Handling Both Stragglers and Adversaries for Robust Federated Learning

Jungwuk Park“' Dong-Jun Han"'! Minseok Choi’? Jaekyun Moon !

Abstract

While federated learning (FL) allows efficient
model training with local data at edge devices,
among major issues still to be resolved are: slow
devices known as stragglers and malicious attacks
launched by adversaries. While the presence of
both of these issues raises serious concerns in
practical FL systems, no known schemes or com-
binations of schemes effectively address them at
the same time. We propose Sageflow, staleness-
aware grouping with entropy-based filtering and
loss-weighted averaging, to handle both stragglers
and adversaries simultaneously. Model grouping
and weighting according to staleness (arrival de-
lay) provides robustness against stragglers, while
entropy-based filtering and loss-weighted averag-
ing, working in a complementary fashion at each
grouping stage, counter a wide range of adversary
attacks. Extensive experimental results show that
Sageflow outperforms various existing methods
aiming to handle stragglers/adversaries.

1. Introduction

Federated learning (FL) (McMahan et al., 2017; Kone¢ny
et al., 2016) is a promising direction for large-scale learning,
which enables training of a global model with less privacy
concerns. However, among major issues that need to be
addressed in current FL systems are the devices called strag-
glers that are considerably slower than the average and the
adversaries that enforce a various form of attacks.

Regarding the first issue, simply waiting for all the stragglers
can significantly slow down the training process of FL. To
handle stragglers, various asynchronous FL schemes have
been proposed in the literature (Li et al., 2019b; Xie et al.,

*Equal contributions. ' School of Electrical Engineering, Korea
Advanced Institute of Science and Technology (KAIST), South
Korea. “Department of Telecommunication Engineering, Jeju
National University, South Korea.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). Copyright 2021 by the
author(s).

2019a; van Dijk et al., 2020). Especially in FedAsync (Xie
et al., 2019a), the global model is updated asynchronously
according to the device’s staleness t — 7, the difference
between the current round ¢ and the past round 7 when
the device first received the global model. While the asyn-
chronous schemes are highly effective in handling stragglers,
its one-by-one update scheme does not lend itself well for
integration with established aggregation methods to combat
the second issue, the adversaries.

There are different forms of adversarial attacks that degrade
performance of current FL systems: untargeted attacks such
as model-update poisoning (Blanchard et al., 2017) or data
poisoning (Biggio et al., 2012; Liu et al., 2017), and tar-
geted attacks (or backdoor attacks) (Chen et al., 2017a; Bag-
dasaryan et al., 2018). Robust federated averaging (RFA)
of (Pillutla et al., 2019), a well-known method proposed to
handle adversaries in FL, employs geometric-median-based
aggregation to provide a fair level of protection. Other vari-
ous aggregation schemes (e.g., Multi-Krum) also success-
fully handle adversaries in distributed learning (Blanchard
et al., 2017; Chen et al., 2017b). Unfortunately, however,
the performance of these methods are substantially degraded
when the portion of adversaries is large. The presence of
stragglers drives the attack ratio higher (e.g., by ignoring
stragglers), significantly degrading the performance of cur-
rent aggregation schemes.

While the presence of both stragglers and adversaries raises
significant concerns in current FL, to our knowledge, there
are currently no existing methods or combinations of ideas
that can effectively handle these issues simultaneously.

Main contributions. We propose Sageflow, staleness-
aware grouping with entropy-based filtering and loss-
weighted averaging, a robust FL strategy which can handle
both stragglers and adversaries at the same time. Targeting
the straggler issue, our strategy is to perform periodic global
aggregation while allowing the results sent from stragglers
to be aggregated in later rounds. In each global round, we
take advantage of the results sent from stragglers by first
grouping the models that come from the same initial models
(i.e., same staleness), to obtain a group representative model.
Then, we aggregate the representative models of all groups
based on their staleness, to obtain the global model. Our
grouping strategy based on staleness is not only effective in
neutralizing stragglers but also provides a great platform for

Handling Both Stragglers and Adversaries for Robust Federated Learning

countering adversaries, as discussed below.

Targeting each grouping stage of our straggler-mitigating
idea, we propose an intra-group defense strategy which is
based on our entropy-based filtering and loss-weighted aver-
aging. These two methods work in a highly complementary
fashion to effectively counter a wide range of adversarial
attacks in each grouping stage. Here, in computing the en-
tropy and loss of each received model, we utilize public
data that we assume to be available at the server. In fact,
the utilization of public data is not a new idea, as seen in
recent FL setups of (Zhao et al., 2018; Xie et al., 2019c;
Li et al., 2020). This is generally a reasonable setup since
data centers typically have some collected data that can be
accessed by public. We show later via experiments that
only a very small amount of public data is necessary at the
server (2% of the entire dataset, which is comparable to
the amount of local data at a single device) to successfully
combat adversaries. Our main contributions are as follows:

o We propose Sageflow, handling both stragglers and ad-
versaries simultaneously in FL, via a novel staleness-
aware grouping combined with entropy-based filter-
ing and loss-weighted averaging.

e We derive the theoretical bound for Sageflow and
provide key insights into the convergence behavior.

e Experimental results show that Sageflow outperforms
various combinations of straggler/adversary defense
methods using only a small portion of public data.

