
Bi-directional Adaptive Communication
for Heterogenous Distributed Learning

Dmitrii Avdiukhin 1 Nikita Ivkin 2 Sebastian U. Stich 3 Vladimir Braverman 4

Abstract

Communication constraints are a key bottleneck
in distributed optimization, in particularly band-
width and latency can be limiting factors when
devices are connected over commodity networks,
such as in Federated Learning. State-of-the-art
techniques tackle these challenges by advanced
compression techniques or delaying communica-
tion rounds according to predefined schedules.
We present a new scheme that adaptively skips
communication (broadcast and client uploads) by
detecting slow-varying updates. The scheme au-
tomatically adjusts the communication frequency
independently for each worker and the server.
By utilizing an error-feedback mechanism – bor-
rowed from the compression literature – we prove
that the convergence rate is the same as for batch
gradient descent in the convex and nonconvex
smooth cases. We show reduction of the total
number of communication rounds between server
and clients needed to achieve a targeted accu-
racy, even in the case when the data distribution
is highly non-IID.

1. Introduction
With the data moving to the edge devices, training large
scale machine learning models unavoidably shifts towards
the distributed settings (Kairouz et al., 2019). More and
more applications require large number of workers cooper-
ating in training one shared machine learning model, with
each worker typically holding its small share of data and
has very limited network bandwidth. Often such settings
are driven by privacy concerns, so the data should not leave

*Equal contribution 1Indiana University, Bloomington
2Amazon, New York 3EPFL, Switzerland 4Google, Mountain View.
Correspondence to: Dmitrii Avdiukhin <davdyukh@iu.edu>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

the device, among examples are personal smartphones, geo-
destributed devices storing medical data, sensor networks,
etc (Tomlinson et al., 2009; Brisimi et al., 2018).

In this paper, we address the problem of data parallel
stochastic optimization with a central node coordinating
computation of stochastic gradients on N edge nodes (or
workers/clients):

min
x∈Rd

f(x) with f(x) =
1

N

N∑
i=1

fi(x) .

Here i ∈ [N] denotes the worker identifier, fi(x) : Rd → R
the loss function with respect to the model state x ∈ Rd
on the worker i ∈ [N]. We assume that we can only query
stochastic gradients for each fi(x), that is, we have access
to a stochastic oracle gi(x) with E[gi(x)] = ∇fi(x).

In the parameter server model stochastic optimization is
performed via the following iterative steps: at time step t (1)
each worker node computes a stochastic gradient g(t)

i (x(t))
on a local mini-batch of data, (2) each worker communicates
the estimated gradient to the server, (3) the server performs
a gradient update step, x(t+1) = x(t)+ α

N

∑N
i=1 g

(t)
i , where

α denotes the learning rate, and finally, (4) the server broad-
casts x(t+1) to all workers.

With the number of workers growing and with additional net-
work resources getting more and more expensive, the speed
of communicating local stochastic gradients and broadcast-
ing the updates became one of the main performance bot-
tlenecks. Major attempts to ease that communication bot-
tleneck fall into two categories: compressing the messages
and reducing the communication frequency.

A rich variety of compressors, including diverse sparsifica-
tion (Alistarh et al., 2018; Ivkin et al., 2019; Stich et al.,
2018) and quantization (Alistarh et al., 2017; Bernstein
et al., 2018) techniques, can drastically speedup the com-
munication by dropping the message size from O(d) down
to O(log d) (Alistarh et al., 2017) or even O(1) (Alistarh
et al., 2018; Stich et al., 2018) per worker. Nevertheless, all
the workers and the server are still required to communicate
at every iteration, which can be infeasible in the Federated
Learning setting when number of workers is in millions, and
each worker have very limited network access (i.e. smart-

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

phones, or sensor networks) (Kairouz et al., 2019). Reduc-
ing the communication frequency can be achieved by either
fixed communication delay (a.k.a. LocalSGD (Zinkevich
et al., 2010; Stich, 2019)) or via more adaptive communica-
tion protocols (Shokri Ghadikolaei et al., 2021; Chen et al.,
2018). Both can be effectively incorporated into the error
accumulation framework (Stich & Karimireddy, 2020) to
guarantee the convergence. Our method falls into the class
of adaptive communication protocols. Note that it is very
well orthogonal to message compressing methods, thus can
be efficiently combined with it.

While several compression methods (Tang et al., 2019;
Philippenko & Dieuleveut, 2020) address the cost of broad-
casting the updates (downlink), current approaches reducing
the communication frequency, such as e.g. (Shokri Ghadiko-
laei et al., 2021), often neglect the cost of downlink and
focus primarily on the cost of sending the gradients (uplink).
In this paper we present a new communication protocol
PROCRASTINATOR which detects slow-varying updates and
gradients and choose to adaptively skip communication
rounds – both server broadcasts and worker uploads, thus
effectively reducing the latency for both.

1.1. Related Works

For training machine learning models in data centers,
parameter-servers are used to aggregate the updates from
participating devices and to orchestrate training (Dean et al.,
2012; Keskar et al., 2017). In Federated Learning this server-
based approach has been extend to train over decentralized
data at larger scale (McMahan et al., 2016; Kairouz et al.,
2019). To alleviate communication bottlenecks for exchang-
ing updates between devices, several techniques have been
proposed:

(i) Compressing updates: Computed gradients are com-
pressed using vector sparsification – communicate only
top k or random k coordinates of the gradient vec-
tor (Aji & Heafield, 2017; Stich et al., 2018), value
quantization – efficiently encode every gradient value
to use smaller number of bits (Alistarh et al., 2017;
Bernstein et al., 2018) and random projections (Ivkin
et al., 2019; Vogels et al., 2019; Rothchild et al., 2020b).
The downside of these approaches is an inevitable loss
of information during compression, which can poten-
tially increase the number of iterations.

(ii) Local SGD (Zinkevich et al., 2010; Stich, 2019): Ev-
ery client performs multiple steps using the local gra-
dients, and after that the results are averaged. Unfortu-
nately, for some iteration, not all workers may be avail-
able for computation or communication, and a practi-
cal approach is to use updates from the clients which
communicated first. Federated Averaging (McMahan

et al., 2017; Li et al., 2019) mimics this behavior by
subsampling the workers whose updates are used at the
current iterations. However, these approaches require
client communication and server broadcast even when
the communicated data didn’t significantly change.

(iii) Sparse communication on decentralized topologies:
While relying on a parameter server to aggregate up-
dates (Dean et al., 2012) or communication-heavy all-
reduce, in decentralized training methods clients ex-
change model updates in a peer-to-peer fashion. This
can alleviate communication bottlenecks in data-center
training (Assran et al., 2019) and can be applied to
arbitrary network topologies (Lian et al., 2017; Tang
et al., 2018).

These techniques have been refined in follow up works and
to some extent are orthogonal to each other, i.e. they can be
applied on top of each other, see e.g. (Basu et al., 2020).

Most of the papers introducing the compression techniques
only focus on compressing the uplink messages sent from
the workers to the server, but do not compress donwlink
broadcast messages from the server to the workers (Alistarh
et al., 2017; Wu et al., 2018; Stich et al., 2018; Alistarh et al.,
2018; Mishchenko et al., 2019; Gorbunov et al., 2020; Stich
& Karimireddy, 2020; Stich, 2020; Rothchild et al., 2020a).
A few recent works study bi-directional compression (Tang
et al., 2019; Zheng et al., 2019; Liu et al., 2020; Yu et al.,
2019; Philippenko & Dieuleveut, 2020). Decentralized tech-
niques alleviate the broadcast by design and only exchange
compressed messages (Tang et al., 2018; Koloskova et al.,
2019; 2020a).

