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Abstract

In every communication round of federated learn-
ing, each client communicates its model updates
back to the server which then aggregates them all.
The incurred communication cost and overhead
between clients and server, however, can be a
major bottleneck particularly when the number
of clients is large. We, in this paper, propose
to select only a small diverse subset of clients,
namely those carrying representative gradient
information, and we transmit only these updates
to the server. Our aim is for updating via only a
subset to approximate updating via aggregating
all client information. We achieve this by choos-
ing a subset that maximizes a submodular facility
location function defined over gradient space. We
introduce “federated averaging with diverse client
selection (DivFL)”. We provide a thorough
analysis of its convergence in the heterogeneous
settings and apply it both to synthetic and to real
datasets. Empirical results show our approach im-
proves learning efficiency and encourages more
uniform (i.e., fair) performance across clients.

1. Introduction
Federated learning (FL) studies the training of machine
learning models on a sever for the sake of a swarm of clients
each owning a limited amount of private local data. Recent
approaches to this problem repeatedly alternate between
device-local (stochastic) gradient descent steps and server-
aggregation of the clients’ model updates (McMahan et al.,
2017). In cross-device settings, a server and its model usu-
ally serves billions of devices. Therefore, the communica-
tion between clients and the server can be costly and slow,
forming an huge impediment to FL’s viability.

*Equal contribution 1Intel Labs, USA 2Machine Learning De-
partment, Carnegie Mellon University 3Department of Electrical
and Computer Engineering, University of Washington, Seattle

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

One property of the collection of clients that can mitigate
these problems, however, is often not exploited, and that
is redundancy. Specifically, many clients might provide
similar, and thus redundant, gradient information for
updating the server model. Therefore, transmitting all such
updates to the server is a waste of communication and
computational resources. How best to select a representative
and more informative client set while adhering to practical
constraints in federated learning is still an open challenge.
Although several selection criterion have been investigated
in recent literature, e.g., sampling clients with probabilities
proportional to their local dataset size (McMahan et al.,
2017), sampling clients of larger update norm with higher
probability (Chen et al., 2020), and selecting clients with
higher losses (Cho et al., 2020), the redundancy and
similarity of the clients’ updates sent to the server is not
represented and exploited in these approaches. In particular,
communicating multiple clients’ updates to the server may
cause statistical and systems inefficiency if too many of
them are too similar to each other. The commonly studied
modular score/probability for each individual client is in-
capable of capturing information as a property over a group
of clients. Ideally, a diverse set of clients would be selected,
thereby increasing the impact of under-represented clients
that contribute different information, and thereby improving
fairness. This, in fact, is a topic of increasing interest (Mohri
et al., 2019; Cho et al., 2020; Dennis et al., 2021).

In this paper, we introduce diversity to client selection in
FL, namely a strategy to measure how a selected subset of
clients can represent the whole when being aggregated on
the server. Specifically, in each communication round, we
aim to find a subset whose aggregated model update approx-
imates the aggregated update over all clients. Inspired by
the CRAIG method of coreset selection for efficient ma-
chine learning training (Mirzasoleiman et al., 2020), we
derive an upper bound of the approximation error as a su-
permodular set function (in particular, the min-form of the
facility location function (Cornuéjols et al., 1977)) evalu-
ated on the selected subset. We can then apply submodular
maximization (Fujishige, 2005; Iyer et al., 2013; Wei et al.,
2014) on a complement submodular function to (approxi-
mately) minimize the error upper bound. We employ the
greedy selection (Nemhauser et al., 1978) of a subset of
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clients according to the marginal gain of the submodular
function to achieve a solution with provable approximation
guarantee (Conforti and Cornuejols, 1984). By integrating
the diverse client selection into the most commonly studied
FL scheme, i.e., Federated Averaging (FedAvg) (McMahan
et al., 2017), we propose DivFL that applies global model
aggregation over a selected subset of clients after multiple
local steps on every client. We present a theoretical con-
vergence analysis of DivFL and show its tolerance to the
heterogeneity of data distributions across clients and large
number of local steps. In experiments, we compare DivFL
with other client selection approaches on both synthetic
dataset and FEMNIST, wherein our method excels on both
the accuracy and fairness.

