
from using the generative model for a few layers (one or
two), whereas the gradient inversion is failed when using
the generative model for every layer.

D. Another potential gain from inverting a set
of gradients

In the main text, we demonstrate that from multiple gradi-
ents, we can train a generative model and use it to break
the fundamental limit of inverting gradient solely. Beside
this, assuming that we can observe a large number of gra-
dients for the same data but different model parameters,
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Figure A3. (a) Examples of reconstructed images with a sequence of gradients. A local dataset contains eight images and generates
gradients using four randomly chosen images in every step. As time t increases, reconstructed images become more accurate. (b) PSNR
of reconstructed images. In reinitialized theta setting, the classification model is reinitialized every step. In trained theta setting, the
classification model is trained every step.

it is able to reconstruct data almost perfectly by solving
minx

∑T
t=1 c(x; θt, gt). Such an assumption may be valid

once we obtain the meta information to match gradients
and data to be reconstructed. In Figure A3, we demonstrate
this potential gain when there are eight images only, but we
observe a sequence of gradients obtained from the proce-
dure of FL (the green curve). Of course, in the procedure
of FL, the model parameter θ slowly changes and thus the
gain is smaller than that when each gradient is computed
at completely random model parameters. However, in both
settings, the reconstruction eventually becomes perfect as
the observed gradients are accumulated.

E. Strong generative prior
When we have stronger prior on the data distribution, the
gain from the generative model becomes larger. To show
this, we use FFHQ (Karras et al., 2019) rather than Ima-
geNet in Section 5.1, where we believe FFHQ containing
human-face images has less diversity than ImageNet includ-
ing images of one thousand classes. Figure A4 shows that
just GI-z significantly outperforms GI-x, while the gap be-
tween GI-z and GI-x is small for ImageNet in Figure 2b.
This suggests a new approach to use a conditional genera-
tive model and data label y∗ in order for enjoying the gain
from narrowing down the set of candidate input data by
conditioning the label.

Ground Truth

GI-z

GI-z/w (GIAS)

GI-x

Figure A4. Examples of reconstructed images from gradients of
FFHQ images. Images are resized to 64x64, and the gradients are
calculated under batch size 1, gradient sparsity 0. GIAS algorithm
use StyleGAN2 pretrained on FFHQ.

F. Possible defense methods against gradient
inversion attacks

In this section, we briefly discuss several defense algorithms
against gradient inversion attacks. There have been pro-
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posed several defense methods against gradient inversion
attacks (McMahan et al., 2017; Lin et al., 2018; Wei et al.,
2020), which let the gradient contain only small amount of
information per data. For instances, a gradient is computed
from a large batch of data and is reported to the server after
compression or quantization. Such approaches can easily
make the model training unstable. In general, we need to
find a good balance in the trade-off between the stability of
FL and the privacy leakage, while each defense mechanism
has distinguishing pros and cons.

As a defense mechanism specialized for the gradient in-
version with generative model, we suggest to focus on
mechanisms confusing the label reconstruction. In Sec-
tion 5.1 and E, we observe that revealing the data label can
curtail the candidate set of input data and thus provide a
significant gain in gradient inversion by using conditional
generative model. Therefore, by making the label restora-
tion challenging, the gain from generative model may be
decreasing. To be specific, we can consider letting node
sample mini-batch to contain data having a certain number
of labels, less than the number of data but not too small. By
doing this, the possible combinations of labels per data in a
batch increases and thus the labels are hard to recovered.

G. Experiment settings
Unless stated otherwise, we consider the image classifica-
tion task on the validation set of ImageNet (Russakovsky
et al., 2015) dataset resized to 64× 64 using ResNet18 (He
et al., 2016) as learning model. The resizing is necessary for
computational tractability. Recalling the under-determined
issue is the major challenge in gradient inversion, deeper and
wider fθ makes the gradient inversion easier (Geiping et al.,
2020). Hence, the choice of ResNet18 as learning model is
the most difficult setting within ResNet architectures since it
contains the least information. We use a StyleGAN2(Karras
et al., 2020) model trained on ImageNet for GIAS, in which
the latent space search over z implies the search over the
intermediate latent space, known asW in the original paper
(Karras et al., 2019), to improve the reconstruction per-
formance, c.f., (Abdal et al., 2020). We use the batch size
B = 4 as default, and negative cosine for the choice of gradi-
ent dissimilarity function d(·, ·), which apparently provides
better inversion performance than `2-distance in general
(Geiping et al., 2020). For the optimization in GIAS, we
use Adam optimizer (Kingma and Ba, 2015) which decays
learning rate by a factor of 0.1 at 3/8, 5/8, 7/8 of total itera-
tions. from initial learning rates ηz = 3×10−2 for the latent
space search and ηw = 10−3 for the parameter space search.
Since our experiments are conducted with image data, we
used total variation regularizer with weight λTV = 10−4 for
all experiments. For each inversion, we pick the best recov-
ery among 4 random instances based on the final loss. All

experiments are performed on GPU servers equipped with
NVIDIA RTX 3090 GPU and NVIDIA RTX 2080 Ti GPU.
Numerical results including graphs and table are averaged
over 10 samples except Figure 1 and Figure 5.

Note that our baseline implementation for (Yin et al., 2021)
includes fidelity regularizer with BNexact and group lazy
regularizer, not group registration regularizer. Our baseline
implementation might be imperfect, but it still demonstrates
adding our method improves performance.

H. License of assets
Dataset ImageNet data are distributed under licenses
which allow free use for non-commercial research. FFHQ
data are distributed under licenses which allow free use,
redistribution, and adaptation for non-commercial purposes.
ffhq-features-dataset provides annotations of FFHQ images.
Original authors of FFHQ images are indicated in the meta-
data, if required. We did not include, redistribute, or change
the data itself, and cited above three works.

Source code Some parts of our source code came from
open-source codes of several previous researches. For more
details, see README of our source code.