Distributed methods that use only intermittent communica-
tion most frequently communicate after a prescribed num-
ber of iterations (or epochs) on the local data (McMahan
et al., 2017; Lin et al., 2020; Wang & Joshi, 2018), it is also
possible to maintain a constant frequency only in expecta-
tion (Koloskova et al., 2020b), to increase the frequency
during training (Wang & Joshi, 2019) or decrease the fre-
quency (Haddadpour et al., 2019). However, for these meth-
ods, the communication frequency has to be fixed in ad-
vance.

In contrast, event triggered schemes do not follow prescribed
communication patterns, but trigger communication events
based on local (or global) decision rules, taking the prob-
lem data and algorithm state into account. Event triggered
communication has been considered in the control commu-
nity (Heemels et al., 2012; Dimarogonas et al., 2012) and
optimization community (Kia et al., 2015; Chen & Ren,
2016; Hsieh et al., 2017; Chen et al., 2018; Kamp et al.,
2019).

The most closely related work is the LENA (Shokri Ghadiko-
laei et al., 2021) framework, which was the first to introduce

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

the combination of event-triggered communication and drift-
ing. Drift can be seen as expected gradient step from a silent
worker: if at the iteration t, worker i decided not to commu-
nicate, the server will assume the gradient of that worker
is equal to the predefined drift value. Drift value can be
updated when the next communication from that worker
happens. While different triggering rules and drift strategies
can be designed, it still requires broadcasting updated model
parameters to all the workers every iteration, i.e. downlink
stays the same. Thus even if all workers communicate in-
finitely rare, broadcasts will stay the same and effective
reduction in latency is at most twice. In this paper, we
challenge this limitation by introducing server triggers and
global update drift (can be seen as a server drift), which is
conceptually symmetric to the client drift. Main challenge
in reducing the downlink is caused by dissynchronisation
of workers drifts. In section 4 we compare our approach
to the LENA framework (Shokri Ghadikolaei et al., 2021)
experimentally.

1.2. Our contributions

Our main contribution is the framework PROCRASTINATOR
(Algorithm 1) which allows both the server and the workers
to control their communication, sending updates only when
necessary. In a nutshell, each worker monitors the norm of
an accumulated difference between the current gradient and
the last communicated gradient, and delays communication
until the norm of the accumulated difference passes a cer-
tain threshold. The server computes the average of the last
communicated local gradients as an estimate of the average
gradient which is broadcast to the workers in the similar
pattern. Our framework allows one to control the communi-
cation frequency by specifying the appropriate thresholds.
Regardless of the choices of the thresholds, we show that,
with the appropriate step size, the algorithm converges to a
local minimum:
Theorem 1 (Informal, see Theorem 5). For a Lipschitz
function f , when the stochastic variance and the deviation
between local gradients are bounded, after T iterations of
Algorithm 2 we have:

1

T

T−1∑
t=0

E‖∇f(x(t))‖2 = O

(
1√
NT

+
1

T 2/3

)

We emphasize that convergence of PROCRASTINATOR is
a non-trivial result. The i-th client communicates when
‖e(t+1)
i ‖2 ≥ A‖g(t)

i ‖2 + B, where e
(t+1)
i is the accumu-

lated error and g
(t)
i is the current stochastic gradient. Since

e
(t+1)
i accumulates differences between gradients and the

their estimate since last communication, it’s possible that
the estimate not only has a magnitude much larger compared
with the current gradient, but also points at the arbitrary di-
rection. Furthermore, since clients communicate their gradi-

ent at different times, their average can be not an estimation
of the average gradient at any point. Therefore, it’s not evi-
dent that using the average of local estimates as an estimate
of the average gradient is the correct approach. Regardless,
we show that with careful handling of the accumulated er-
rors, the algorithm converges; moreover, its convergence
rate is close to O(1/

√
NT) of distributed SGD (Bottou et al.,

2018) and matches the latter when N = O(3
√
T) or when

the number of iterations T = Ω(N3) is sufficiently large.

Finally, we empirically show the convergence and commu-
nication improvements of our algorithm. We show that
PROCRASTINATOR has the convergence rate similar to the
distributed SGD and local SGD, while requiring signifi-
cantly less communication compared with local SGD. Com-
pared with LENA, our algorithm has similar number of client
communications, while requiring substantially less server
broadcasts.

2. Preliminaries
For a function f : Rn → R, we consider the minimization
problem f(x) → min. We make the following standard
assumptions (Bottou et al., 2018):
Assumption A. f : Rd → R is L-smooth, i.e. for all x,y:
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

In distributed settings, we have N clients, where each
client corresponds to its local function fi such that f(x) =

avgi fi(x), where avgi ai = 1
N

∑N
i=1 ai. Furthermore, for

each client, we assume that we have access to the stochastic
gradient oracle gi:
Assumption B. For every client i ∈ [N], the stochastic
gradient is unbiased and has bounded variance:

E[gi(x)] = ∇fi(x), E‖gi(x)−∇fi(x)‖2 ≤ σ2 .

Finally, we bound the deviation of local gradients from the
global gradient:
Assumption C. For every client i ∈ [N], we have

‖∇fi(x)−∇f(x)‖2 ≤ α‖∇f(x)‖2 + β .

We emphasize that Assumption C is significantly weaker
compared with assumptions E‖∇Fi(x)‖2 ≤ G2 or
‖∇fi(x) − ∇f(x)‖2 ≤ G2 commonly used in the liter-
ature. Note that Assumption C is equivalent to the con-
ditions ‖∇fi(x)‖2 ≤ α′‖∇f(x)‖2 + β′ and ‖∇fi(x) −
∇fj(x)‖2 ≤ α′′‖∇f(x)‖2 + β′′.

3. Algorithm and Analysis
3.1. Algorithm

In distributed SGD, at every iteration, each client computes
local gradient and communicates it to the server, which

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Algorithm 1 PROCRASTINATOR
(for more detailed pseudocode refer to Appendix A)
1: parameters: step size γ, number of iterations T , client trigger

parameters (A,B), server trigger parameters (C,D)

2: inputs: Initial point x(0), stochastic gradient oracles gi

3: // drift and error accumulators for server and all clients
4: u(0) ← 0, r(0) ← 0, ∀i : d(0)

i ← 0, e(0)
i ← 0

5: for t = 0, 1, 2, . . . , T − 1 do
6: For each client i ∈ [N]:
7: Compute local stochastic gradient g(t)

i

8: // Update local error: + gradient − local drift
9: e

(t+1)
i ← e

(t)
i + g

(t)
i − d

(t)
i

10: d
(t+1)
i ← d

(t)
i

11: // Check if the local error is large
12: if ‖e(t+1)

i ‖2 ≥ A‖g(t)
i ‖

2 +B then
13: // New local drift estimate
14: d

(t+1)
i ← g

(t)
i

15: Send (e
(t+1)
i ,d

(t+1)
i) to the server

16: e
(t+1)
i ← 0

17: if Didn’t receive updated (x(t+1),u(t+1)) from server
then

18: // Use u(t) for local step
19: x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

