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Abstract

Training distributed machine learning algorithms
is prone to Byzantine attacks where the adver-
sarial workers send corrupted model updates to
derail the training. Most works focus on the case
where less than 0.5 fraction of the workers are
adversaries, however, in practical applications it
is often possible that the fraction of adversaries is
greater than 0.5. In this paper, we propose reputa-
tion score based gradient aggregation as a possible
solution for this scenario. We introduce a class
of novel stochastic gradient descent algorithms,
ByGARS (Byzantine Gradient Aggregation using
Reputation Scores) that involve computing repu-
tation scores (of workers) to aggregate the model
updates using an auxiliary dataset at the server.
The computational complexity of ByGARS++ is
the same as the usual distributed stochastic gradi-
ent descent method with only an additional inner
product computation in every iteration. We also
demonstrate the effectiveness of the algorithms
for non-convex learning problems using MNIST
and CIFAR-10 datasets against almost all state-
of-the-art Byzantine attacks. We also show that
the proposed algorithms are robust to multiple dif-
ferent types of attacks at the same time. See the
website for more details, code is available here.

1. Introduction
With increasing data size and model complexity, the pre-
ferred method for training machine learning models at scale
is to use a distributed training setting. This involves a param-
eter server that coordinates the training with multiple worker
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machines by communicating gradients and parameters. De-
spite the (supposed) speed up in computation due to the
distributed setting, it suffers from issues such as straggling
workers, while also posing a significant risk to the privacy if
the data is collected at a central location. Federated Learn-
ing (Konečnỳ et al., 2016; Bonawitz et al., 2019) addresses
these issues where the central server only has access to
the model parameters/gradients computed by the workers
(or independent data owners). However, both the settings
are prone to fail in the presence of dishonest workers or
non-malicious failed workers (Kairouz et al., 2019).

Thus, there has been a significant interest in devising dis-
tributed machine learning schemes in the presence of Byzan-
tine adversaries (Alistarh et al., 2018; Chen et al., 2017;
Blanchard et al., 2017; Gupta & Vaidya, 2019). In this set-
ting, a certain fraction of the workers are assumed to be
adversarial; instead of sending the actual gradients com-
puted using a randomly sampled mini batch to the server,
the adversarial workers send arbitrary or potentially adver-
sarial gradients that could derail the optimization at the
server. Several techniques have been proposed to secure the
gradient aggregation against adversarial attacks under dif-
ferent settings such as gradient encoding (Chen et al., 2018),
asynchronous updates (Damaskinos et al., 2018; Xie et al.,
2019b), heterogeneous datasets (Li et al., 2019), decentral-
ized learning (Yang & Bajwa, 2019), (Yang et al., 2019;
El-Mhamdi et al., 2019) and Federated Learning (Chang
et al., 2019; Portnoy & Hendler, 2020). There has also been
some work in developing attack techniques that break exist-
ing defenses (Chang et al., 2019; Xie et al., 2019a; Baruch
et al., 2019).

One of the main assumptions in past studies about Byzantine
attacks in machine learning is that the number of adversarial
workers is less than half of the total number of workers.
These approaches relied on techniques like majority vot-
ing, geometric median, median of means, coordinate wise
median, etc., to aggregate gradients at the server. The funda-
mental reason for this assumption is that the majority based
robust statistics approaches require at least more than half
of the samples to be correct to give a good estimate. For
example, the underlying concept of geometric median has a
breakdown point of 0.5 (Chen et al., 2017). In other words,
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Table 1: Summary of various attacks that ByGARS or ByGARS++ is robust to. Extensive simulations suggests that the
proposed algorithms are resilient to most of the state-of-the-art attacks with any number of Byzantine adversaries; the
checkmarks in the right column indicates that in simulations, we have found either ByGARS or ByGARS++ is able to
perform SGD under a wide range of initial conditions. Here, f denotes the fraction of Byzantine adversaries in the system,
with f = 1 implying that all workers are adversarial.