2. Background and Related Work
We consider a typical federated learning objective:

min
w

f(w) =

N∑
k=1

pkFk(w),

where for each device k ∈ [N ], pk is a pre-defined weight
(such that

∑N
k=1 pk = 1) that can be set to 1

N or the fraction
of training samples, and Fk is the client-specific empirical
loss. While there are various possible modeling approaches,
we consider this canonical objective of fitting a single global
model to the non-identically distributed data across all de-
vices (McMahan et al., 2017).

Client Selection in Federated Learning. Client1 sam-
pling is a critical problem particularly for cross-device
settings where it is prohibitive to communicate with all
devices. Two common (or default) strategies are (a) sam-
pling the clients based on the number of local data points
and uniformly averaging the model updates, and (b) sam-
pling the clients uniformly at random and aggregating the
model updates with weights proportional to the local sam-
ples (Li et al., 2020). There is also recent work proposing
advanced sampling techniques to incorporate dynamic sys-
tems constraints, accelerate the convergence of federated
optimization, or to obtain a better model with higher accu-
racy (Nishio and Yonetani, 2019; Ribero and Vikalo, 2020;
Cho et al., 2020; Lai et al., 2020). We investigate client
selection through the lens of encouraging client diversity at
each communication round that largely remains unexplored
in previous work. The closest client selection method to ours
is based on clustering (e.g., selecting representative clients
from separate clusters (Dennis et al., 2021)). We note that
performing (private) clustering in federated settings is still
an open problem, and our method can be viewed as a soft

1Following conventions, we use the term ‘client’ for the prob-
lem of client selection. Throughout the paper, we use ‘devices’
and ‘clients’ interchangeably.

version of dynamic clustering at each round (discussed in
the next paragraph). The benefits of gradient (or model)
diversity has been demonstrated in other related contexts,
such as scaling up mini-batch stochastic gradient descent
(SGD) (Yin et al., 2018). Enforcing sample or gradient
diversity during optimization also implicitly places more
emphasis on the underrepresented subpopulations of clients,
and can promote fairness defined as representative dispar-
ity (Hashimoto et al., 2018). Similar to previous work (e.g.,
Cho et al., 2020), we observe our approach yields more fair
solutions across the network in Section 5.

Diverse Subset Selection via Submodularity. Modular
scores have been widely studied for subset selection in ma-
chine learning and federated learning, e.g., a utility score for
each sample or client often measured by the loss. However,
the diversity of a subset cannot be fully captured by such
modular scores since there is no score interaction. Diversity
is often well modeled by a diminishing return property, i.e.,
the (marginal) gain an element brings to a subset dimin-
ishes as more elements added to the subset. There exists
a rich and expressive family of functions, all of which are
natural for measuring diversity, and all having the diminish-
ing returns property: given a finite ground set V of size n,
and any subset A ⊆ B ⊆ V and a v /∈ B, a set function
F : 2V → R is submodular if

F (v ∪A)− F (A) ≥ F (v ∪B)− F (B). (1)

This implies v is no less valuable to the smaller set A than
to the larger setB. The marginal gain of v conditioned onA
is denoted f(v|A) , f(v ∪A)− f(A) and reflects the im-
portance of v to A. Submodular functions (Fujishige, 2005)
have been widely used for diversity models (Lin and Bilmes,
2011; Batra et al., 2012; Prasad et al., 2014; Gillenwater
et al., 2012; Bilmes and Bai, 2017).

Maximizing a submodular function usually encourages the
diversity and reduces the redundancy of a subset. This
property has been utilized for data selection in active
learning (Guillory and Bilmes, 2011), curriculum learn-
ing (Zhou and Bilmes, 2018), mini-batch partitioning (Wang
et al., 2019), gradient approximation (Mirzasoleiman et al.,
2020), etc. Although the number of possible subsets A
is
(
n
k

)
, enumerating them all to find the maximum is in-

tractable. Thanks to submodularity, fast approximate al-
gorithms (Nemhauser et al., 1978; Minoux, 1978; Mirza-
soleiman et al., 2015) exist to find an approximately optimal
A with provable bounds (Nemhauser et al., 1978; Conforti
and Cornuejols, 1984). Despite its success in data selection,
submodularity has not been explored for client selection
in federated learning. Encouraging diversity amongst lo-
cal gradients (or model updates) of selected clients can
effectively reduce redundant communication and promote
fairness. Moreover, it raises several new challenges in the
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FL setting, e.g., (1) it is unclear which submodular func-
tion to optimize and in which space to measure the similar-
ity/diversity between clients; (2) What convergence guar-
antee can be obtained under practical assumptions such as
heterogeneity among clients, and (3) What are the effects of
outdated client selection due to communication constraints?