Server Update:
20: Let C(t) ⊂ [N] be the set of clients that send updated

(e
(t+1)
i ,d

(t+1)
i) at iteration t

21: for i ∈ C(t) do Receive (e
(t+1)
i ,d

(t+1)
i) from client i

22: for i 6∈ C(t) do d
(t+1)
i ← d

(t)
i

23: // Update server error: + local step estimates - global step +
communicated errors

24: r(t+1) ← r(t)+ 1
N

∑N
i=1(d

(t)
i −u

(t))+ 1
N

∑
i∈C(t) e

(t+1)
i

25: x(t+1) ← x(t) − γu(t), u(t+1) ← u(t)

26: // Check if the server error is large
27: if ‖r(t+1)‖2 ≥ C‖avgi(d

(t)
i)‖2 +D then

28: // Average drift is local update at next iterations
29: u(t+1) ← 1

N

∑N
i=1 d

(t+1)
i

30: // Propagate server error
31: x(t+1) ← x(t) − γu(t) − γr(t+1)

32: Broadcast (x(t+1),u(t+1))

33: r(t+1) ← 0

broadcasts the average gradient to all clients. After that,
all clients perform a gradient descent step using this av-
erage. This approach requires each client and server to
communicate at every iteration, which leads to extensive
communication. The intuition behind our algorithm is to
maintain estimates – of local gradient on the server and
of average gradient on the clients – and communicate the
actual values only when they significantly deviate from the
estimates.

Our approach, PROCRASTINATOR, is presented as Algo-
rithm 1. The server uses d

(t)
i to estimate local gradients

(Lines 1 and 1) and clients use u(t) to estimate the aver-
age gradient. Since d

(t)
i are the only estimates of local

gradients available to the server, we compute u(t) as an
average of d(t)

i (Line 1). Since u(t) is the best estimate of
the average gradient available to clients, the clients perform
update x(t+1) ← x(t) − γu(t) instead of a gradient descent
step (Line 1).

The key idea of our algorithm is to use triggers to control
communication. Both client and server triggers have the
following structure: they maintain an “error”, which ac-
cumulates deviation of the actual value from the current
estimate (Lines 9 and 24). When the accumulated error
passes a certain threshold (Lines 12 and 27), a new esti-
mate is communicated (Lines 15 and 32) and the error is
reset. Note that, while the difference between the actual
value and its estimate can be small, accumulated throughout
multiple iterations it can substantially alter the algorithm
behavior. To address this problem, the errors accumulate
these differences since the last trigger activation.

3.2. Convergence Analysis

To analyze convergence of Algorithm 2, we introduce the se-
quence of corrected iterates {y(t)} where y(0) = x(0) and
y(t+1) = y(t) − γ avgi g

(t)
i . Unlike {x(t)}, the sequence

uses gradients for updates, and such a sequence commonly
used in the analysis of SGD with error-feedback (Stich et al.,
2018; Karimireddy et al., 2019; Stich & Karimireddy, 2020).
The sequence {y(t)} has the following relation with {x(t)}:

Lemma 2. For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i).

Therefore, ξ(t) = r(t) + avgi e
(t)
i is the full error. Based on

the proof of Karimireddy et al. (2019, Theorem II), we have
the following intermediate result:

Lemma 3. Let ξ(t) = r(t) + avgi e
(t)
i . Then under Assump-

tions A and B, for every T we have

E[f(y(T))] ≤f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E‖∇f(x(t))‖2

+ T
Lγ2σ2

2N
+
L2γ3

2

T−1∑
t=0

E‖ξ(t)‖2

It remains to bound
∑T−1
t=0 E‖ξ(t)‖2. The following

lemma shows that it can be expressed in terms of∑T−1
t=0 E‖∇f(x(t))‖2:

Lemma 4. Under Assumption C, for every T we have:

T−1∑
t=0

E‖ξ(t)‖2 ≤ c1
T−1∑
t=0

E‖∇f(x(t))‖2 + c2T ,

where c1 = 6(1 +A)(1 + α) and c2 = 6((1 +A)β + (1 +
A)σ2 +B).

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Selecting γ2 ≤ 1
4c1L2 (and therefore γ ≤ 1

4L), from
Lemma 3 we have:

E[f(y(T))] ≤f(y(0))− γ

4

T−1∑
t=0

E‖∇f(x(t))‖2

+ T
Lγ2σ2

2N
+ T

L2γ3c2
2

After regrouping the terms and using that f(y(0)) −
E[f(y(T))] ≤ fmax:

1

T

T−1∑
t=0

E‖∇f(x(t))‖2 ≤ 4fmax

Tγ
+

4Lγσ2

2N
+ 2L2γ2c2 .

We select the step size based on Koloskova et al. (2020b,
Lemma 17). Intuitively, since the first term decreases with
γ while the other terms increase, we need to select γ such
that either γ ≤ 1

2
√
c1L

(from the derivation above) or the
first term is balanced with the second or the third one.

Theorem 5. Under Assumptions A–C, after T iterations of

Algorithm 2 with γ = min

(√
2FN√
Lσ

,
(

F
c2L2T

)1/3

, 1
2L
√
c1

)
,

where c1 and c2 are defined as in Lemma 4, we have:

1

T

T−1∑
t=0

E‖∇f(x(t))‖2

= O

(√
LFσ√
NT

+

(
FL
√
c2

T

)2/3

+
FL
√
c1

T

)

= O

(
1√
NT

+
1

T 2/3

)
which matches the convergence rate O(1/

√
NT) of dis-

tributed SGD when N = O(3
√
T) or when the number

of iterations T = Ω(N3) is sufficiently large.

In the appendix, we present an additional result for the case
when the objective is convex.

4. Experiments
In this section, we empirically show convergence and com-
munication improvements of PROCRASTINATOR. We per-
form experiments on two datasets: MNIST (Lecun et al.,
1998) and CIFAR-10 (Krizhevsky, 2012). For MNIST, we
train a deep convolutional model with γ = 0.1 and batch
size 8, while for CIFAR-10 we train the VGG neural net-
work (Simonyan & Zisserman, 2014) with γ = 0.01 and
batch size 100.

In our experiments, we consider the following approaches:

• PROCRASTINATOR with parameters (A,B,C,D) as
in Algorithm 1.

• LENA (Shokri Ghadikolaei et al., 2021) with parame-
ters (A,B). LENA is the special case of PROCRASTI-
NATOR such that the server broadcasts at every iteration
(or equivalently, C = D = 0).

• Local SGD with parameter gap. Each worker makes
gradient descent step (i.e. x(t+1)

i ← x
(t)
i − γg

(t)
i),

and every gap iterations all worker synchronize their
parameters.

For PROCRASTINATOR and LENA, we selected the best
considered parameters1. For local SGD, we considered
gap = 1 as the most basic baseline (the algorithm becomes
the distributed SGD), and gap = 5, since with this gap,
communication of Local SGD is close to per-iteration com-
munication of PROCRASTINATOR and LENA.

Our results are shown in Figure 1. For each dataset, we
report the following:

• Train loss with respect to the number of epochs, the
number of client communications and the number of
broadcasts.

• Client communication latency and broadcast latency.
Namely, for each epoch we report the number of com-
munications/broadcasts during that epoch.