Fraction of Adversaries f
Type Attack f < 0.5 f ∈ [0.5, 1) f = 1

Omniscient / Collusion Inner Product Manipulation (Xie et al., 2019a)
√ √

Omniscient / Collusion LIE (Baruch et al., 2019)
√

-
Omniscient / Collusion OFOM (Chang et al., 2019)

√ √

Omniscient / Collusion PAF (Chang et al., 2019)
√ √

Local / Failure Sign Flip/Reverse Attack (Blanchard et al., 2017)
√ √ √

Local / Failure Random Sign Flip Attack
√ √ √

Local / Failure Gaussian Attack (Blanchard et al., 2017)
√ √

Local / Failure Constant Attack (Li et al., 2019)
√ √

Data Poisoning Label Flipping
√ √

Mixed Attacks Multiple types of attacks
√ √ √

it yields a robust estimator as long as less than half of the
data (used for aggregation) is corrupted, and when more
than half the data is corrupted, it provably fails.

The assumption that less than half of the workers are adver-
sarial might not be practical. A more practical and challeng-
ing problem is to ensure convergence even in the presence
of an arbitrary number of adversaries. Some prior works
that address this case assume access to some auxiliary (and
clean) data (Xie et al., 2018; Jin et al., 2019; Cao & Lai,
2019; Xie et al., 2019b), which is used to identify adversarial
workers and the gradients obtained from such workers are
discarded at the server. These methods, however require the
number of adversaries (or an upper bound) which is crucial
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Figure 1: Comparison of the top-1 accuracy of ByGARS
and ByGARS++ using CIFAR-10 dataset with one benign
worker and seven attackers using different attack strategies.
The seven attackers include one Gaussian adversary, two
Sign flip adversaries, one random sign flip adversary, two
label flip adversaries, and one constant value adversary. See
Section 4 for more details.

to filtering out the adversarial workers but this information
may not be available in practical scenarios. In contrast, we
propose a reputation score based aggregation, thus obviating
the need to know the number of adversaries which make the
proposed approach more applicable to practical scenarios.
In the proposed approach, we compute the reputation score
of each worker that is used for gradient aggregation using
the auxiliary dataset at the server. The reputation score of
a worker signifies how relevant the corresponding gradient
direction is to the optimization problem, with the intuition
being that workers with positive reputation score as being
helpful towards the optimization and reputation scores with
zero or negative values as being irrelevant or adversarial
towards the optimization respectively. As we will see, we
achieve robustness to any number of adversaries using the
proposed approach.

The key insight that allows us to train under any number of
adversaries is that (a) the gradients are being computed for
a specific objective function, and (b) the correct gradients
would make a small angle with respect to the gradient com-
puted using the auxiliary data with high probability (when
the current parameters are far from the optimal ones). To
see this, note that geometric median is a robust aggregator
under any objective function. Thus, it necessarily requires a
more stringent assumption on the number of adversaries to
compute a reliable estimate. We explicitly use an unbiased
estimate of the objective function (through the auxiliary
dataset, and expectation is taken with respect to the draw of
the dataset) in our algorithm, which eases the computation
and allows us to not use general purpose robust aggregator
like geometric median. Further, since the auxiliary dataset
has (roughly) the same distribution as the original dataset,
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we expect that two stochastic gradients (computed on small
mini-batches of the two datasets) would make a small angle
with each other with high probability. On the other hand,
a random vector will be almost orthogonal to the correct
stochastic gradients due to the intrinsic properties of ran-
dom high dimensional vectors. This intuition allows us to
compute the reputation score for each worker reliably early
on in the training process. Indeed, we show that our al-
gorithm enjoys convergence under reasonable assumptions
such as strongly convex objective function and stationary
multiplicative adversaries. Empirical evidence suggests that
our algorithm is robust to a large class of Byzantine attacks
(summarized in Table 1), not just the ones with multiplica-
tive noise adversaries (sign flip, random sign flip attacks).

Our Contributions: We summarize our main contributions
as follows

1. We propose a novel reputation score based gradient
aggregation method for distributed machine learning
with learnable reputation scores. The idea of reputa-
tion scores may be of independent interest for general
purpose distributed/Federated learning applications

2. We show that our algorithm is Byzantine tolerant (in
the sense of (Xie et al., 2019a)) to an arbitrary number
of attackers. Previous works that depend on filtering
out the adversaries (for the case of arbitrary number
of adversaries) required an estimate on the number of
adversaries (often not available in practice). Our pro-
posed algorithms, on the other hand, do not require such
assumptions.

