
BiG-Fed: Bilevel Optimization Enhanced Graph-Aided Federated Learning

Pengwei Xing 1 Songtao Lu 2 Lingfei Wu 3 Han Yu 1

Abstract

Federated learning (FL) has become a useful ma-
chine learning paradigm for training models with
distributedly owned sensitive data. In this pa-
per, we extend the non-independent and identi-
cal distributions (non-i.i.d.) FL literature with
the Bilevel Optimization enhanced Graph-aided
Federated Learning (BiG-Fed) approach. It is de-
signed to support applications in which FL clients
residing in a network topology collaboratively
train heterogeneous models (e.g., traffic predic-
tion based on sensor networks). BiG-Fed learns a
shared outer level weight in the FL server to act
as graph convolutional kernel learning in order to
discover the relationships among clients. Within
each client, there is an independent inner level
weight for improving local task optimization. To
the best of our knowledge, BiG-Fed is the first
bilevel optimization technique to enable future
federated learning approaches to cope with two
nested optimization tasks at the FL server and FL
clients, respectively.

1. Introduction
In recent years, federated learning (FL) (McMahan et al.,
2017), which is a distributed learning paradigm by lever-
aging multiple computing resources over a network, has
been experiencing rapid growth. In practice, each client
in the network owns personalized data features, which re-
quires the FL algorithm to be able to deal with non-i.i.d
data distributions for individual learning tasks. Personalized
federated learning (PFL) (Fallah et al., 2020; Dinh et al.,

1Nanyang Technological University, Singapore 2IBM Thomas
J. Watson Research Center Yorktown Heights, United States 3JD
Silicon Valley Research Center, United States. Correspondence to:
Pengwei Xing <pengwei.xing@ntu.edu.sg>, Songtao Lu <song-
tao@ibm.com>, Lingfei Wu <lingfei.wu@jd.com>, Han Yu
<han.yu@ntu.edu.sg>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

2020) have been proposed to deal with the heterogeneity of
client models.

Typical PFL studies (Fallah et al., 2020; Khodak et al., 2019;
Jiang et al., 2019) are based on meta-learning algorithms
(e.g., using model-agnostic meta-learning (MAML) (Finn
et al., 2017) to realize personalization of model training).
These models focus on providing good initialization for the
FL clients to learn new models by only using data feature
in their own datasets. Such an approach does not leverage
the connectivity information and prior domain knowledge
included in a population of FL clients organized under a
graph structure (e.g., distributed sensor networks).

Current FL research related to graph learning mostly fo-
cuses on aggregating multiple graph neural network (GNN)
models. The scenario in which FL clients are organized into
graph structures (e.g., in spatio-temporal traffic prediction
(Pan et al., 2019; Li et al., 2017; Zhang et al., 2017; Liang
et al., 2018)) has not been investigated. Under this setting,
graph embedding techniques can capture inherent informa-
tion over the topology of FL clients. Such insight offers a
new way for enhancing PFL to solve non-i.i.d problem with
graph learning.

To achieve this goal, a graph embedding based method
is required to aid the feature learning process over a net-
work. However, introducing a new learnable weight or
additional task to quantify structural correction is a nested
(couple) problem with respect to the graph information and
the weights of local models, where the adjusted distributed
local model will be a function of the newly introduced
weights at the center (i.e. the FL server). Similarly, the
local model is also a function of the center weight. Bilevel
optimization is a kind of optimization to solving aforemen-
tioned embedded problem which have been successfully in
various scenarios including reinforcement learning (Hong
et al., 2020), hyperparameter optimization (Franceschi et al.,
2018) and Stackelberg game (Roth et al., 2016). In this
work, we formulate this class of problem as a bilevel op-
timization problem, which splits the adaption step into 1)
the lower level problem optimized locally and 2) graphical
link prediction as the higher level problem optimized at the
center.

In this paper, we propose BiG-Fed, a bilevel optimization
framework combining a graph embedding learning tech-
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nique to conduct nested federated learning combining aided
learning tasks at the center and generalized learning tasks
for local clients. It can be applied to transform existing
techniques for traffic prediction from directly aggregating
spatio-temporal urban tensor data into the FL setting with
privacy-preserving spatio-temporal representative as shown
in Figure 1.