For the MNIST dataset, Figure 1a shows that all algorithms
have comparable convergence rates, and therefore, commu-
nication becomes the main deciding performance factor. In
Figure 1c, LENA requires the least amount of communica-
tion, followed by PROCRASTINATOR and substantially out-
performing local SGD and distributed SGD in terms of com-
munication required to reach the final accuracy. However,
LENA, similarly to distributed SGD, requires broadcasts at
every iteration, and therefore is significantly outperformed
by PROCRASTINATOR in this aspect.

On CIFAR-10, algorithm behavior is noticeably different. In
Figure 1b, distributed SGD clearly has the best performance,
followed by PROCRASTINATOR and LENA. However, with
respect to client communication, PROCRASTINATOR and
LENA have the best performance, requiring 5x times less
communication compared with distributed/local SGD. And
due to broadcast requirements of LENA, PROCRASTINATOR
shows the best communication performance: 3x times less
broadcasts compared with distributed/local SGD.

Overall, PROCRASTINATOR outperforms local/distributed
SGD with respect to communication. Compared with LENA,
it shows similar client communication requirements, while
requiring substantially less broadcasts.

1We considered various combinations of parameters A,B ∈
{1, 10, 30, 60}. For larger values, the algorithms diverge. Due to
the number of parameters, for PROCRASTINATOR we used C = A
and D = B.

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

LocalSGD(gap = 1)
LocalSGD(gap = 5)

Procrastinator(A = 1, B = 10, C = 1, D = 10)
LENA(A = 1, B = 10)

LocalSGD(gap = 1)
LocalSGD(gap = 5)

Procrastinator(A = 30, A = 30, A = 30, A = 30)
Lena(A = 30, A = 30)

0 10 20 30 40 50
Epoch

0.01

0.1

1
Tr

ai
n

Lo
ss

(a) MNIST: train loss w.r.t. epoch

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.01

0.1

1
2

Tr
ai

n
Lo

ss

(b) CIFAR-10: train loss w.r.t. epoch

0 40000 80000 120000 160000
Client communications

0.01

0.1

1

Tr
ai

n
Lo

ss

(c) MNIST: train loss w.r.t. client communications

0 200000 400000 600000 800000
Client communications

0.01

0.1

1
2

Tr
ai

n
Lo

ss
(d) CIFAR-10: train loss w.r.t. client communications

0 8000 16000 24000 32000
Broadcasts

0.01

0.1

1

Tr
ai

n
Lo

ss

(e) MNIST: train loss w.r.t. broadcasts

0 20000 40000 60000 80000
Broadcasts

0.01

0.1

1
2

Tr
ai

n
Lo

ss

(f) CIFAR-10: train loss w.r.t. broadcasts

0 10 20 30 40 50
Epoch

0

2000

4000

6000

Cl
ie

nt
 C

om
m

. L
at

en
cy

(g) MNIST: client communication latency

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

200

400

Cl
ie

nt
 C

om
m

. L
at

en
cy

(h) CIFAR-10: client communication latency

0 10 20 30 40 50
Epoch

0

200

400

600

Br
oa

dc
as

t L
at

en
cy

(i) MNIST: broadcast latency

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0

20

40

Br
oa

dc
as

t L
at

en
cy

(j) CIFAR-10: broadcast latency

Figure 1. Convergence of distributed SGD (local SGD with gap = 1), local SGD with gap = 5, PROCRASTINATOR and LENA on
MNIST (left) and CIFAR-10 datasets. For each dataset, we show train loss with respect to: the number of iterations, the number of
communications from clients and the number of broadcasts. Additionally, we show the number of client communications and the number
of broadcasts per epoch. The results show that PROCRASTINATOR and LENA have the best convergence w.r.t. client communication,
while PROCRASTINATOR additionally has the best convergence w.r.t. broadcasts.

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

5. Conclusion
We present a new method – PROCRASTINATOR– to address
the communication bottlenecks and latency in distributed
optimization. As a distinguishing novelty, our scheme can
automatically suppress broadcast of model updates to clients
if the updated model state on the server does not deviate
much from predicted values. If the clients do not receive a
broadcast, they update their state according to a predefined
rule which ensures that clients stay in sync – avoiding client
drift (Kairouz et al., 2019; Karimireddy et al., 2020). This
enables drastic savings in the total number of broadcasts,
but also client uploads.

References
Aji, A. F. and Heafield, K. Sparse communication for

distributed gradient descent. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 440–445, Copenhagen, Denmark,
2017. Association for Computational Linguistics. URL
http://aclweb.org/anthology/D17-1045.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, pp. 1709–1720, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov,
N., Khirirat, S., and Renggli, C. The convergence of
sparsified gradient methods. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 5977–5987. Curran Associates, Inc.,
2018. URL http://papers.nips.cc/paper/
7837-the-convergence-of-sparsified-gradient-methods.
pdf.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-
tic gradient push for distributed deep learning. In Inter-
national Conference on Machine Learning, pp. 344–353.
PMLR, 2019.

Basu, D., Data, D., Karakus, C., and Diggavi, S. N. Qsparse-
local-SGD: Distributed SGD with quantization, spar-
sification, and local computations. IEEE J. Sel. Ar-
eas Inf. Theory, 1(1):217–226, 2020. doi: 10.1109/
jsait.2020.2985917. URL https://doi.org/10.
1109/jsait.2020.2985917.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signSGD: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560–569. PMLR, 2018.

Bottou, L., Curtis, F., and Nocedal, J. Optimization meth-
ods for large-scale machine learning. SIAM Review,

60(2):223–311, 2018. URL https://doi.org/10.
1137/16M1080173.

Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Pascha-
lidis, I. C., and Shi, W. Federated learning of predictive
models from federated electronic health records. Interna-
tional journal of medical informatics, 112:59–67, 2018.

Chen, T., Giannakis, G., Sun, T., and Yin, W. LAG:
Lazily aggregated gradient for communication-efficient
distributed learning. In Advances in Neural Information
Processing Systems, pp. 5050–5060, 2018.

Chen, W. and Ren, W. Event-triggered zero-gradient-
sum distributed consensus optimization over directed
networks. Automatica, 65:90–97, 2016. ISSN 0005-
1098. doi: https://doi.org/10.1016/j.automatica.2015.11.
015. URL https://www.sciencedirect.com/
science/article/pii/S0005109815004793.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
Le, Q. V., and Ng, A. Y. Large scale distributed deep
networks. In Advances in Neural Information Processing
Systems, pp. 1223–1231, 2012.

Dimarogonas, D. V., Frazzoli, E., and Johansson, K. H.
Distributed event-triggered control for multi-agent sys-
tems. IEEE Transactions on Automatic Control, 57(5):
1291–1297, 2012. doi: 10.1109/TAC.2011.2174666.

Gorbunov, E., Kovalev, D., Makarenko, D., and Richtárik,
P. Linearly converging error compensated SGD. In Ad-
vances in Neural Information Processing Systems. Curran
Associates, Inc., 2020. URL https://arxiv.org/
abs/2010.12292.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and
Cadambe, V. R. Local SGD with periodic averaging:
Tighter analysis and adaptive synchronization. In Ad-
vances in Neural Information Processing Systems, 2019.

Heemels, W., Johansson, K. H., and Tabuada, P. An in-
troduction to event triggered and self-triggered control.
In IEEE Conference on Decision and Contro, pp. 3270–
3285, 2012.