Related works. The authors of (Li et al., 2019b; Wu et al.,
2019; Xie et al., 2019a; Lu et al., 2020; van Dijk et al., 2020)
have recently tackled the straggler issue in FL. The basic
idea is to allow the devices and the server to update the
models asynchronously; the global model is updated every
time the server receives a model from a device. However, a
critical issue is that grouping-based (or aggregation-based)
methods designed to handle adversaries, such as RFA (Pil-
lutla et al., 2019), Multi-Krum (Blanchard et al., 2017) or
the presently proposed entropy/loss based idea, are hard to
be implemented in conjunction with these schemes since
the model update is performed one-by-one asynchronously.
Compared to the asynchronous schemes, our staleness-
aware grouping can be combined smoothly with various
aggregation rules against adversaries; we can apply RFA,
Multi-Krum or our entropy/loss based idea in each grouping
stage to obtain the group representative model.

To combat adversaries, various aggregation methods have
been proposed in a distributed learning setup with IID data
across nodes (Yin et al., 2018a;b; Chen et al., 2017b; Blan-
chard et al., 2017). The authors of (Chen et al., 2017b) sug-
gests a geometric-median-based aggregation rule of models
or gradients. In Multi-Krum (Blanchard et al., 2017), among
N workers in the system, the server tolerates f Byzantine
workers, where 2f + 2 < N. Targeting FL with non-1ID

(independent, identically distributed) data distribution, RFA
of (Pillutla et al., 2019) utilizes the geometric median of
models sent from devices, similar to (Chen et al., 2017b).
However, as already implied, these methods are ineffective
when combined with a straggler-mitigation scheme (e.g.,
ignoring stragglers), potentially degrading the performance
of learning. Compared to Multi-Krum and RFA, our en-
tropy/loss based scheme can tolerate adversaries even with
a high attack ratio, showing remarkable advantages when
combined with straggler-mitigation schemes.

Finally, we note that Zeno (Xie et al., 2019b) and Zeno+
(Xie et al., 2019c¢) also utilize public data at the server to
handle adversaries, but in a distributed learning setup with
IID data across the nodes. Compared to Zeno+, our Sage-
flow targets non-IID data distribution in a FL setup. While
Zeno+ adopts a fully asynchronous update rule (without
considering the staleness) with the loss-based score func-
tion, our Sageflow integrates staleness-aware grouping, a
semi-synchronous straggler-handling method, with entropy
filtering and loss-weighted averaging, a harmonized means
to provide protection against a wider variety of attacks.

2. Proposed Sageflow for Federated Learning

We consider the following federated optimization problem:

N
. . my
* = F = —F 1
w argvrvnm (w) argvrvnmkg1 - w(w), (1)

where N is the number of devices, my, is the number of
data samples in device k, and m = Zgil myg. By let-
ting x; ; be the j-th data sample in device k, the local
loss function of device k, Fj,(w), is written as Fj(w) =

Tik ijz"l Uw;xg ;).

2.1. Staleness-Aware Grouping against Stragglers

In the ¢-th global round, the server sends the current model
w; to K devices in Sy, a randomly selected subset of N de-
vices. We let C' = % be the ratio of devices that participate
in each global round. Each device in S; performs E local
updates and sends the updated model back to the server.

In handling slow devices, our idea assumes periodic global
aggregation at the server. At each global round ¢, the server
transmits the current model and time stamp, (wy,t), to
the devices in S;. Instead of waiting for all devices in
S, the server aggregates the models that arrive by a fixed
time deadline Ty to obtain w1, and moves on to the next
global round ¢ + 1. Hence, model aggregation is performed
periodically with every 7. A key feature here is that we do
not ignore the results sent from stragglers not arriving by
the deadline 7};. These results are utilized at the next global
aggregation step, or even later, depending on the delay or
staleness. Let Ui(t) be the group of devices selected from the
server at global round ¢ that successfully sent their results

Handling Both Stragglers and Adversaries for Robust Federated Learning

D U((,“) | U,(“) :
So | D = Server
|
U : | t
Received at : } I Loss weighted - 779
global round o qul)' D) avera %n AW = (1 —y)we + Vzat Dy
-1 D t — ging =
ntropy
St D I : based Averaging
| D | filtering
Receivedat | D U
|
global round t-1
St i I
| 0D |
Received at (Weep, t+1)
. global round ¢
Sti1

Figure 1. Overall procedure of Sageflow. At global round ¢, each received model belongs to one of the ¢ + 1 sets: Ut(o), Ut(l), R Ut(t).

(

After entropy-based filtering, the server performs loss-weighted averaging for the results that belong to Ut(i) (E+n) to obtain Vt21- Then

we aggregate {Vgl}ﬁzo with w; to obtain w1, and move on to the next round ¢ + 1.

to the server at global round ¢ for ¢« > ¢. Then, we can
write §; = U2, U™, where U" N U;t) = fori # j.
Here, Uéé) can be viewed as the devices that are selected at
round ¢ but failed to successfully send their results back to
the server. According to these notations, the devices whose
training results arrive at the server during global round ¢
belong to one of the ¢ 4- 1 groups: Ut(o), t(l), e Ut(t). Note
that the result sent from device k € Ut(l) is the model after
E local updates starting from w;, and we denote this model
by w; (k). At each round ¢, we first perform FedAvg as