Figure 1. BiG-Fed for traffic prediction based on a spatio-temporal
sensor networks.

Our contributions can be summarized as follows.

I We propose a novel paradigm to solve the nested
federated learning problems via bilevel optimization.
The meta learning-based and clustering-based federated
learning approaches can be two specific forms of the
proposed bilevel optimization-based FL paradigm.

I We enhance the Two-Timescale Stochastic Approxima-
tion (TTSA) Algorithm from (Hong et al., 2020) to
achieve the purpose of converting a one-to-one bilevel op-
timization problem into a one-to-many federated learning
problem by decoupling and chunking the inner level op-
timization problem. The proposed model also allows the
node model to shift the computational burden of bilevel
optimization to each local node.

I BiG-Fed can address the limitation that clustering-based
FL methods must first specify the number of discrete
clusters among data owners. It can learn node relations in
the continuous space, which is more general for various
types of graph structures (as shown in Figure 2). In
addition, it can cope with the problem of graph topology
changes during communication, benefiting from mature
GNN techniques.

Figure 2. Comparison of different data distribution scenarios fac-
ing FL approaches.

2. Related Work
Recently, clustering-based PFL approaches (Xie et al., 2020;
Sattler et al., 2020; Briggs et al., 2020) start to leverage the
inherent relationships among FL clients to improve feder-
ated learning under non-i.i.d. settings. The work of (Xie
et al., 2020) utilizes the classic Expectation-Maximization
algorithm used in the K-means clustering technique to find
K centers of the clusters by calculating distance between
each model weight as multiple desired global model. Simi-
larly, (Briggs et al., 2020) combined the hierarchical clus-
tering algorithm with federated learning for multiple-center
PFL. In (Sattler et al., 2020), the authors separates the clients
into two clusters and sets a stopping criterion for deciding
whether to aggregate or bisect all clients to each cluster,
where this criterion is calculated after obtaining a converged
solution by running the FL algorithm.

Although these works have obtained improved performance
over MAML/FL based models, existing clustering-based FL
approaches assume that the data distributions of the clients
belong to multiple specific discrete centers, which means
that they need to preset the number of clusters. Moreover,
their assumption of no coupling between the central cluster-
ing task and the individual local tasks may not always hold.
Specifically, methods like (Xie et al., 2020; Briggs et al.,
2020) cannot prove that these two processes can achieve
convergence if they are optimized independently or alterna-
tively, unless these method can be implemented effectively
under an explicitly decoupled setting like in (Sattler et al.,
2020).
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Laplacian matrix based PFL has also emerged for solving
the problem of processing distribution correlation among the
data points in the continuous space. The work of (Dinh et al.,
2021) attempts to deal with the non-i.i.d issue of adopting
the correlated structures among clients by employing graph
Laplacian matrix as an additional regularization term in the
objective function. Nevertheless, the Laplacian matrix of
the graph is static. Thus, it is not able to handle cases in
which the graph structure is dynamically changing over time
(e.g., FL clients joining or leaving a federation during model
training). We address these limitations in this work.

3. Methodology
The problem we consider in this paper is a specific form of
the bilevel optimization problem under the federated settings
with aided learning tasks at the center.

3.1. Problem Formulation

Let f(·) denote the outer level objective function that can
represent the center task in FL. Let n denote the number of
sub-tasks of the inner level and g(·) = [gi(·), i ∈ {1, ..., n}]
represent a vector for a group of objective functions at the
inner level for each FL client. Similarly, ϕ represents the
outer decision weight and θ = [θi, i ∈ {1, ..., n}] denotes
the inner decision weights, where θ represents the vector
form of n inner weight. Then, we can express the two
coupled optimization problems in the following form:

min
ϕ∈Rd1

`(ϕ) = f(ϕ, [θ∗i (ϕ)|i ∈ {1, ..., n}])

subject to θ∗(ϕ) ∈ argmin
θ∈Rnd2

g(ϕ,θ). (1)

It should be noted that each inner level sub-task of gi in
each client is mutually decoupled in the FL setting, though
the outer task for f is coupled with the inner tasks g. Thus,
we can re-express Eq. (1) as follows:

min
ϕ∈Rd1

`(ϕ) = f(ϕ, [θ∗i (ϕ)|i ∈ {1, ..., n}])

subject to θ∗i (ϕ) ∈ argmin
θi∈Rd2

gi(ϕ, θi),∀i ∈ {1, ..., n}.