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger,
G. R., Gibbons, P. B., and Mutlu, O. Gaia: Geo-
distributed machine learning approaching LAN speeds. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pp. 629–647, 2017.

Ivkin, N., Rothchild, D., Ullah, E., Braverman, V., Stoica, I.,
and Arora, R. Communication-efficient distributed SGD
with sketching. arXiv preprint arXiv:1903.04488, 2019.

http://aclweb.org/anthology/D17-1045
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
http://papers.nips.cc/paper/7837-the-convergence-of-sparsified-gradient-methods.pdf
https://doi.org/10.1109/jsait.2020.2985917
https://doi.org/10.1109/jsait.2020.2985917
https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://www.sciencedirect.com/science/article/pii/S0005109815004793
https://www.sciencedirect.com/science/article/pii/S0005109815004793
https://arxiv.org/abs/2010.12292
https://arxiv.org/abs/2010.12292

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He,
L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi,
T., Joshi, G., Khodak, M., Konečný, J., Korolova, A.,
Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P.,
Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M.,
Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P.,
Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H.,
and Zhao, S. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977, 2019.

Kamp, M., Boley, M., Mock, M., Keren, D., Schus-
ter, A., and Sharfman, I. Adaptive communication
bounds for distributed online learning. arXiv preprint
arXiv:1911.12896, 2019.

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M.
Error feedback fixes SignSGD and other gradient com-
pression schemes. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3252–3261. PMLR,
09–15 Jun 2019. URL http://proceedings.mlr.
press/v97/karimireddy19a.html.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J.,
Stich, S. U., and Suresh, A. T. SCAFFOLD: Stochas-
tic controlled averaging for on-device federated learn-
ing. In ICML - Proceedings of the 37th International
Conference on Machine Learning. PMLR, 2020. URL
https://arxiv.org/abs/1910.06378.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. In ICLR,
2017.

Kia, S. S., Cortés, J., and Martı́nez, S. Dis-
tributed convex optimization via continuous-time co-
ordination algorithms with discrete-time communica-
tion. Automatica, 55:254–264, 2015. ISSN 0005-
1098. doi: https://doi.org/10.1016/j.automatica.2015.03.
001. URL https://www.sciencedirect.com/
science/article/pii/S0005109815001053.

Koloskova, A., Stich, S. U., and Jaggi, M. Decentralized
stochastic optimization and gossip algorithms with com-
pressed communication. In Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97, pp. 3478–3487. PMLR, 2019. URL https:
//arxiv.org/abs/1902.00340.

Koloskova, A., Lin, T., Stich, S. U., and Jaggi, M. De-
centralized deep learning with arbitrary communication
compression. International Conference on Learning Rep-
resentations, 2020a. URL https://arxiv.org/
abs/1907.09356.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. U. A unified theory of decentralized SGD with chang-
ing topology and local updates. Proceedings of the 37th
International Conference on Machine Learning, 2020b.
URL http://arxiv.org/abs/1602.05629.

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang,
W., and Liu, J. Can decentralized algorithms out-
perform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent.
In Advances in Neural Information Processing Sys-
tems 30, pp. 5330–5340. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.
pdf.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local SGD. International
Conference on Learning Representations (ICLR), 2020.
URL https://arxiv.org/abs/1808.07217.

Liu, X., Li, Y., Tang, J., and Yan, M. A double residual
compression algorithm for efficient distributed learning.
In Proceedings of the Twenty Third International Con-
ference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pp.
133–143. PMLR, 2020. URL http://proceedings.
mlr.press/v108/liu20a.html.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence
and Statistics, pp. 1273–1282, 2017.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629, 2016. URL
http://arxiv.org/abs/1602.05629.

http://proceedings.mlr.press/v97/karimireddy19a.html
http://proceedings.mlr.press/v97/karimireddy19a.html
https://arxiv.org/abs/1910.06378
https://www.sciencedirect.com/science/article/pii/S0005109815001053
https://www.sciencedirect.com/science/article/pii/S0005109815001053
https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1907.09356
https://arxiv.org/abs/1907.09356
http://arxiv.org/abs/1602.05629
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/7117-can-decentralized-algorithms-outperform-centralized-algorithms-a-case-study-for-decentralized-parallel-stochastic-gradient-descent.pdf
https://arxiv.org/abs/1808.07217
http://proceedings.mlr.press/v108/liu20a.html
http://proceedings.mlr.press/v108/liu20a.html
http://arxiv.org/abs/1602.05629

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Mishchenko, K., Gorbunov, E., Takáč, M., and Richtárik,
P. Distributed learning with compressed gradient differ-
ences. arXiv preprint arXiv:1901.09269, 2019.

Philippenko, C. and Dieuleveut, A. Bidirectional compres-
sion in heterogeneous settings for distributed or feder-
ated learning with partial participation: tight convergence
guarantees. arXiv preprint arXiv:2006.14591, 2020.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I.,
Braverman, V., Gonzalez, J., and Arora, R. FetchSGD:
Communication-efficient federated learning with sketch-
ing. In Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 8253–8265. PMLR,
13–18 Jul 2020a. URL http://proceedings.mlr.
press/v119/rothchild20a.html.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I.,
Braverman, V., Gonzalez, J., and Arora, R. Fetchsgd:
Communication-efficient federated learning with sketch-
ing. In International Conference on Machine Learning,
pp. 8253–8265. PMLR, 2020b.

Shokri Ghadikolaei, H., Stich, S., and Jaggi, M. LENA:
Communication-efficient distributed learning with self-
triggered gradient uploads. In Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Ma-
chine Learning Research, pp. 3943–3951. PMLR, 2021.
URL http://proceedings.mlr.press/v130/
shokri-ghadikolaei21a.html.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Stich, S. U. Local SGD converges fast and communi-
cates little. International Conference on Learning Repre-
sentations, art. arXiv:1805.09767, 2019. URL https:
//arxiv.org/abs/1805.09767.

Stich, S. U. On communication compression for distributed
optimization on heterogeneous data. arXiv preprint
arXiv:2009.02388, 2020.

Stich, S. U. and Karimireddy, S. P. The error-feedback
framework: SGD with delayed gradients. Journal
of Machine Learning Research, 21(237):1–36, 2020.
URL http://jmlr.org/papers/v21/19-748.
html.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
SGD with memory. In Advances in Neural Information
Processing Systems 31, pp. 4447–4458. Curran Asso-
ciates, Inc., 2018.

Tang, H., Gan, S., Zhang, C., Zhang, T., and Liu, J. Com-
munication compression for decentralized training. In
Advances in Neural Information Processing Systems 31,
pp. 7663–7673. Curran Associates, Inc., 2018.

Tang, H., Lian, X., Zhang, T., and Liu, J. Doub-
lesqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. arXiv
preprint arXiv:1905.05957, 2019.

Tomlinson, M., Solomon, W., Singh, Y., Doherty, T.,
Chopra, M., Ijumba, P., Tsai, A. C., and Jackson, D.
The use of mobile phones as a data collection tool: a
report from a household survey in south africa. BMC
medical informatics and decision making, 9(1):51, 2009.

Vogels, T., Karimireddy, S. P., and Jaggi, M. PowerSGD:
Practical low-rank gradient compression for distributed
optimization. arXiv preprint arXiv:1905.13727, 2019.