() mg

A2 = —
t+1

) E (i) Mg
keUt(f,) keU;

wi(k) 2

forall: = 0,1,...,t. Here, vgfgl can be viewed as a group

representative model, which is the aggregated result of lo-
cally updated models (starting from w;) received at round ¢
with staleness ¢ —4+- 1. Then from the representative models

of all ¢ groups, vt((i)l, vg_)l,..., vgl, we take a weighted av-

eraging according to different staleness: 3 ;_, agi) ()\)vgizl.
Here, a?(\) o et ™

ere, a; ' (A) ey
that is inversely proportional to (¢ — i + 1)*, for a given
staleness exponent A > 0. Hence, we have a larger weight
for Vt(zzl with a smaller ¢ — ¢ 4 1 (staleness). This is to
give more weights to more recent results having smaller
staleness. Based on the weighted sum >_'_ agl)(/\)vgl,
we finally obtain w1 as

t
wern=(1—Nw+7Y o’ A, G
1=0

is a normalized coefficient

where + is the time-average coefficient. Now we move on
to the next round ¢ + 1, where the server selects S;y; and
sends (wy11,t + 1) to these devices. Here, if the server
knows the set of active devices (which are still performing
computation), S;y1 can be constructed to be disjoint with
the active devices. If not, the server randomly chooses S; 1

among all devices and the selected active devices can ignore
the current request of the server. The left-hand side of Fig.
1 describes our staleness-aware grouping method.

2.2. Entropy-based Filtering and Loss-Weighted
Averaging against Adversaries

Now we propose a solution against adversaries which not
only shows better performance with attacks but also com-
bines well with our staleness-aware grouping scheme com-
pared to existing aggregation methods to handle adversaries.
We provide the following two solutions which can protect
the system in a highly complementary fashion against vari-
ous attacks using only a small amount of public data.

1) Entropy-based filtering. Let n,,; be the number of
public data samples in the server. We also let zp,; ; be
the j-th sample in the server. When the server receives the
locally updated models from the devices, it measures the
entropy of each device k by utilizing the public data as

1 &
E(k) = Z Ewpub,]‘ (k)a (4)
N pub J=1

where E, , ;(k) is the shannon entropy of the model of the
k-th device on the sample ,, ; Written as £, , (k) =

- Zqul Paggl,b,j (k) log pLo (k). Here, Q is the number

Tpub,j
of classes of the dataset and P;Zlb, ; (k) is the probability of
prediction for the g-th class on a sample xp, ;, using the
model of the k-th device. As can be seen from Fig. 2(a)
with FMNIST dataset, under specific model-update poison-
ing attacks (reverse sign attack with scale 0.1 in this case),
the models compromised by adversaries tend to predict ran-
domly for all classes and thus have high entropies compared
to the models of benign devices. Based on this observation,
we let the server to filter out the models that have entropies
greater than some threshold value Ey;,. We note that the
inflicted models cannot be filtered out based on the loss
values in the setting of model update poisoning in Fig. 2(b),
which confirms the importance of the role of entropy. We

Handling Both Stragglers and Adversaries for Robust Federated Learning

25

20

2
- —— Adversarial device
215 —— Adversarial device » 15 — Benign device
g . —Benign device a
i —10

0.5
| e
0 0
20 40 60 80 100 0 50 100
Global round Global round

(a) Model poison, entropy (b) Model poison, loss

0.5
0.4
0.3
wio0.2

0.1

——Adversarial device
—Benign device

ntropy

—Adversarial device
—Benign device

0
0 20 40 60 0 20 40 60
Global round Global round

(c) Data poison, entropy (d) Data poison, loss

Figure 2. Model update poisoning ((a), (b)): We can filter out the models of adversaries via entropy, but not via loss. Data poisoning
((c), (d)): We can reduce the impact of adversaries via loss, but not via entropy.

also note that our entropy-based filtering is robust against
attacks even with a large portion of adversaries, since it
just filters out the results whose entropy is greater than Eyp,.
This is a significant advantage compared to current aggre-
gation methods against adversaries, whose performance are
substantially degraded with high attack ratio.

2) Loss-weighted averaging. The server also measures the
loss of each model using the public data. Based on the loss
values, the server aggregates the models as follows:

Wipr = 3 B (8)wi(k), where (5)

kESt
®)(§) oc % and ®) (s 6
t () {Fpub(wt Z 6 ()

keS

Here, wy(k) is the locally updated model of the k-th de-
vice at global round ¢. F,,;(wy(k)) is defined as the aver-
aged loss of w, (k) computed on public data at the server,
ie., Fpup(wi(k)) = % S L(wi(K); Tpup, ;). Finally,
§(> 0)in {F,us(-)}? is aloss exponent related to the impact
of the loss measured with public data. We note that a setting
d = 01in (5) reduces our loss-weighted averaging to FedAvg.
Under the data poisoning or model replacement backdoor
attacks (or scaled backdoor attack) in (Bagdasaryan et al.,
2018), the models of adversaries have relatively larger losses
compared to others. Fig. 2(d) shows an example with FM-
NIST dataset under data poisoning attack. By the definition
of 8 (k)(0), the data-poisoned model would be given a small
weight and has a less impact on the next global update. By
replacing FedAvg with the above loss-weighted averaging,
we are able to build a system that is highly robust against
data poisoning and scaled backdoor attacks. As can be seen
from Fig. 2(c), the impact of data poisoning cannot be re-
duced via entropy measures. This indicates that the loss
measure has its own unique role, along with the entropy.

Entropy-based filtering and loss-weighted averaging can
be easily combined, and work complementarily to tackle
model/data poisoning and scaled backdoor attacks.

2.3. Sageflow

Finally we put together Sageflow, which can handle both
stragglers and adversaries at the same time by applying
entropy-based filtering and loss-weighted averaging in each

grouping stage of our straggler-mitigating staleness-aware
aggregation. The details of overall Sageflow operation are
described in Algorithm 1 and Fig. 1.