3. We use two time-scale stochastic approximation theory
to establish the convergence of the proposed algorithm
under reasonable assumptions (with strongly convex loss
function)

4. Empirical evidence on strongly convex and non-convex
objectives suggests that our proposed algorithms are
robust to almost all state-of-the-art Byzantine attacks.
We also show that our algorithms can defend mixed
attacks where multiple different attacks are performed
at the same time (see Fig 1 and Section 4.5). To the best
of our knowledge, we are the first work to demonstrate
such ability

2. Problem setup
We consider distributed machine learning with a parame-
ter server - worker setup. The parameter server maintains
the model parameters, and updates the parameters with gra-
dients received from the workers. We denote the model
parameters by w ∈ W ⊂ Rd, and the number of workers
by m. We assume that each worker j has access to dataset,
Dj := {xji , y

j
i }
nj

i=1 ∼ D, where N =
∑
j nj is the total

number of data points. In the traditional distributed machine
learning scenario, the server assigns the data partitions to the
workers uniformly at random. In the Federated Learning sce-
nario, this translates to each worker having its own dataset,
which is not shared with anyone (not even the server). Given
a loss function f(·, x, y) : Rd → R, x, y ∼ D, the objective
is to minimize the population loss F : Rd → R

w∗ = arg min
w∈Rd

F (w) := Ex,y∼D[f(w, x, y)] (1)

We denote the true gradient of the population loss at
wt by ∇F (wt). A good worker samples a subset of
the data Dj,t ⊂ Dj , and computes a stochastic gradient
h̃t,j := 1

|Dj,t|
∑
x,y∈Dj,t

∇f(wt, x, y). The good work-

ers communicate the stochastic gradient ht,j := h̃t,j to
the server, where as adversarial workers send an arbitrary
vector drawn from some distribution (either by computing
the stochastic gradient on its subset of data and modify-
ing the gradient adversarially, or by sending an arbitrary
random vector). We assume that this attack distribution
remains fixed for the adversary throughout the training.
We denote the set of gradients received by the server as
HT
t = [ht,1, · · · , ht,m] ∈ Rd×m. Note that we assume

a synchronous setting here, i.e. all the workers commu-
nicate the gradients at the same time to the server. We
assume that the server has access to an auxiliary dataset
Daux := {xi, yi}ni=1 ∼ D. The server can sample a sub-
set ξaux,t of the auxiliary dataset and compute auxiliary
loss Lt(w) = 1

|ξaux,t|
∑

(x,y)∈ξaux,t
f(w, x, y), such that

E[∇Lt(wt)] = ∇F (wt) when the expectation is taken
with respect to the draw of the dataset.

3. Algorithm
In this section, we first motivate the importance of using
a reputation score for gradient aggregation and introduce
the ByGARS class of algorithms to compute the reputation
scores and aggregate gradients. Towards the end of the sec-
tion, we will provide more understanding of the reputation
scores based on the proposed algorithms.

In an ideal environment, where all the workers are benign,
the gradient aggregation function simply averages the re-
ceived stochastic gradients and uses the averaged gradient to
update the parameters. If the batch sizes used by the work-
ers are different, then a weighted averaging of the stochastic
gradients is performed. However, our problem setup is far
from ideal, it involves an arbitrary number of workers that
act as Byzantine adversaries (potentially all of them can be
adversarial).

To compute a meaningful estimate of the gradient, the server
maintains a reputation score qt,j for each worker j. Since
the adversary can be of any type, the reputation scores can
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Algorithm 1 ByGARS: Byzantine Gradient Aggregation
using Reputation Scores

1: w0 initialized randomly and sent to workers
2: q0 = 000
3: for t = 1, · · · , T do
4: receive HT

t = [ht,1, · · · , ht,m] from workers
5: q0

t+1 = qt
6: for i = 1, · · · , k do
7: ŵt+1 ← wt − γtHT

t q
i−1
t+1

8: qit+1 ← qi−1t+1 + αtγtHt∇Lt(ŵt+1)
9: end for

10: qt+1 = qkt+1

11: wt+1 ← wt − γtHT
t qt+1

12: Send wt+1 to workers
13: end for
14: Return wT+1

take any real value. The intuition of the reputation score is
that, the aggregated gradient is a descent direction for the
objective. However, the population loss is not known and
is only available through the empirical loss using data at
the workers (whom we do not trust). Therefore, we use the
auxiliary dataset as a proxy to test whether the aggregated
gradient is a descent direction of the original population
loss. We will refer to this as the meta objective or auxiliary
loss, and the resultant updates to the reputation score as the
meta updates.