Wang, J. and Joshi, G. Cooperative SGD: A
unified framework for the design and analysis of
communication-efficient SGD algorithms. arXiv preprint
arXiv:1808.07576, 2018. URL http://arxiv.org/
abs/1808.07576.

Wang, J. and Joshi, G. Adaptive communication strategies
to achieve the best error-runtime trade-off in local-update
SGD. In Talwalkar, A., Smith, V., and Zaharia, M. (eds.),
Proceedings of Machine Learning and Systems, volume 1,
pp. 212–229, 2019. URL https://proceedings.
mlsys.org/paper/2019/file/
c8ffe9a587b126f152ed3d89a146b445-Paper.
pdf.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error compen-
sated quantized SGD and its applications to large-scale
distributed optimization. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5325–5333. PMLR, 10–15 Jul
2018. URL http://proceedings.mlr.press/
v80/wu18d.html.

Yu, Y., Wu, J., and Huang, L. Double quantization for
communication-efficient distributed optimization. In Ad-
vances in Neural Information Processing Systems. Curran
Associates, Inc., 2019.

Zheng, S., Huang, Z., and Kwok, J. T. Communication-
efficient distributed blockwise momentum SGD with
error-feedback. In Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2019.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Paral-
lelized stochastic gradient descent. In Advances in Neural
Information Processing Systems, pp. 2595–2603, 2010.

http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v119/rothchild20a.html
http://proceedings.mlr.press/v130/shokri-ghadikolaei21a.html
http://proceedings.mlr.press/v130/shokri-ghadikolaei21a.html
https://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1805.09767
http://jmlr.org/papers/v21/19-748.html
http://jmlr.org/papers/v21/19-748.html
http://arxiv.org/abs/1808.07576
http://arxiv.org/abs/1808.07576
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c8ffe9a587b126f152ed3d89a146b445-Paper.pdf
http://proceedings.mlr.press/v80/wu18d.html
http://proceedings.mlr.press/v80/wu18d.html

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

A. Algorithm
Algorithm 2 shows the complete version of the algorithm.

Algorithm 2 Procrastinator

1: parameters: step size γ, number of iterations T , client trigger parameters (A,B), server trigger parameters (C,D)
2: inputs: Initial point x(0), stochastic gradient oracles gi
3: r(0) ← 0 // Server error
4: Broadcast x(0) to all clients
5: for each client i ∈ [N] do
6: d

(0)
i ← 0 // client drift — server’s estimation of client’s gradient

7: u(0) ← 0 // server drift during last broadcast — client’s estimation of the global update
8: e

(0)
i ← 0 // Local error

9: for t = 0, 1, 2, . . . do

10: For each client i ∈ [N]:
11: g

(t)
i ← ∇Fi(x(t)) // Compute local stochastic gradient

12: Client trigger:
13: e

(t+1/2)
i ← e

(t)
i + g

(t)
i − d

(t)
i // Update local error: + gradient - local drift

14: // Check if the local error is large
15: if ‖e(t+1/2)

i ‖2 ≥ A‖g(t)
i ‖2 +B then

16: d
(t+1)
i = g

(t)
i // New local drift estimate

17: Send (e
(t+1/2)
i ,d

(t+1)
i) to the server

18: e
(t+1)
i ← 0

19: else
20: d

(t+1)
i ← d

(t)
i

21: e
(t+1)
i ← e

(t+1/2)
i

22: if Didn’t receive updated (x(t+1),u(t+1)) from server then
23: x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Use u(t) for local step

24: Server Update:
25: Let C(t) ⊂ [N] be the set of clients that send updated (e

(t+1/2)
i ,d

(t+1)
i) at iteration t

26: for i ∈ C(t) do Receive (e
(t+1/2)
i ,d

(t+1)
i) from client i

27: for i 6∈ C(t) do d
(t+1)
i ← d

(t)
i

28: Server trigger:
29: // Update server error: + local step estimates - global step + communicated errors
30: r(t+1/2) ← r(t) + 1

N

∑N
i=1(d

(t)
i − u(t)) + 1

N

∑
i∈C(t) e

(t+1/2)
i

31: // Check if the server error is large
32: if ‖r(t+1/2)‖2 ≥ C‖avgi(d

(t)
i)‖2 +D then

33: u(t+1) ← 1
N

∑N
i=1 d

(t+1)
i // Average drift is local update at next iterations

34: x(t+1) ← x(t) − γu(t) − γr(t+1/2) // Propagate server error
Broadcast (x(t+1),u(t+1))

35: r(t+1) ← 0
36: else
37: x(t+1) ← x(t) − γu(t), u(t+1) ← u(t) // Same as clients
38: r(t+1) ← r(t+1/2)

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

B. Convergence Proof
B.1. Non-convex Case

Recall that y(t+1) = y(t) − γ avgi(g
(t)
i). From Algorithm 2:

x(t+1) =

{
x(t) − γu(t), if broadcast doesn’t happen at iteration t
x(t) − γu(t) − γr(t+1/2), if broadcast happens at iteration t

We first show the relation between x(t) and y(t).

Lemma 6. For any t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i).

Proof. Proof by induction. The equality holds for t = 0. Assume that for some t, y(t) = x(t) − γ(r(t) + avgi e
(t)
i).

Recall that C(t) is the set of clients communicating at iteration t. By definition of r(t+1/2) and e
(t+1)
i , we have:

r(t+
1/2) + avg

i
(e

(t+1)
i)

=

r(t) + avg
i

(d
(t)
i − u(t)) +

1

N

∑
i∈C(t)

e
(t+1/2)
i

+
1

N

∑
i 6∈C(t)

e
(t+1/2)
i (Def. of r(t+1/2) and e

(t+1)
i)

= r(t) + avg
i

(d
(t)
i − u(t)) + avg

i
(e

(t+1/2)
i)

= r(t) + avg
i

(d
(t)
i − u(t)) + avg

i
(e

(t)
i) + avg

i
(g

(t)
i − d

(t)
i) (Def. of e(t+

1/2)
i)

= r(t) + avg
i

(e
(t)
i) + avg

i
(g

(t)
i − u(t)) (1)

If the broadcast doesn’t happen at iteration t, then:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i

(g
(t)
i − u(t))

= −γ(r(t) + avg
i

(e
(t)
i) + avg

i
(g

(t)
i − u(t))) (IH)

= −γ(r(t+1) + avg
i

(e
(t+1)
i)) (Equation (1))

If the broadcast happens, we have:

y(t+1) − x(t+1) = (y(t) − x(t))− γ avg
i

(g
(t)
i − u(t) − r(t+

1/2))

= −γ(r(t) + avg
i

(e
(t)
i) + avg

i
(g

(t)
i − u(t))− r(t+

1/2)) (IH)

= −γ(r(t+
1/2) + avg

i
(e

(t+1)
i)− r(t+

1/2)) (Equation (1))

= −γ(r(t+1) + avg
i

(e
(t+1)
i)) (r(t+1) = 0)

Lemma 7. Let ξ(t) = r(t) + avgi e
(t)
i . Then for every T we have

E[f(y(T))] ≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E‖∇f(x(t))‖2 + T

Lγ2σ2

2N
+
L2γ3

2

T−1∑
t=0

E‖ξ(t)‖2

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Proof. By the Descent Lemma:

Et[f(y(t+1))]