We stress that Sageflow performs well with only a very small
amount of public data at the server, 2% of the entire dataset,
which is comparable to the amount of local data at a single
device. The computational complexity of Sageflow depends
on the number of received models at each global round, and
the running time for computing the entropy/loss of each
model. Assuming that the complexity of computing entropy
or loss is linear to the number of model parameters as in
(Xie et al., 2019b), Sageflow has larger complexity than
RFA by the factor 7. This small additional computation
of Sageflow compared to RFA is the cost for considerably
better robustness against adversaries.

3. Convergence Analysis

In this section, we provide insights into the convergence of
Sageflow with the following standard assumptions in FL (Li
et al., 2019a; Xie et al., 2019a).

Assumption 1 The global loss fuction F defined in (1) is
u-strongly convex, i.e., F(x) < F(y) + VF(2)T(x —y) —
Ellx — y||? for all , y. Moreover, F is L-smooth, i.e.,
F(z) > F(y) + VF(2)"(z —y) = 5llz — y|? for all z, y.

Assumption 2 Let wi(k) be the model of the k-th be-
nign device after i local updates starting from global
round t. Let (k) be a set of data samples that are ran-
domly selected from the device k for (i + 1)-th local up-
date. Then, E||VFy(wi(k), &(k)) — VE(wi(k)|> <
p1 holds foralltandk=1,... . Nandi=1,... E.

Let Bt(i) and Mt(i) be the set for benign and adversarial
devices of U ‘ respectively, satisfying Uf ' = B, @y Mt(i)
and B(o M = . Similarly, define B()(Eth) and
Mt()(Eth) as the sets obtained after entropy-based filtering

is applied to Bt(i) and Mt(i). Now we have the following
definition which describes the effect of the adversaries.

)(Eth,5) as
85 (O)[F (wi(k)) — F(w")].

Definition 1 We define Q'
O (B, 0) = >

keM) (Eyn)

)

Handling Both Stragglers and Adversaries for Robust Federated Learning

Algorithm 1 Proposed Sageflow Algorithm

Input: Initialized model wo, Output: Final global model wr
Process at the Server

1: for each global round ¢t = 0,1,...,7 — 1 do

// Entropy-based filtering in each group
= ZkeU(”(Eth) Bt(k) (6)wi(k) // Loss-weighted averaging in each group (with same staleness)

/I Averaging of representative models (with different staleness)

2: Choose S; and send the current model and the global round (wy, t) to the devices
3: Wait for T; and then:

4: fori;O,l,...,tdo ,

5 U (Ew) = {k € UP|E(k) < Eu}

6: vEJr)l

7: end for o

8 w1 = (1—7y)w: + 'VZZ 0 O‘t ()‘)VH

9: end for

Process at the Device: Device k receives (we, t) from the server and performs local updates to obtain w (k). Then each benign device k

sends (wy

(k), t) to the server, while a malicious adversary sends a poisoned model depending on the type of attack.

Now we state the following theorem which provides the
convergence bound of Sageflow.

Theorem 1 Suppose Assumptions 1, 2 hold and the learn-
ing rate 1 is set to be less than % Then Sageflow satisfies

E[F(wr) — F(w*)] < v [F(wo) — F(w*)]

+ (1 =vDZ(N, Em,) (8)
where v =1 — v +~v(1 —nu)¥,
P1 + QNGmal(A) + QMQmaz(Etha 6)

Z(\NE =
(A7 th 6) 27’#2)
o ©)
Grax ()\) = 1I£1ta<XT Zz 0 Q¢ () t s Qnaz (Eth7 5) =
?%Q(N(E,8),) = F(w;) — F(w,).

In (8) above, we see a trade-off between vT, which de-
termines the convergence speed, and (1 — Z/T)Z , which
represents an error. If we increase -y, we have a higher
convergence speed (i.e., a small »7) but a larger error
term. Our scheme allows a separate control on the error
term Z(\, Eyp, 0) through staleness exponent A, entropy-
filtering threshold FEy; and the loss-weighted exponent 4.
Here, in Z(\, Etp,0) of (9), Gpmaz(N) is the error term
caused by stragglers controlled by A, and Q,,4.(Eyp,0)
is the errror caused by adversaries controlled by Ej;, and
. First, to gain insights on G4, (), assume that the
loss of the global model decreases as global round in-
creases, i.e., F'(w;) < F(wy;) fori > j. Then, we have

e > eﬁ” > > e s 0.
Sz 0 ag)(A)eg), we have to increase the staleness expo-

nent A to increase agi) () for a large ¢ (weight for the group

In order to reduce

with small staleness) while reducing al(f) (A) for a small ¢
(weight for the group with large staleness). By choosing an
appropriate A, we can control the error term G,,,,, While
taking advantage of the results sent from stragglers. As
for the adversary-induced error 2,44 (E}p, d), by imposing
a threshold Fyj, we can reduce the portion of adversaries

(with high entropies) in each group Ut(i)(Eth), which in

turn reduces Qi according to (7). Likewise, by introducing
d, we can reduce the loss-weights Bfk)(é) (defined in (6))
of the adversaries with large losses, which again reduces
Qfﬁl) according to (7). In the next section, we show via ex-
periments that Sageflow in fact successfully combats both
stragglers and adversaries simultaneously and achieves fast
convergence with a small error term.

4. Experiments

We validate Sageflow on MNIST (LeCun et al., 1998), FM-
NIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al.,
2009). A simple convolutional neural network (CNN) with 2
convolutional layers and 2 fully connected layers is utilized
for MNIST, while CNN with 2 convolutional layers and 1
fully connected layer is used for FMNIST. When training
with CIFAR10, we utilized VGG-11.