(2)

3.2. The Proposed BiG-Fed Approach

We first consider how to design the objective function of
the inner and outer objective functions for specific scenarios
of solving collaborative training problems with heteroge-
neous data distributions and topological information. The
idea is that a positive correlation exists between the outer
objective function and the inner objective function (i.e. the
more the local inner level model tends to converge, the more
the model parameters of each local node exhibit the corre-
sponding topological structure relationship). When this is

satisfied, by accelerating the convergence of the outer objec-
tive function, and consequently the convergence rate of the
inner objective function coupled to it can also be accelerated.
This enhances federated learning by leveraging the graph
structure information at the center.

The Outer Learning Task Inspired by unsupervised
graph embedding learning for link prediction (Hamilton
et al., 2017), BiG-Fed leverages the connectivity of edges
as a guiding information in the outer level task by mapping
into the structural similarity of neighboring node models.

Firstly, let ϕ ∈ Rd1 denote the outer weight acting as a
GNN weight with shape of d1 and let θ ∈ Rnd2 denote
the inner weight vector including n client models θi with a
shape of d2. θ∗ is the inner weight vector after one step of
stochastic gradient descent (SGD) update. We use θ∗ to act
as node representative instead of directly accessing the data
to preserve data privacy.

ϕ denotes the shared weight for each node representative
θi, which can be formulated as (I ⊗ ϕ)θ∗ via Kronecker
product ⊗ with an identity matrix I, and A is adjacency
matrix. Then, let H denote the embedding matrix after
neighborhood averaging, which can also be replaced by
other message passing in GNN, as follows:

H = A(I⊗ ϕ)θ∗. (3)

Then, we can formulate outer objective function by cosine
embedding loss corresponding to f in Eq. (2) as follows:

ϕ(θ∗) ∈ argmin
ϕ∈Rd1

f(ϕ,θ∗) ,

1

n

n∑
u=1

∑
v∈N (u)

1− cos(Hu,Hv)

+
1

n

n∑
u=1

Ev∼Pu max(0, cos(Hu,Hv)) (4)

where u, v is index of graph node and cos(Hu,Hv) denotes

cos(Hu,Hv) =
HT
uHv

‖Hu‖‖Hv‖
, (5)

and Pu denotes the negative sampling distribution like
(Hamilton et al., 2017) at node u.

The outer objective function for BiG-Fed in Eq. (4) utilize
cosine embedding loss to respectively calculate node-pair
embedding similarity of all linked edges and node-pair em-
bedding dissimilarity of negative sample. Since the em-
bedding derived from local model weight, this objective
function can couple local optimization tasks with graphical
link prediction tasks.
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Algorithm 1 BiG-Fed

1: Initialize stepsize sequence {αk, βk}, and ϕ0,θ0

2: Initialize Jacobian matrix∇2
ϕk,θkG and Hessian matrix

∇2
θkθkG

3: for round k = 0, 1, 2...,K do
4: //At each FL Client:
5: for node i = 0, 1, 2..., n do
6: Update θk+1

i by (9)
7: Calculate Jacobian block ∇ϕkθki

Gi(ϕ
k, θki ; ξ),

Hessian block∇θki θki Gi(ϕ
k, θki ; ξ)

8: Send∇ϕkθki
Gi,∇θki θki Gi and θk to the FL Server

9: end for
10: //At the FL Server:
11: Construct ∇2

ϕk,θkG and ∇2
θkθkG by aggregating

blocks from each node i
12: Compute ∇θkF (ϕk,θk+1), ∇ϕkF (ϕk,θk+1)
13: Update ϕk+1 by (10)
14: end for

The Inner Learning Task. The inner objective function
of BiG-Fed corresponding to g in Eq. (2) can be formulated
as follows:

θ∗(ϕ) ∈ argmin
θ∈Rnd2

g(ϕ,θ) (6)

where

g(ϕ,θ) ,
1

2
E(X,Y )∼D‖Y − (I⊗ ϕ)θX‖2. (7)

X and Y are the vectors denoting the data and the labels
stored at the n FL clients, respectively, and D denotes the
joint distribution of X and Y . The corresponding decou-
pled form for each FL client i, gi(·), can be expressed as:

θ∗i (ϕ) = argmin
θi∈Rd2

gi(ϕ, θi) ,
1

2
E(Xi,Yi)∼Di

‖Yi − ϕθiXi‖2

(8)

where Xi and Yi are the data and the labels owned by each
FL client i, respectively, and Di denotes the joint distribu-
tion of Xi and Yi.

The BiG-Fed Algorithm To take full advantage of the
mutual decoupling of the inner level sub-tasks in Eq. (2),
we extend the TTSA Algorithm in (Hong et al., 2020) from
a one-to-one bilevel optimization algorithm into a one-to-
many federated learning approach. The proposed BiG-Fed
approach is shown in Algorithm 1. It is worth noting that:

I The training data for the outer level learning task consist
of the connection information among the FL clients and
the inner level model weights uploaded by the clients
to the FL server. Thus, under the BiG-Fed framework,

there is no exposure of any client’s local data during the
outer level learning task training process.

I Lines 5-9 in Algorithm 1 are executed by each FL client
locally to update the inner level weight θi by solving Eq.
(8) w.r.t distributed outer weight ϕ via one step SGD:

θk+1
i = θki − βkm−1

m∑
j=1

∇θki Gi(ϕ
k, θki ; ξj), (9)

where Gi(ϕk, θki ; ξj) denotes the i-th inner loss function
of the j-th data sample (i.e. ξj , (Xj , Yj) ∼ Dj). m
stands for the mini-batch size. In addition, the Jacobian
and the Hessian gradient blocks are calculated by each
FL client.

I Lines 11-13 in Algorithm 1 are executed at the FL server
where the complete Jacobian and Hessian gradient ma-
trices are constructed. In addition, the outer level weight
ϕ is updated by solving Eq. (4) w.r.t the uploaded inner
level weights θ via one step SGD:

ϕk+1 =ϕk − αkm−1
m∑
j=1

(∇ϕkF

−∇2
ϕk,θkG(∇2

θkθkG)−1∇θkF ), (10)

where F is the short notation of F (ϕk, [θki (ϕ)|i ∈
{1, ..., n}]; j) which denotes the outer loss function
of the j-th tail node of the negative sample for head
node i (i.e. j ∼ Pi). G is the concatenation of
m−1

∑m
j=1∇θki Gi(ϕ

k, θki ; ξj).
I Eq. (14) and Eq. (15) in the appendix contain the details

of constructing Hessian and Jacobian matrices through
Hessian and Jacobian blocks uploaded from FL clients
in Line 11 of Algorithm 1.

4. Analytical Evaluation
It will be seen from the following Lemma 1 that the computa-
tion of∇2

θθg(θ,θ) and∇2
ϕθg(ϕ,θ) can be fully decoupled

under the BiG-Fed framework for the update of the outer
loop variable ϕ.

4.1. Algorithm Efficiency

Lemma 1. With gi(ϕ, θi) as expressed in Eq. (8), and given
ϕ ∈ Rd1 and θ ∈ Rnd2 , the computation of the Jacobian
matrix∇2

ϕθg(ϕ,θ) and the Hessian matrix∇2
θθg(ϕ,θ) can

be fully decoupled as follows:

∇2
θθg(θ,θ) = diag{∇2

θ1θ1g(ϕ, θ1), . . . ,∇
2
θnθng(ϕ, θn)},

(11)

∇2
ϕθg(ϕ,θ) = [∇2

ϕθ1g(φ, θ1), . . . ,∇
2
ϕθng(ϕ, θn)]

T .

(12)

Proof. Please see the appendix for more details.
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Remark 1. From Lemma 1, it can be observed that by
leveraging the block structure of the lower level optimization
problem, the most computational burden of updating the
meta learner φ can be distributed among the FL clients.

Remark 2. When each local inner learning problem is
strongly convex (i.e. ∇2

θθg(θi, θi) � 0,∀i), the Hessian
matrix ∇2

θθg(ϕ,θ) is invertible.