≤ f(y(t))− 〈∇f(y(t)),Et[y(t+1) − y(t)]〉+
L

2
Et‖y(t+1) − y(t)‖2

= f(y(t))− γ〈∇f(y(t)),Et[g(t)]〉+
Lγ2

2
Et‖g(t)‖2

= f(y(t))− γ〈∇f(y(t)),∇f(x(t))〉+
Lγ2

2
(‖∇f(x(t))‖2 + Et‖

1

N

N∑
i=1

(g
(t)
i −∇fi(x

(t)))‖2)

= f(y(t))− γ〈∇f(y(t)),∇f(x(t))〉+
Lγ2

2
(‖∇f(x(t))‖2 +

σ2

N
),

where we used the fact that stochastic noises are independent. Since 〈∇f(x(t)),∇f(x(t))〉 = ‖∇f(x(t))‖2 and using
inequality 〈a, b〉 ≤ 1

2‖a‖
2 + 1

2‖b‖
2:

Et[f(y(t+1))]

≤ f(y(t))− γ‖∇f(x(t))‖2 +
Lγ2

2
(‖∇f(x(t))‖2 +

σ2

N
) + γ〈∇f(x(t))−∇f(y(t)),∇f(x(t))〉

≤ f(y(t))− γ(1− Lγ

2
)‖∇f(x(t))‖2 +

Lγ2σ2

2N
+
γ

2
‖∇f(x(t))−∇f(y(t))‖2 +

γ

2
∇‖f(x(t))‖2

≤ f(y(t))− γ

2
(1− Lγ)‖∇f(x(t))‖2 +

Lγ2σ2

2N
+
L2γ

2
‖x(t) − y(t)‖2

= f(y(t))− γ

2
(1− Lγ)‖∇f(x(t))‖2 +

Lγ2σ2

2N
+
L2γ3

2
‖ξ(t)‖2

Taking the expectation:

E[f(y(t))] ≤ f(y(0))−
t−1∑
τ=0

γ

2
(1− Lγ)E‖∇f(x(τ))‖2 + t

Lγ2σ2

2N
+
L2γ3

2

t−1∑
τ=0

E‖ξ(τ)‖2 .

It suffices to bound
∑t−1
τ=0 E‖ξ(τ)‖2.

Lemma 8. Under Assumption C, for every T we have:

T−1∑
t=0

E‖ξ(t)‖2 ≤ c1
T−1∑
t=0

E‖∇f(x(t))‖2 + c2T,

where c1 = 6(1 +A)(1 + α) and c2 = 6((1 +A)β + (1 +A)σ2 +B).

Proof. Since ‖ξ(t)‖2 ≤ 2(‖r(t)‖2 + ‖ avgi e
(t)
i ‖2), we bound

∑
t E‖e

(t)
i ‖2 and

∑
t E‖r(t)‖2 separately.

Bounding
∑
t E‖e

(t)
i ‖2. If the client communicate to the server, then e(t+1) = 0. Otherwise, e(t+1) = e(t+1/2), and by

Line 2 of Algorithm 2, we have:

E‖e(t+1)
i ‖2 ≤ AE‖g(t)

i ‖
2 +B

and therefore
T−1∑
t=0

E‖e(t)i ‖
2 ≤ A

T−1∑
t=0

E‖g(t)
i ‖

2 +BT

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Bounding
∑
t E‖r(t)‖2. From Line 2 of Algorithm 2, we have:

T−1∑
t=0

‖r(t)‖2 ≤
T−1∑
t=0

‖ avg
i

(d
(t)
i)‖2 ≤

T−1∑
t=0

avg
i
‖d(t)

i ‖
2 = avg

i

T−1∑
t=0

‖d(t)
i ‖

2,

and therefore it suffices to bound
∑T−1
t=0 E‖d(t)

i ‖2 for all i. For a client i, let t1 and t2 be the iterations such that the client
communicated at times t1 and t2 and didn’t communicate for any t ∈ (t1, t2) (t1 = −1 if t2 is the earliest communication,
t2 = T − 1 if t1 is the latest communication). If t2 = t1 + 1, then

∑t2−1
t=t1+1 ‖d

(t)
i ‖2 is trivially 0. Otherwise, since the

trigger didn’t activate at iteration (t2 − 1), by Line 2 of Algorithm 2 we have

‖e(t2)i ‖
2 = ‖

t2−1∑
t=t1+1

(g
(t)
i − d

(t)
i)‖2 ≤ A‖g(t2−1)

i ‖2 +B

Using ‖a− b‖2 ≥ ‖a‖
2

2 − ‖b‖2 and d
(t1+1)
i = d

(t1+2)
i = · · · = d

(t2−1)
i :

1

2
(t2 − t1 − 1)

t2−1∑
t=t1+1

‖d(t)
i ‖

2 ≤ ‖
t2−1∑
t=t1+1

g
(t)
i ‖

2 +A‖g(t2−1)
i ‖2 +B

By Cauchy-Schwarz, ‖
∑t2−1
t=t1+1 g

(t)
i ‖2 ≤ (t2 − t1 − 1)

∑t2−1
t=t1+1 ‖g

(t)
i ‖2. Dividing the above inequality by (t2 − t1 − 1),

we have:
t2−1∑
t=t1+1

‖d(t)
i ‖

2 ≤ 2

t2−1∑
t=t1+1

‖g(t)
i ‖

2 +
2A

t2 − t1 − 1
‖g(t2−1)

i ‖2 +
2B

t2 − t1 − 1

Since d
(t2)
i = g

(t1)
i (defining g

(−1)
i = 0 for t1 = −1) and t2 − t1 − 1 ≥ 1:

t2∑
t=t1+1

‖d(t)
i ‖

2 ≤ 2

t2−1∑
t=t1

‖g(t)
i ‖

2 + 2A‖g(t2−1)
i ‖2 + 2B

Finally, splitting [0 : T − 1] into −1 = t0 < t2 < . . . < tk = T such that the i-th client communicates at iterations tj , we
have

T−1∑
t=0

‖d(t)
i ‖

2 =

k∑
j=0

tj+1∑
t=tj+1

‖d(t)
i ‖

2

≤ 2

k∑
j=0

 tj+1∑
t=tj+1

‖g(t)
i ‖

2 +A‖g(tj+1−1)
i ‖2 +B


≤ 2((1 +A)

T−1∑
t=0

‖g(t)
i ‖

2 +BT),

Bounding g
(t)
i in terms of∇f(x(t)). By Assumption C, we have

‖∇fi(x)−∇f(x)‖2 ≤ α‖∇f(x)‖2 + β

Using inequality ‖a− b‖2 ≥ 1
2‖a‖

2 − ‖b‖2, we have:

1

2
‖∇fi(x)‖2 − ‖∇f(x)‖2 ≤ α‖∇f(x)‖2 + β =⇒ ‖∇fi(x)‖2 ≤ 2(1 + α)‖∇f(x)‖2 + 2β

Using E‖g(t)
i ‖2 = E‖∇fi(x(t))‖2 + E‖g(t)

i −∇fi(x(t))‖2 = E‖∇fi(x(t))‖2 + σ2, for g(t)
i we have

E‖g(t)
i (x)‖2 ≤ 2(1 + α)E‖∇f(x)‖2 + 2β + σ2

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Bounding
∑
t E‖ξ(t)‖2. Putting the above bounds together, we have

T−1∑
t=0

E‖ξ(t)‖2 ≤ 3((1 +A)

T−1∑
t=0

E‖g(t)
i ‖

2 +BT)

≤ 6((1 +A)(1 + α)

T−1∑
t=0

E‖∇f(x(t))‖2 + (1 +A)βT + (1 +A)σ2T +BT).