We consider N = 100 devices each having the same number
of data samples. We randomly assigned two classes to
each device as in (McMabhan et al., 2017) to create non-1ID
situations. We ignored the batch normalization layers when
training VGG-11 with CIFAR10. At each global round, we
randomly selected a fraction C' of devices in the system to
participate. The portion of adversaries at each global round
is 7. For the proposed Sageflow method, we sample 2% of
the entire training data uniformly at random to be the public
data and performed FL with the remaining 98% of the train
set. The number of local epochs at each device is set to 5.

Comparisons schemes. Under the existence of both strag-
glers and adversaries, we compare our Sageflow with vari-
ous combinations of straggler/adversary mitigating schemes.
Targeting stragglers, we consider the following methods.
First is the wait for stragglers approach where FedAvg is
applied after waiting for all the devices at each global round.
The second scheme is the ignore stragglers approach where
FedAvg is applied after waiting for a certain timeout thresh-
old and ignore the results sent from slow devices. The third
scheme is the wait for a percantage of stragglers where

Handling Both Stragglers and Adversaries for Robust Federated Learning

o
S

@ ®
=] =]

IS
=)

Test accuracy

/

n
o

A

—— Sageflow (Ours)
—— FedAsync + eflow

Sag + RFA
—Ignore stragglers + RFA
~——Wait for stragglers + RFA

Wait for partial stragglers + RFA
——Zeno+

\ T BT

0

50 100 150

Running time

(a) MNIST

Figure 3. Model-update poisoning attack: Sageflow outperforms various combinations aiming to handle stragglers/adversaries.

Test accuracy

W
— Sageflow (Ours)
1 —— FedAsync + eflow

—— Ignore stragglers + RFA
—— Wait for stragglers + RFA

——Zeno+

Sag + RFA

Wait for partial stragglers + RFA|

50

100 150

Running time

(b) FMNIST

Test accuracy
n w B o
o o o o

o

Zeno+

——Sageflow (Ours)
——FedAsync + eflow
Sag + RFA
—Ignore stragglers + RFA
~——Wait for stragglers + RFA
Wait for partial stragglers + RFA

0

Table 1. Performance at a specific time in Fig. 3.

200

400 600

800

Running time

(c) CIFAR10

1000 1200

Model update poisoning
(Test accuracy)

Scaled backdoor attack
(Attack success rate)

Data poisoning
(Test accuracy)

Methods\ Datasets || MNIST ~FMNIST CIFARIO || MNIST FMNIST CIFARIO || MNIST FMNIST CIFARIO
Zeno+ 9.96% 9.95% 9.21% 12.27% 10.00% 10.00% -

Ignore stragglers + RFA 10.04% 10.00% 10.00% 97.38% 80.78% 64.51% - - -
Wait for partial stragglers + RFA 78.29% 35.29% 10.00% 97.59% 70.15% 62.13% 32.16% 98.49% 82.26%
Wait for stragglers + RFA 96.20% 70.01% 17.17% 96.60% 80.01% 58.51% 3.17% 42.79% 81.74%
Sag + RFA 95.78% 73.64% 10.00% 97.60% 83.55% 64.18% 99.97% 99.97% 90.79%
FedAsync + eflow 84.7% 66.38% 53.03% 83.47% 48.80% 51.28% 99.99% 99.86% 91.34%
Sageflow (Ours) 97.27% 85.23% 63.76% 97.38% 85.01% 64.87% 0.21% 3.79% 5.56%

FedAvg is applied after waiting for a specific portion of the
selected devices in each global round. We consider a scheme
that waits for 50% of selected devices. Finally, we consider
FedAsync (Xie et al., 2019a) where the global model is up-
dated every time the result of each device arrives. Targeting
adversaries, we consider both RFA (Pillutla et al., 2019)
and an asynchronous version of Zeno+ (as in (Xie et al.,
2019c)) which utilizes public data at the server: the server
first subtracts each survived model (after filtering) from the
previous global model to obtain the model difference. Then,
the global model is updated asynchronously based on each
model difference. For a fair comparison, we let 2% of the
train set to be the public data and the remaining 98% to be
distributed at the devices, as in our Sageflow.

Setup. The global aggregation at the server is performed
with every Ty = 1 periodically for Sageflow, ignore strag-
glers and FedAsync. To model stragglers, each device can
have delay of 0, 1, 2 global rounds which is determined
independently and uniformly random. For model update
poisoning, each adversary sends —0.1w to the server, in-
stead of sending the true model w. For data poisoning at-
tack, we conduct label-flipping (Biggio et al., 2012), where
each label : is flipped to label ¢ 4 1. For the backdoor, we
use the model replacement method (scaled backdoor attack)
(Bagdasaryan et al., 2018) in which adversaries transmit the
scaled version of the corrupted model to replace the global
model with a bad model. We conduct pixel-pattern back-
door attack (Gu et al., 2017) in which the specific pixels are
embedded in a fraction of images, where these images are
classified as a targeted label. We applied backdoor attack
in every global round after the 10-th round for MNIST and
FMNIST, and after the 1000-th round for CIFAR10.