Suppose, at time t, the reputation score vector is qt =
[qt,1, . . . , qt,m]T and the received gradients are Ht, then
the weighted aggregation of the gradients with the repu-
tation score is HT

t qt =
∑m
i=1 qt,iht,i. Consider the non-

adversarial case where all workers correctly send the com-
puted gradients. Then qt,i = 1/m, and −HT

t qt is a descent
direction (and an unbiased estimate of the gradient). Con-
sider the case where we know the which workers are ad-
versarial, simply making the reputation scores qt,i for those
workers equal to 0 is enough to defend against the attacks.

The problem now is to compute a good reputation score for
the workers using only the gradients sent to the server, such
that the aggregated gradient is a descent direction for the
objective. Making use of our two key assumptions – avail-
ability of an auxiliary dataset and the stationary behavior of
the workers, we propose the ByGARS (Byzantine Gradient
Aggregation using Reputation Scores) class of algorithms.

3.1. ByGARS

We start with an initial reputation score of q0 = 000 ∈ Rm,
and iteratively improve the estimate of the reputation score.
At step t, we perform a pseudo update to wt (γt is a step

size parameter) as

ŵt+1 ← wt − γtHT
t qt (2)

If qt is a good reputation score and γt is sufficiently small,
then −HT

t qt is a descent direction and thus F (ŵt+1) must
be lower in value than F (wt) or other points in its neighbor-
hood. However, we neither have access to the true function
F nor the data from the workers. Instead, we have a small
auxiliary dataset that is drawn from the same distribution
as the data at the workers. This auxiliary dataset allows us
to construct the loss function Lt(·) (see Section 2), and we
can solve the following optimization problem to compute a
better reputation score q∗t+1:

qt+1 = arg min
q∈Rm

Lt(wt − γtHT
t q) (3)

Using the current estimate qt, we use an iterative update
rule. We compute the loss on a random mini-batch of
the auxiliary dataset Daux using ŵt, which is denoted as
Lt(ŵt) = Lt(wt − γtHT

t qt), and henceforth referred to
as auxiliary loss. The objective of the meta update is to
minimize this loss with respect to q, given Ht,wt; in other
words, find a descent direction on the auxiliary loss at the
current iterates. We do this by performing a first order up-
date to qt by computing the gradient of the auxiliary loss
evaluated at ŵt wrt qt. We refer to this gradient as the
auxiliary gradient denoted by∇Lt(ŵt). The gradient com-
putation and meta update to qt (αt is a step size parameter)
is given by

qt ← qt − αt
d

dqt
Lt(wt − γtHT

t qt)

= qt − αt(−γtHt)∇Lt(wt − γtHT
t qt)

= qt + αtγtHt∇Lt(ŵt)

(4)

The updated reputation score is used to find the updated
gradient aggregation HT

t qt. The algorithm proceeds by
successively applying the pseudo update (eq 2) and meta
update to qt (eq 4) for k iterations (or until a stopping
criteria is reached, such as sufficient descent) to obtain qt+1

before finally performing an actual update to wt as

wt+1 ← wt − γtHT
t qt+1 (5)

This is summarized in Algorithm 1 (please note the change
in notation, eg. superscript i, due to the meta updates).

3.2. ByGARS++: Faster ByGARS

Algorithm 1 has an additional computational overhead due
to multiple parameter updates and multiple gradient compu-
tations to update the reputation score in the meta updates.
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Algorithm 2 ByGARS++: Faster algorithm to compute
Reputation Scores

1: w0 initialized randomly and sent to workers
2: q0 = 000
3: for t = 1, · · · , T do
4: Receive HT

t = [ht,1, · · · , ht,m] from workers
5: Compute∇Lt(wt) using a subset of the auxiliary data
6: wt+1 ← wt − γtHT

t qt
7: Send wt+1 to workers
8: qt+1 ← (1− αt)qt + αtHt∇Lt(wt)
9: end for

10: Return wT+1

This increased computation at the server keeps the workers
idle and waiting, thus negating the computational speed-up
achieved from distributed learning. In order to overcome
this limitation, and driven by the motivation of ByGARS, we
propose a variant (ByGARS++) which is computationally
cheaper yet efficient and use it to prove theoretical conver-
gence guarantees (see main paper here). We also observe
that the reputation scores computed with ByGARS++ have
completely different properties than those computed with
ByGARS (see here).