Proof of the main theorem. By Lemma 7 and using bound on
∑T−1
t=0 E‖ξ(t)‖2:

E[f(y(T))]

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E‖∇f(x(t))‖2 + T

Lγ2σ2

2N
+
L2γ3

2

T−1∑
t=0

E‖ξ(t)‖2

≤ f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ)E‖∇f(x(t))‖2 + T

Lγ2σ2

2N
+ L2γ3(c1

T−1∑
t=0

E‖∇f(x(t))‖2 + Tc2)

= f(y(0))−
T−1∑
t=0

γ

2
(1− Lγ − c1L2γ2)E‖∇f(x(t))‖2 + T

Lγ2σ2

2N
+ c2TL

2γ3

= f(y(0))−
T−1∑
t=0

γ

4
E‖∇f(x(t))‖2 + T

Lγ2σ2

2N
+ c2TL

2γ3,

where the last inequality obtained by selecting γ ≤ 1
4L and γ2 ≤ 1

4c1L2 . Rearranging the terms and dividing by γT
4 , we have

1

T

T−1∑
t=0

E‖∇f(x(t))‖2 ≤ 4(f(y(0))− E[f(y(T))])

γT
+

2Lγσ2

N
+ 4c2L

2γ2.

The rest of the proof follows that of Koloskova et al. (2020b, Lemma 17). Let F = f(y(0))− f? ≥ f(y(0))− E[f(y(T))].
Balancing the first two terms:

4F

γT
=

2Lγσ2

N
=⇒ γ =

√
2FN√
Lσ

Balancing the first and the last term:

4F

γT
= 4c2L

2γ2 =⇒ γ =

(
F

c2L2T

)1/3

Therefore, by selecting γ = min

(√
2FN√
Lσ

,
(

F
c2L2T

)1/3

, 1
2L
√
c1

)
:

1

T

T−1∑
t=0

E‖∇f(x(t))‖2 = O

(√
LFσ√
NT

+

(
FL
√
c2

T

)2/3

+
FL
√
c1

T

)
.

B.2. Convex Case

Theorem 9. Let f be a convex function satisfying Assumptions A-C. Let c1 and c2 be as defined in Lemma 8. Let {x(t)} be
the sequence from Algorithm 2 with γ ≤ min{ 1

4(1+α) ,
1

8
√
c1L
}. Then

E[f(
1

T

T−1∑
τ=0

x(τ))− f(x?)] ≤ 16γ2c2L+
2‖x(0) − x?‖2

γT
+ 2γ(2β +

σ2

N
)

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Therefore, for γ = Θ(1/
√
T) we achieve O(1/

√
T) convergence rate.

Proof. Let Et denote expectation conditioned on x(t), e
(t)
i , r(t). Since y(t+1) = y(t) − γ avgi∈[N](g

(t)
i):

Et‖y(t+1) − x?‖2 = ‖y(t) − γ avg
i∈[N]

(g
(t)
i)− x?‖2

= ‖y(t) − x?‖2 + γ2Et‖ avg
i∈[N]

(g
(t)
i)‖2 − 2γEt〈 avg

i∈[N]

(g
(t)
i),y(t) − x?〉

= ‖y(t) − x?‖2 + γ2Et‖ avg
i∈[N]

(g
(t)
i)‖2 − 2γ〈∇f(x(t)),y(t) − x?〉

For the last term, we have:

−2γ〈∇f(x(t)),y(t) − x?〉 = −2γ〈∇f(x(t)),y(t) − x(t)〉 − 2γ〈∇f(x(t)),x(t) − x?〉
≤ 2γ2‖∇f(x(t))‖ · ‖ξ(t)‖ − 2γ〈∇f(x(t)),x(t) − x?〉

Substituting this into the inequality above, by taking expectation and using telescoping, we have:

E‖y(t) − x?‖2 ≤ ‖x(0) − x?‖2 + γ2
t−1∑
τ=0

E‖ avg
i∈[N]

(g
(τ)
i)‖2

+ 2γ2
t−1∑
τ=0

E[‖∇f(x(τ))‖ · ‖ξ(τ)‖]− 2γ

t−1∑
τ=0

E〈∇f(x(τ)),x(τ) − x?〉 (2)

We’ll simplify the terms on the right-hand side. Using the fact that stochastic noises are independent, as shown in Lemma 8:

t−1∑
τ=0

E‖g(τ)
i (x(τ))‖2 ≤ 2(1 + α)

t−1∑
τ=0

E‖∇f(x(τ))‖2 + t(2β +
σ2

N
)

By Cauchy-Schwarz inequality and by Lemma 8:

t−1∑
τ=0

E[‖∇f(x(τ))‖ · ‖ξ(τ)‖] ≤

√√√√E[

t−1∑
τ=0

‖∇f(x(τ))‖2] · E[‖
t−1∑
τ=0

ξ(τ)‖2]

≤

√√√√E[

t−1∑
τ=0

‖∇f(x(τ))‖2] · E[c1

t−1∑
τ=0

‖∇f(x(τ))‖2 + c2t]

≤
√
c1

t−1∑
τ=0

E‖∇f(x(τ))‖2 +
√
c2
√
t

√√√√E[

t−1∑
τ=0

‖∇f(x(τ))‖2].

By convexity:

−2γ

t−1∑
τ=0

E〈∇f(x(τ)),x(τ) − x?〉 ≤ −2γ

t−1∑
τ=0

E[f(x(τ))− f(x?)]

and for smooth convex functions we have:

E‖∇f(x(τ))‖2 = E‖∇f(x(τ))−∇f(x?)‖2 ≤ 2LE[f(x(τ))− f(x?)]

Bi-directional Adaptive Communication for Heterogenous Distributed Learning

Let’s denote
√

1
t

∑t−1
τ=0 E[f(x(τ))− f(x?)] as St. Substituting the bounds above into Equality (2) and dividing it by t:

0 ≤ ‖x
(0) − x?‖2

t
+ 2γ2(1 + α)S2

t + γ2(2β +
σ2

N
) + 2γ2

√
c1LS

2
t + 4γ2

√
c2LSt − 2γS2

t

When γ ≤ min{ 1
4(1+α) ,

1
8
√
c1L
}, it follows:

S2
t − 4γ

√
c2LSt ≤

‖x(0) − x?‖2

γt
+ γ(2β +

σ2

N
)

By inequality ab ≤ a2

2 + b2

2 , we have 4γ
√
c2LSt ≤ S2

t

2 + 8γ2c2L, and therefore:

S2
t ≤ 16γ2c2L+

2‖x(0) − x?‖2

γt
+ 2γ(2β +

σ2

N
)

Finally, by convexity:

S2
t =

1

t

t−1∑
τ=0

E[f(x(τ))− f(x?)] ≥ E[f(
1

t

t−1∑
τ=0

x(τ))− f(x?)] .

	Introduction
	Related Works
	Our contributions

	Preliminaries
	Algorithm and Analysis
	Algorithm
	Convergence Analysis

	Experiments
	Conclusion
	Algorithm
	Convergence Proof
	Non-convex Case
	Convex Case