Results. Fig. 3 and Table 1 show the results under the exis-

tence of both stragglers and adversaries. We set C' = 0.2,
r = 0.2 for model/data poisoning and C' = 0.1, » = 0.1 for
the backdoor attack. In backdoor attack, we excluded the
results for Zeno+ and RFA combined with ignore stragglers,
since the models are not trained at all. We have the follow-
ing observations. First, Zeno+ does not perform well since
it does not take both the staleness and entropy into account.
It can be also seen that the wait for stragglers scheme com-
bined with RFA suffers from the straggler issue. Our next
observation is that the RFA combined with ignore stragglers
method exhibits poor performance. The reason is that the
attack ratio could often be very high (larger than r) for this
deadline-based scheme, which degrades the performance
of RFA. Due to the same issue, RFA combined with our
staleness-aware grouping (Sag) has performance degrada-
tion. FedAsync does not perform well when combined with
entropy-based filtering and loss-weighted averaging (eflow),
since the model update is conducted one-by-one in the order
of arrivals. Due to the same issue, FedAsync cannot be com-
bined with RFA. Overall, the proposed Sageflow performs
the best, confirming significant advantages of our scheme
under the existence of both stragglers and adversaries.

5. Conclusion

We proposed Sageflow, a robust FL scheme handling both
stragglers and adversaries simultaneously. The staleness-
aware grouping allows the server to effectively utilize the
results sent from stragglers. The grouping strategy also inte-
grates naturally with defenses against adversaries. In each
grouping stage of our straggler-mitigating idea, entropy-
based filtering and loss-weighted averaging function in a
complementary fashion to protect the system against a wide
variety of adversarial attacks. Theoretical convergence anal-

Handling Both Stragglers and Adversaries for Robust Federated Learning

ysis provides key insights into why Sageflow works well.
Experimental results show that Sageflow enables robust FL
in practical scenarios with both stragglers and adversaries.

References

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. arXiv
preprint arXiv:1807.00459, 2018.

Biggio, B., Nelson, B., and Laskov, P. Poisoning at-
tacks against support vector machines. arXiv preprint
arXiv:1206.6389, 2012.

Blanchard, P., Guerraoui, R., Stainer, J., et al. Machine
learning with adversaries: Byzantine tolerant gradient
descent. In Advances in Neural Information Processing
Systems, pp. 119-129, 2017.

Chen, X., Liu, C., Li, B., Lu, K., and Song, D. Targeted
backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526, 2017a.

Chen, Y., Su, L., and Xu, J. Distributed statistical machine
learning in adversarial settings: Byzantine gradient de-
scent. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):44, 2017b.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Konec¢ny, J., McMahan, H. B., Yu, F. X, Richtarik, P,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Li, Q., He, B., and Song, D. Model-agnostic round-optimal
federated learning via knowledge transfer. arXiv preprint
arXiv:2010.01017, 2020.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019a.

Li, Y., Yang, S., Ren, X., and Zhao, C. Asynchronous
federated learning with differential privacy for edge intel-
ligence. arXiv preprint arXiv:1912.07902, 2019b.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. 2017.

Lu, X., Liao, Y., Lio, P., and Hui, P. Privacy-preserving
asynchronous federated learning mechanism for edge
network computing. I[EEE Access, 8:48970-48981, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273-1282, 2017.

Pillutla, K., Kakade, S. M., and Harchaoui, Z. Ro-
bust aggregation for federated learning. arXiv preprint
arXiv:1912.13445, 2019.

van Dijk, M., Nguyen, N. V., Nguyen, T. N., Nguyen, L. M.,
Tran-Dinh, Q., and Nguyen, P. H. Asynchronous feder-
ated learning with reduced number of rounds and with
differential privacy from less aggregated gaussian noise.
arXiv preprint arXiv:2007.09208, 2020.

Wu, W, He, L., Lin, W, Jarvis, S., et al. Safa: a semi-
asynchronous protocol for fast federated learning with
low overhead. arXiv preprint arXiv:1910.01355, 2019.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019a.

Xie, C., Koyejo, S., and Gupta, . Zeno: Distributed stochas-
tic gradient descent with suspicion-based fault-tolerance.
In International Conference on Machine Learning, pp.
6893-6901. PMLR, 2019b.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous sgd. arXiv preprint arXiv:1903.07020,
2019c.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.
Byzantine-robust distributed learning: Towards optimal
statistical rates. arXiv preprint arXiv:1803.01498, 2018a.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P. De-
fending against saddle point attack in byzantine-robust
distributed learning. arXiv preprint arXiv:1806.05358,
2018b.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Handling Both Stragglers and Adversaries for Robust Federated Learning

A. Proof of Theorem 1
A.1. Additional Notations for Proof

Let w{ (k) be the model of the k-th benign device after j local updates starting from global round ¢. At global round ¢, each
device receives the current global model w; and round index (time stamp) ¢ from the server, and sets its initial model to

wy, i.e., wP (k) < wy forall k = 1,..., N. Then each k-th benign device performs E local updates of stochastic gradient
descent (SGD) with learning rate 7:
wi (k) < wi (k) = nVFi(wi (k)& (k) forj=1,..., E, (10)

where 5{ (k) is a set of data samples that are randomly selected from the k-th device during the j-th local update at
global round ¢. After E local updates, the k-th benign device transmits wf (k) to the server. However, in each round, the
adversarial devices transmit poisoned model parameters.

Using these notations, the parameters defined in Section 2 can be rewritten as follows:

Vil = 3 B E)wWE(k) where B (5) o % and Y gPG)=1 Ay
& (i) { PUb(Wi ())} ()
€U, (Etn) keU,"” (Ewn)
t . . . Z (i) Mg t .
Ziy1 = Zatl)(A)vgﬂl where agl)()\) x (tk—ejifjhl))‘ and Z agl)(/\) =1 (12)
i=0 =0
Wiy = (1 —7)ws + 72441 (13)
We also define ‘ i

= Y Y (14)

B (Eun)

where 0 < ngll <1l

A.2. Key Lemma and Proof

We introduce the following key lemma for proving Theorem 1. A part of our proof is based on the convergence proof of
FedAsync in (Xie et al., 2019a).