We propose Algorithm 2 (ByGARS++), in which we avoid
computing multiple pseudo updates ŵt used for performing
meta updates, by simulataneously updating wt,qt as given
by eq (6). Note that we perform an update to qt using the
auxiliary gradients evaluated at wt (and not at ŵt), and we
use stochastic approximation for the update.

wt+1 ← wt − γtHT
t qt,

qt+1 ← (1− αt)qt + αtHt∇Lt(wt)
(6)

In this case, the reputation score of each worker is updated
using only the inner product between the gradient sent by
the worker, and the auxiliary gradient, both evaluated at
wt. The only additional computation as compared to tra-
ditional distributed SGD is the udpate of qt which takes
O(md) time. However, the server can update qt when the
workers are computing the gradients for next time step (line
7, 8 of Algorithm 2), therefore ByGARS++ has the same
computational complexity as traditional distributed SGD.

3.3. Reputation Scores

As we see from the above algorithms, we compute the rep-
utation score of each worker by taking an inner product
between the stochastic gradient (sent by the worker) and the
stochastic gradient computed on the auxiliary data.

If a worker consistently sends gradients that are not in the
descent direction (of the optimization at the respective iter-

ates), then the reputation score is either zero or accumulates
negative values (since the inner product between the worker
gradient and auxiliary gradient is either negative or close
to zero in expectation). Therefore, by multiplying the re-
ceived worker gradient by the reputation score, either its
impact on the aggregated gradient is reduced (when the rep-
utation score is close to zero) or recover the actual direction
of descent (when the reputation score is negative and the
worker sends gradients that make an obtuse angle with the
auxiliary/true gradient in expectation).

When the parameters are far away from the optima, the inner
product between the benign gradients and the auxiliary gra-
dients are positive and higher in magnitude, and therefore
contribute heavily towards the reputation scores. Whereas
when we are closer to the optima, the inner product value
is random (Chee & Toulis, 2018) (due to the directions of
the stochastic gradients being random), and hence does not
contribute to the reputation score. If unheeded, this phe-
nomenon can destroy the reputation of good workers/boosts
that of adversaries, therefore we employ a decaying learning
rate schedule for both γt and αt. Thus, by the time the pa-
rameters are close enough to the optima or a flat region (in
non-convex settings), the learning rates would have decayed
significantly. This enables the reputation score to accumu-
late over time and converge; therefore, the score is robust
to the noisy inner products near the optima. As we will see
in Section ??, the decaying learning rate is required for the
analysis of the algorithm under the two-timescale stochastic
approximation theory.

It is important to note that the algorithms rely on the avail-
ability of the auxiliary dataset at the worker. It is a rea-
sonable assumption to make since in practical scenarios,
it is not difficult to procure a small amount of clean auxil-
iary data without violating the privacy of the worker’s data.
This data can be taken from publicly available datasets (that
match the distribution of the data available at the workers),
from prior data leaks (that is now publicly available), or data
given voluntarily by workers. We provide more analysis on
the affect of auxiliary dataset size on the performance of
our algorithms in Section 4.5 and observe that a very small
auxiliary dataset size is sufficient.

4. Simulations
In this section, we discuss the experimental setup used to
evaluate the proposed algorithms.

4.1. Dataset and models

We present the results of our algorithms on MNIST (LeCun
et al., 2010), CIFAR-10 (Krizhevsky et al., 2009) for multi-
class classification using supervised learning. We used a
LeNet architecture (LeCun et al., 1998) for MNIST, and

https://sites.google.com/view/bygars
https://sites.google.com/view/bygars
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a two convolutional layer CNN for CIFAR-10. For each
dataset, we set aside a small auxiliary dataset of size 250
(sampled randomly from the training data) at the server, and
the remaining training data is distributed uniformly to the
workers. More details on the hyperparameters, are provided
in Appendix ??.

4.2. Attack mechanisms

The summary of the attacks used in this work is given in Ta-
ble 1. The attacks were grouped broadly into (i) Omniscient
/ Collusion attacks, (ii) Local attacks / System failures, and
(iii) Data Poisoning attacks. We further propose a mixed
attack, where we combine multiple Local attacks and Data
Poisoning attacks.

In the Omniscient / Collusion attacks, the adversaries have
complete information about all other workers including the
benign ones, or only about the other adversaries. In LIE
attack (Baruch et al., 2019), the adversary adds well crafted
perturbations to the empirical mean of the benign gradients
that is sufficient to avoid convergence. In OFOM, PAF
(Chang et al., 2019) a large arbitrary vector is added to
the empirical mean of the benign gradients and sent to the
server. In Inner Product Manipulation, Xie et al. (Xie et al.,
2019a) multiply the empirical mean of benign gradients
with a negative value.