4.2. Convergence Rate Guarantees

By concatenating variable θi, it is easy to show that the al-
gorithm can be written as the form of the stochastic bilevel
optimization algorithms shown in (Hong et al., 2020) as
either a single algorithm or (Ghadimi & Wang, 2018) as a
double-looped one. Following the previous theoretical anal-
ysis results, we can also claim that under mild assumptions
on boundedness and continuity of the inner and outer level
loss functions BiG-Fed is able to find the first-order station-
ary points (FOSPs) of general weakly convex outer loop
bilevel optimization problems with provable convergence
guarantees.

To be more specific, when the number of the inner loop
updates is 1, BiG-Fed can converge to FOSPs in a rate of
O(K−2/5) [Please see Theorem 2, (Hong et al., 2020)],
where the step sizes of αk and βk are chosen in an order of
O(K−3/5) and O(K−2/5), and K denotes the total num-
ber of iterations. When the number of the inner loop up-
dates is O(

√
k), then BiG-Fed can find FOSPs in a rate of

O(K−1/2) [Please see Corollary 3.1, (Ghadimi & Wang,
2018)], where αk is chosen in an order of O(K−1/2) and
βt is O(1/t) where t denotes the number of inner loops.

5. Experimental Evaluation
In order to evaluate our algorithm and eliminate other in-
terference, we design a reverse function regression pro-
cess as shown in Figure 3, in which we build 2 decision-
weight ground truth functions exactly depending on a 2D-
embedding generated from a real-world network. Then, we
use the data generated from the ground truth function to
reverse regress the functions with different distributions and
graphical structure relationships.

5.1. Dataset

More specifically, we utilize the widely adopted Zachary
karate club network from (Kunegis, 2013) which
includes 156 edges, and a graph embedding tool
(https://github.com/phanein/deepwalk) from (Perozzi et al.,
2014) to generate 34 2-dimensional embedding vectors. We
use one of the two dimensions to set the 34 different am-
plitudes, and the other dimension to set the value for the
multiplier of the input variables forming 34 functions which
are the ground truth of 34 time series prediction models

Figure 3. Experiment setup.

related to the Zachary karate club network topology. Then,
with the 34 topology-related ground truth functions, we in-
dependently generate the train set and test set for the 34
inner level tasks by drawing a uniform distribution sample
of 50 values in the range from -5 to 5 as the input and getting
the output as labels from these ground truth functions.

Training data for the outer level include two parts. The first
is the label of the edge connectivity in the form of a [0, 1]
vector with a dimension of 936× 1 consisting of 156 con-
nected edges and 5 negative sample for each node originated
by a adjacency matrix from the Zachary karate club network.
The second is an edge similarity vector corresponding to
the aforementioned label vector, which is derived by the
node representative matrix composed by local model weight
uploaded from clients.

5.2. Model Setup

Inner Level Model The inner level model consists of mul-
tiple linear transformation layers. In our experiment, we
set the total number of layers as 3 and select the middle
layer as the outer weight ϕ with the shape of 8× 8 which is
distributed from FL server, and separate the decision weight
θi into 2 sub-weights for the first layer and the last layer
with the shape of 1× 8 and 8× 1, respectively, for accept-
ing a 1-dimensional input and outputting a 1-dimensional
predictive label.

Outer Level Model We use a graph convolutional net-
work (GCN) layer (Wang et al., 2019) to generate the graph
embedding for edge similarity learning. One GCN layer
is used in the outer level task where the outer level weight
ϕ acts as the graph convolutional kernel of the GCN layer
with a dimension of 8× 8, and each uploading inner node
θi acts as the node input representative with a dimension
of 8× 2. The GCN outputs an embedding with a shape of
2 × 8, which we flatten into a 1 × 16 vector and fit it into
the cosine embedding loss function.
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5.3. Results and Discussion

Figure 4. Positive correlation between inner level and outer level
convergence.