Lemma 1 Suppose Assumptions 1, 2 hold and the learning rate n is set to be less than % Consider the k-th benign device
that received the current global model w from the server at global round t. After E local updates, the following holds:

BF(w (k) — Fw)lwi()] < (1= mp) P[E(wd () — F(w")] + 220 (1s)

Proof of Lemma 1. First, consider one step of SGD in the k-th local device. For a given w{ (k), for all global round ¢ and for

all local updates j € {0,1,..., E — 1}, we have

BLF(w] ™ (k) — FOw)lwi(b)] I
< F(wi(k)) = F(w") = nE[VF(w] ()" (w] (k). & (k) b ()]

2) .)
+ LTnIE[HVFk(Wi (k), &) |12|w (k)] » SGD update and L-smoothness
< F(wi(k)) = F(w") + gE[||VF(W§(k)) — VE(wi (k). & (k) []*|wi (k)]
) 1
— LI VE (w] (k)] >n<
< F(wl(k)) — F(w*) — gHVF(W{(k))H2 + % » Assumption 2
< (1 —nup)[F(wl(k)) — F(w*)] + 1oy » /-strongly convexity (16)

2

Handling Both Stragglers and Adversaries for Robust Federated Learning

Applying above result to E local updates in k-th local device, we have

E [F(w (k) — F(w")[w} (k)]

= E[E[F(wF(k)) — F(w*)|wE L (E)]|[wl(k)] » Law of total expectation
< (1~ mu)RIF(wE () — F(wYlw (k)] + 2% > Inequality (16)

2
oy o1l = (1 —nu)® 1_1
= (1 —nu)P[F(wi(k)) = F(w)]+7T >Ff0m77<zé;> np <1
Enp,

Handling Both Stragglers and Adversaries for Robust Federated Learning

A.3. Proof of Theorem 1

Now utilizing Lemma 1, we provide the proof for Theorem 1. First, consider one round of global aggregation at the server.
For a given w;_1, the server updates the global model according to equation (13). Then forall ¢ € 1,...,T, we have

E[F(w;) — F(w")|we_1]

(1) F(wies) — F(w")] +AE[F(z) — F(w")lwei]

< (- IFw) — Bl + 7Y ol OBF(?) — Fw)lw]

Q1 DEmw) — P+ af) Y B GEFWE(R) - FwSlwe]
1=0

keU D, (Bun)

= (1=)[F(wi_1) - +vzat Y BYOEIFWE (k) — F(w)lwi]

keB (Bu)

+ Y AVOEIFWE (k) - Fw)lwiil)
keM | (Buw)
(d) Enp1vy
2

< (1= 4+ 3V Y (1 -) B [F(wet) — F(w*)] +

e EZat . >o BP0 [F(wk) - F(w")]

keB§?1<Em)

t—1
+) oty Y BPEEF(WE (k) - F(w")|we]
1=0

kGMt(i)l(Eth)
() - o, Enpy
< (1= 7+ 705 Y 0 =)) F (W) = F(w")] + =2
t—2
i k *
SO IO N S () F(w;) — F(w")
=0 keBY, (Eup) F(wi)—F(wWi_1)+F(wi_1)—F(w*)
+ ’YQmaz (Eth7 6)
Enp1y

1—v+v2a‘” N (=) ") [F(wier) = F(w*)] + =

(1=)" Z o\ X B [F(w) — F(Wee)] +1Qmaa(Eun, 6)

keBEzjl(Eth,)

< (17490 =)P F(we) — Flwvt) + 220

+ 'Vthl()\) + ’YQmam (Etha 5) (17)

where G¢()) := Z:;é agi)()\)e,(fi) and we define Go(\) = 0. (a), (b), (c) come from convexity, (d) follows Lemma 1, (e)

comes from Q4. = max fo) (f) comes from the fact that nu < 1 and 0 < a(l)(A) <land0 < r§“ < 1forall
0<i<t,0<t<T

i tand 3'_al”(A) = 1 forall t.

Handling Both Stragglers and Adversaries for Robust Federated Learning

Applying the above result to 1" global aggregations in the server, we have

E[F(wr) — F(w")|wo]

W R [E[F(wr) — F(w")|wr_1]|wo)
R[5 420 =))F(wr) — Pl fwo] + 1 EL 2T 1) % 2 nar i 0)
(12—)Y TF () — Plawe)] + 23260 ()1 2 ()
+ z_: ’7(E77p1 + QGT_I_T(Q/\) + QQmaw(Etha 6)) (1 - + 7(1 _ UM)E>T
T=1
(d)

< (=90 —np)®) T [F(wo) — F(w”)]
P {1+ (1 g)PyT] 2L 226?{“1_30(8)_21?5)&7”(%1’)
©

< (L= +v(1 =)) [F(wo) — F(w")]
+ [1 _ {1 — v+ ,.Y(l _ T),LL)E}T] p1+ Q,UGmax()\> + Q,UQmam(Eth, 5)

2nu?
= VT [F(wo) — F(W")] + (1 —vT)Z(\, Ey,, 6)

which completes the proof. Here, (a) comes from the Law of fotal expectation, (b), (c) are due to inequality (17). (d) is

obtained from the definition of G4 (A) == max Zf;é agi) ()\)egi). In addition, (e) is from nu < 1.