In Local attacks, the attacker doesn’t have any information
about the other workers. Instead, the worker either sends
an arbitrary gradient to the server or uses the gradient it
computed. Examples of the first case include a Gaussian
Attack (a vector drawn from a Gaussian distribution of mean
0, covariance 200) (Blanchard et al., 2017), or Constant
attack (a vector of all 1s multiplied by an arbitrary scalar,
say 100) (Li et al., 2019). In the second case, the attacker
computes a gradient on locally computed data, and sends
a negatively scaled value of the gradient (this is termed
as reverse attack, sign flipping attack in various works)
(Blanchard et al., 2017; Li et al., 2019; Bernstein et al.,
2018; Jin et al., 2019). Hardware/communication failures
that corrupt the gradients (unintentionally) by flipping the
sign bit can also be included under these attacks. In addition
to the sign flipping attack, we propose a random sign flip
attack, where at each iteration the adversary draws a real
number from a fixed distribution (optionally scales it with a
large constant), multiplies with the local gradient and sends
to the server. Note that the mean of the distribution can take
negative as well as positive values. In our simulations we
used a Gaussian distribution with mean randomly picked
around -2 and variance 1.

In Data Poisoning attacks, the underlying data used to com-
pute the gradients is poisoned so that the model outputs
the attacker chosen targets during inference (Baruch et al.,
2019). There are several varieties of data poisoning (also

called backdooring) attacks, but we only consider label flip-
ping attack in this work. Under the label flipping attack, for
example in MNIST dataset, the attacker maps the labels as
l → (9 − l) for l ∈ {0, · · · , 9}, and uses these labels for
computing the gradients. Note that, label flipping attack is
also a Local attack.

In addition to these attacks, we propose a Mixed Attack
where there can be multiple Local attacks and Data Poi-
soning attacks. This is motivated by the need to develop
algorithms that are robust to several different types of at-
tacks at the same time. We summarize all these attacks in
Table 1.

4.3. Baselines

The generalization performance of SGD improves with the
size of the dataset (Hardt et al., 2015). Since existing tech-
niques for arbitrary number of Byzantines filter out the
gradients that are sent by the adversarial workers, (in a true
Federated Setting) the generalization performance of those
techniques is limited by the number of benign workers (and
the number of byzantine attackers perceived by the algo-
rithm) and the amount of data available with them. In the
case where all workers are adversaries, the only available
truthful data is the auxiliary dataset. Hence, we consider
plain averaging of the gradients available at these benign
workers (and auxiliary gradient) as the Baseline. Note that
this is the best any Byzantine resilient algorithm that re-
lies on filtering out adversarial gradients can do. Primarily
for this reason, along with other implementation specific
details required for other works that consider an arbitrary
number of adversaries (Zeno requires trim parameter b that
needs knowledge of the number of adversaries), we chose
to compare our algorithm with Baseline (described above)
as the gold standard. In addition to this, for illustration
purposes, we also consider plain averaging of all gradients
(no defense) denoted by Average, and coordinate-wise me-
dian (Yin et al., 2018) denoted by Median in our empirical
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Figure 2: This figure shows the top-1 accuracy of models
trained on CIFAR-10 dataset under No Attack
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Figure 3: Top-1 accuracy for models trained on CIFAR-10 data under (3a) 3 Inner Product adversaries, (3d) 6 Inner Product
adversaries, (3b) 3 Label Flip adversaries, (3e) 6 Label Flip adversaries, (3c) 3 Constant Attack adversaries, and (3f) 6
Constant Attack adversaries. Note the reduction in performance from the top row to the bottom row, due to the increase in
the number of adversaries. Despite that, ByGARS, ByGARS++ perform reasonably well.

analysis.

4.4. Distributed Setup

Throughout this section, we will assume a setup with 1
server and 8 workers. We first compare the performance of
the algorithms in the absence of any attacks (termed as No
Attack). In order to show the robustness of our proposed
algorithms to an arbitrary number of attackers, we consider
multiple cases with different number of attackers, i.e. 3, 6, 8.
We consider the case of all 8 adversaries for Sign Flipping
attack. As we will see, by allowing negative reputation
scores for these workers, our algorithms will achieve similar
performance as that of No Attack.