Relevance between Inner and Outer Levels Firstly, we
conduct an experiment by freezing the update of the outer
level function weight, and just calculating and recording
the current loss value of the outer level once the local pa-
rameter is uploaded to the server for each round. Since the
smaller the outer level loss is, the closer it is to the preset
topology, we just need to observe whether this outer level
loss decreases together with the convergence of the inner
level. As shown in Figure 4, the two curves decrease simul-
taneously, demonstrating the effectiveness of the outer level
loss function we have designed.

Figure 5. performance comparison of BiG-Fed with different base-
line methods

Performance of BiG-Fed Since this research focuses on
solving the non-i.i.d problem by adding a topological struc-
ture learner to the FL server, we compare the performance
of BiG-Fed with clustering-based PFL approaches by con-
sidering the following baseline methods: a K-means cluster-
based federated learning method called FeSEM (Xie et al.,
2020) and an approach combining hierarchical clustering
with federated learning called FL+HC (Briggs et al., 2020).
The classic FedAvg (McMahan et al., 2017) is also included
as a baseline.

Clustering-based FL can be considered as a special form
of bilevel optimization FL. The outer level weights are the
cluster center assignment labels for each node learned by
the clustering algorithm, and this label is a function with
respect to the local model uploaded from the inner level.
Similarly, the inner level weights are essentially a function
of this assignment label. Therefore, to make a fair compari-
son, We just keep the same shape of θ as the baseline local
model parameters and use the respective clustering algo-
rithm or FedAvg algorithm at the server. Since cluster-based
methods FeSEM and FL+HC require prior knowledge about
k (i.e., the number of clustering centers), we set a group
baselines where k = [4, 8, 16] for both FeSEM and FL+HC.
As illustrated in Figure 5, the testing loss of BiG-Fed clearly
drops faster than FedAvg and two groups of cluster-based
methods. Moreover, benefiting from a bilevel optimization
framework, BiG-Fed achieves the fastest convergence rate
with the lowest testing loss.

6. Conclusions
In this paper, we propose a novel algorithm called BiG-Fed,
which is a graph-aided federated bilevel optimization ap-
proach to solve the non-i.i.d problem when a graph structure
exists among FL clients. We leverage prior topology infor-
mation to collocate an optimization task in the center which
is positively correlated with the current convergence of all
local end models, thus enabling our algorithm to acceler-
ate the convergence of the federated models. BiG-Fed is
a convergence-guarantee algorithm enhancing the TTSA
algorithm from a one-to-one bilevel optimization problem
into a one-to-many bilevel FL problem. At the same time,
utilizing the block structure of the lower level optimization
problems, our algorithm can enable the computational bur-
den of calculating high-order gradients to be distributed
among the FL clients. Extensive experiments based on a
real-world network demonstrate significant advantages of
BiG-Fed over state-of-the-art related work.
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A. Proof of Lemma 1
Proof. Consider θ = [θ1, . . . , θn]

T and g(ϕ,θ) = [g1(ϕ, θ1), . . . , gn(ϕ, θn)]
T . Firstly, the gradient of g(ϕ,θ) with respect

to θ can be expressed as follows:
∂g(ϕ,θ)

∂θ
=

[
∂g1(ϕ, θ1)

∂θ1
, . . . ,

∂gn(ϕ, θn)

∂θn

]
. (13)

The corresponding Hessian matrix can be written as:

∇2
θθg(θ,θ) = diag{∇2

θ1θ1g(ϕ, θ1), . . . ,∇
2
θnθng(ϕ, θn)}. (14)

Similarly, the Jacobian matrix∇2
ϕθ can be expressed as:

∇2
ϕθ =


∂∇g(ϕ,θ)
∂ϕ1

. . . ∂∇g(ϕ,θ1)
∂ϕm

...
...

∂∇g(ϕ,θ)
∂ϕ1

. . . ∂∇g(ϕ,θ)
∂ϕm

 =


∂∇g1(ϕ,θ1)
∂ϕ1∂θ1

. . . ∂∇g1(ϕ,θ1)
∂ϕm∂θ1

...
...

∂∇gn(ϕ,θn)
∂ϕ1∂θn

. . . ∂∇gn(ϕ,θn)
∂ϕm∂θn

 =

∇
2
φθ1
g1(φ, θ1)

...
∇2
φθn

gn(φ, θn)

 . (15)

This completes the proof.