B. Additional experimental results
B.1. Performance comparison with Multi-Krum

While we compared Sageflow with RFA in our main manuscript, here we compare our scheme with Multi-Krum (Blanchard
et al., 2017) which is a Byzantine-resilient aggregation method targeting conventional distributed learning setup with IID
data across nodes. In Multi-Krum, among N workers in the system, the server tolerates f Byzantine workers under the
assumption of 2f + 2 < N. After filtering f worker nodes based on squared-distances, the server chooses M workers
among N — f remaining workers with the best scores and aggregates them. We set M = N — f for comparing our scheme
with Multi-Krum.

100 70 90 70
e M 80

w0l v ol i o
i\ .i 1 70

g Ssol I'f 860 850
S o0 p— =) s s
3 7329‘(? Kor\;v ;0;1:35) 3 ol 4 g 50 ——Sageflow (Ours) 840
S0 MUt-Krum: f-a 8 J 8 ——Sag + Multi-Krum (f=max) 8
3 3 50 3 Ignore stragglers + Multi-Krum (f=max) 8 30 —— Sageflow (Ours)
= = ‘I = ——Wait for stragglers + Multi-Krum (f=max) = —— Sag + Multi-Krum (f=max)
20 2 20 \ 20 Ignore stragglers + Multi-Krum (f=max)
| B ——Wait for stragglers + Multi-Krum (f=max)
0 10l 0 ol oo]
0 50 100 150 0 200 400 600 800 1000 1200 0 20 40 60 80 100 0 200 400 600 800 1000 1200
Global round Global round Running time Running time
(a) FMNIST, only adversaries (b) CIFAR-10, only adversaries (c) FMNIST, both strag-(d) CIFAR-10, both strag-

glers/adversaries glers/adversaries

Figure 4. Performance comparison with Multi-Krum under model-update poisoning. With only adversaries, Multi-Krum performs well
when an appropriate f parameter value is chosen. However, the performance of Multi-Krum degrades significantly when stragglers exist
(even when combined with straggler-mitigating schemes). This is because the attack ratio can become very high when combined with
staleness-aware grouping or the ignoring stragglers scheme; the number of adversaries exceeds f, significantly degrading the performance
of Multi-Krum. When Multi-Krum is combined with the wait for stragglers scheme, the performance is not degraded by adversaries but
by waiting for slow devices.

Fig. 4 compares Sageflow with Multi-Krum under model-update poisoning with scale 10. The stragglers are modeled with

Handling Both Stragglers and Adversaries for Robust Federated Learning

delay 0, 1, 2. We first observe Figs. 4(a) and 4(b) which show the results with only adversaries. It can be seen that if the
number of adversaries exceed f, the performance of Multi-Krum drops dramatically. Compared to Multi-Krum, the proposed
Sageflow method can filter out the poisoned devices and then take the weighted sum of the survived results even when the
portion of adversaries is high. Figs. 4(c) and 4(d) show the results under the existence of both stragglers and adversaries,
under the model-update poisoning attack. We let C' = 0.2 and r = 0.2, and the parameter f of Multi-Krum is set to the
maximum value satisfying 2f 4+ 2 < N, where IV depends on the number of received results for both staleness-aware
grouping (Sag) and ignore stragglers approaches. However, even when we set f to the maximum value, the number of
adversaries can still exceed f, which degrades the performance of Multi-Krum combined with staleness-aware grouping
(Sag) or the ignore stragglers approach. Obviously, Multi-Krum can be combined with the wait for stragglers strategy by
setting f large enough. However, this scheme still suffers from the effect of stragglers, which significantly slows down the
overall training process.

B.2. Experimental results with varying hyperparameters

To observe the impact of hyperparameter setting, we performed additional experiments with various d and Fy, values, the
key hyperparameters of Sageflow. The results are shown in Fig. 5 with only adversaries. We performed the data poisoning
attack for varying § and the model-update poisoning attack with scale 0.1 for varying Fy;. We set C = 0.2 and r = 0.2.

First, the results under data poisoning show that the performance of Sageflow is not sensitive to ¢ if they are chosen in the
appropriate range of [1, 2]. For the model-update poisoning attack, if we use a very small E}, like 0.3, the performance is
poor because a large number of devices get filtered out. If we use a large Ey;,, the performance is also very poor since the
scheme cannot filter out the adversaries. However, similar to the behavior of hyperparameter §, we can confirm that our
scheme performs well regardless of dataset if Ey, is chosen in an appropriate range of [1, 2].

To summarize, our scheme still performs well (better than RFA), even with coarsely chosen hyperparameter values regardless
of the dataset.

100 70 70
e

80 E —03 60 60 | v Em-O.S
5 " oy zsol Wl -Ep=05
g —Elh=0.5 I 50 8 [i E.-1
5 60} __E -1 =] 5 I th
8 h 8 40 gaor —E,=15
& | ——E,=15 © © th
g “of £ -2 Baolf g 'r f?
2 q th™ i 1 =] E,=25

20 =25 200 oL E, =10

FAPMNER ORI S S E,,=10.0 | 1ok th
10
20 40 60 80 100 OO 50 100 150 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Global round Global round Global round Global round
(a) FMNIST, data poisoning (b) FMNIST, model update poi- (c) CIFAR-10, data poisoning (d) CIFAR-10, model update poi-

soning soning

Figure 5. Impact of varying hyperparameter values under model-update poisoning and data poisoning attacks. The performance of
Sageflow is not highly sensitive to the exact settings of loss exponent § and entropy threshold E‘p, as long as they are chosen in a
reasonable range.