4.5. Results and Ablations

We present the results for CIFAR-10 dataset here (refer the
website for MNIST and synthetic dataset). Note that we
present the mean and standard deviation (shared) of the
results for 4 different trials.

An advantage of our proposed methods is that, for a given
dataset and model, we used the same learning rate, learning
rate decay for all types of attacks, with the only difference
being the meta learning rate and meta learning rate decay
schedules for ByGARS, and ByGARS++ (see website for
details). From this, it is clear that the proposed algorithms
are robust to all types of attacks discussed and do not require

attack specific information to fine tune the hyper-parameters.
Also, from Fig 2 it is evident that there is no trade-off in
employing our algorithm in the case of No Attack. This
shows that our proposed algorithms can serve a much gen-
eral purpose in distributed learning applications.

We can observe from Figures (3, and figures in main pa-
per here of other CIFAR-10, MNIST and synthetic dataset
results) that both ByGARS and ByGARS++ achieve Byzan-
tine robustness against all of the threat models used under
varying number of adversaries (with the exception of LIE
attack in a few cases). As expected, median fails to defend
when the fraction of adversaries is > 0.5 under all attacks.
ByGARS, ByGARS++ on the other hand, do not see a lot of
degradation wrt Baseline when the fraction of adversaries is
> 0.5.

We also present results when different types of attacks are
carried out at the same time, called as mixed attack. From
Fig 1, we observe that the proposed algorithms can defend
this mixed attack. In particular, of the eight workers, only
one worker is benign, and the other seven workers have
different attack types (local or data poisoning). To the best
of our knowledge, we are the first to show robustness against
different types of attacks acting at the same time without
requiring separate tuning of the parameters to defend against
the attacks. The fact that we used the same hyper parameters
against all attacks (including the mixed attack) makes our

https://sites.google.com/view/bygars
https://sites.google.com/view/bygars
https://sites.google.com/view/bygars
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algorithm more applicable to the practical scenarios.

Note that, LIE attack (Baruch et al., 2019) was only defined
for fraction of adversaries ≤ 0.5, so we evaluated our algo-
rithms against LIE attack with 3 attackers (< 0.5), and 4
attackers (= 0.5). We observe that, ByGARS is robust to
3 attackers for both CIFAR-10 and MNIST datasets, and
suffers some degradation in performance when there are 4
attackers. ByGARS++, on the other hand, performs well
against 3 attackers on MNIST data, but suffers some degra-
dation on CIFAR-10. In the case of 4 attackers, ByGARS++
fails to defend against the attack. See website for experi-
ments on a synthetic dataset (strongly convex objective) and
we can see that both ByGARS, ByGARS++ successfully
defend 4 LIE (0.5 fraction) adversaries. Also, it is interest-
ing to observe that Median, Average (no defense) perform
reasonably well against LIE with 3 attackers. This was also
observed in (Baruch et al., 2019) and the authors point that
LIE is crafted to break defenses like Krum, Bulyan, etc. The
authors explain that using plain averaging, the small noise
added to the gradients gets averaged out and the impact
on the aggregated gradient is minimal. Perhaps, ByGARS
performs well against LIE due to the reputation score based
aggregation (weighted averaging) as it was observed that
the reputation scores were almost equal for all the workers
in this case.

It is important to note that, one would expect the Baseline
to be the best in all scenarios. However, we point out that
by using the reputation scores, we are directly affecting
the step size of each update performed, and hence it is not
surprising to observe that our algorithms perform better than
the Baseline under No Attack or weaker adversary models
such as Sign Flip.

Additionally, in order to understand the impact of the aux-
iliary dataset and the meta updates on the proposed al-
gorithms, we perform an ablation analysis. In particular,
we empirically study the approximate size of the auxiliary
dataset that is sufficient to achieve convergence of both the
proposed algorithms, and we study the number of meta iter-
ations for ByGARS. We chose the label flip attack (with 3
attackers) and fixed it for all the ablation analysis.

4.6. Discussion

In this paper, we proposed two algorithms that compute
the reputation scores of workers in a distributed machine
learning set up, in order to defend against any number of
byzantine adversaries. However, the proposed idea of using
reputation scores is much more general as it provides a way
to quantify the importance of using a particular local dataset
for optimizing a global model even in the non-adversarial
case. The reputation scores consistently provide a quantifi-
able estimate of the utility of a particular worker (and the
local dataset at the worker) towards a global optimization

problem. This idea can be applicable to several scenarios
such as (i) the local datasets are heterogenous and the global
optimization objective is to find a model best suited for
a particular (unknown) mixture of the local distributions,
(ii) the local datasets have varying levels of quality, (iii)
the workers have varying levels of privacy constraints, etc.
Also, as we observe that the reputation scores for the two
proposed algorithms follow different trajectories and have
different properties. While ByGARS++ computes reputa-
tion scores that start from 0, increase in magnitude and
converges to 0 eventually; ByGARS computes reputation
scores that grow in magnitude and converges to a fixed (of-
ten non-zero) value depending on the attack distribution. We
believe that understanding the mechanics of these reputation
scores for different distributions of data in the Federated
Learning setting is an interesting future direction.

Note that the robustness of our algorithm comes from the
fact that we did not design the defense based on any particu-
lar criteria such as norm difference, or majority based ideas.
We devised the algorithm in order for the optimization to
find a descent direction, and hence the superior performance
across a range of attacks. However, it is important to note
that in this paper, we assumed that the behavior of the attack-
ers is stationary and this limits the ability of the attackers to
adapt to the defense algorithm used at the server. With the
knowledge of the defense algorithm of the server, a more
intelligent adversary can employ a non-stationary attack dis-
tribution (simply turn benign when the reputation score is
sufficiently negative; and flip back when the reputation score
is positive), which is a more challenging problem for the
server. We believe that the proposed reputation score based
aggregation provides a good platform to address this more
setting and we consider this as a potential future direction.

5. Conclusion
We devise a novel class of algorithms based on reputation
score based stochastic gradient aggregation for distributed
machine learning that is resilient to any number of adver-
sarial workers. The proposed algorithms (ByGARS and
ByGARS++) exploit a small auxiliary dataset to compute a
reputation score for every worker, and the scores are used
to aggregate the workers’ gradients. We showed that under
reasonable assumptions, ByGARS++ converges to the op-
timal solution using results from two-timescale stochastic
approximation theory (Tadic, 2004). Through simulations,
we showed that the proposed algorithms exhibit remarkable
robustness property even for non-convex problems under a
wide range of Byzantine attacks. Although ByGARS and
ByGARS++ are developed for the byzantine attack setting,
we believe that these algorithms serve a much general pur-
pose. This algorithm can be modified to train models in
other cases such as learning from heterogeneous datasets,

https://sites.google.com/view/bygars
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learning under privacy constraints and other adversarial set-
tings (such as adaptive adversaries). We leave such analyses
for a future work.
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Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning mul-
tiple layers of features from tiny images, 2009.
URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Cortes, C., and Burges, C. MNIST hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, L., Xu, W., Chen, T., Giannakis, G. B., and Ling, Q.
Rsa: Byzantine-robust stochastic aggregation methods
for distributed learning from heterogeneous datasets. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 1544–1551, 2019.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


Submission and Formatting Instructions for ICML 2021

Portnoy, A. and Hendler, D. Towards realistic
Byzantine-robust federated learning. arXiv preprint
arXiv:2004.04986, 2020.

Tadic, V. B. Almost sure convergence of two time-scale
stochastic approximation algorithms. In Proceedings of
the 2004 American Control Conference, volume 4, pp.
3802–3807. IEEE, 2004.

Xie, C., Koyejo, O., and Gupta, I. Zeno: Byzantine-
suspicious stochastic gradient descent. arXiv preprint
arXiv:1805.10032, 2018.

Xie, C., Koyejo, S., and Gupta, I. Fall of empires: Breaking
byzantine-tolerant SGD by inner product manipulation.
arXiv preprint arXiv:1903.03936, 2019a.

Xie, C., Koyejo, S., and Gupta, I. Zeno++: Robust fully
asynchronous SGD. arXiv preprint arXiv:1903.07020,
2019b.

Yang, Z. and Bajwa, W. U. ByRDiE: Byzantine-resilient
distributed coordinate descent for decentralized learning.
IEEE Transactions on Signal and Information Processing
over Networks, 5(4):611–627, 2019.

Yang, Z., Gang, A., and Bajwa, W. U. Adversary-resilient
inference and machine learning: From distributed to de-
centralized. arXiv preprint arXiv:1908.08649, 2019.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.
Byzantine-robust distributed learning: Towards optimal
statistical rates. arXiv preprint arXiv:1803.01498, 2018.