3. Diverse Client Selection
In this section, we introduce “federated averaging with
diverse client selection” (or DivFL), a method that
incorporates diverse client selection into the most widely
studied FL scheme, federated averaging (FedAvg). We will
first derive a combinatorial objective for client selection
via an approximation of the full communication from all
clients, which naturally morphs into a facility location
function in the gradient space that can be optimized by
submodular maximization. We then present the standard
greedy algorithm that optimizes the objective by selecting
a diverse subset of clients at every communication round.

3.1. Approximation of Full Communication

We aim to find a subset S of clients whose aggregated gra-
dient can approximate the full aggregation over all the N
clients V = [N ]. To formulate this problem, we start by
following the logic in (Mirzasoleiman et al., 2020). Given a
subset S, we define a mapping σ : V → S such that the gra-
dient information ∇Fk(vk) from client k is approximated
by that from a selected client σ(k) ∈ S. For i ∈ S, let
Ci , {k ∈ V |σ(k) = i} be the set of clients approximated
by client-i and γi , |Ci|. The full aggregated gradient can
be written as

∑
k∈[N ]

∇Fk(vk) =
∑
k∈[N ]

[
∇Fk(vk)−∇Fσ(k)(vσ(k))

]
+

∑
k∈S

γk∇Fk(vk). (2)

Subtracting the second term from both sides, taking the
norms, and applying triangular inequality, we can obtain
an upper bound for the approximation to the aggregated
gradient by S, i.e.,

∥∥∥∥∥∥
∑
k∈[N ]

∇Fk(vk)−
∑
k∈S

γk∇Fk(vk)

∥∥∥∥∥∥ ≤∑
k∈[N ]

∥∥∥∇Fk(vk)−∇Fσ(k)(vσ(k))
∥∥∥ . (3)

The above inequality holds for any feasible mapping σ since
the left hand side does not depend on σ. So we can take the

minimum of the right hand side w.r.t. σ(k), ∀k ∈ [N ], i.e.,∥∥∥∥∥∥
∑
k∈[N ]

∇Fk(vk)−
∑
k∈S

γk∇Fk(vk)

∥∥∥∥∥∥ ≤∑
k∈[N ]

min
i∈S

∥∥∇Fk(vk)−∇Fi(vi)
∥∥ , G(S). (4)

The right hand side provides a relaxed objective G(S) for
minimizing the approximation error in the left hand. Mini-
mizing G(S) (or maximizing Ḡ, a constant minus its nega-
tion) equals maximizing a well-known submodular function,
i.e., the facility location function (Cornuéjols et al., 1977).
To restrict the communication cost, we usually limit the
number of selected clients to be no greater than K, i.e.,
|S| ≤ K. This resorts to a submodular maximization prob-
lem under cardinality constraint, which is NP-hard but an
approximation solution with 1− e−1 bound can be achieved
via the greedy algorithm (Nemhauser et al., 1978).

3.2. Greedy Selection of Clients

The naïve greedy algorithm for minimizing the upper bound
of gradient approximation starts from S ← ∅, and adds one
client k ∈ V \S with the greatest marginal gain to S in every
step, i.e.,

S ← S ∪ k∗, k∗ ∈ argmax
k∈V \S

[Ḡ(S)− Ḡ({k} ∪ S)] (5)

until |S| = K. Although it requires to evaluate the marginal
gain for all clients k ∈ V \S in every step, there exists sev-
eral practical accelerated algorithms (Minoux, 1978; Mirza-
soleiman et al., 2015) to substantially reduce the number
of clients participating in the evaluation. To incorporate
the client selection into any federated learning algorithm,
we simply apply the greedy algorithm in each aggregation
round and only aggregate the model updates over selected
clients. The complete procedure is given in Algorithm 1
assuming the base algorithm is Federated Averaging (Fe-
dAvg) (McMahan et al., 2017).

In the left hand side of Eq. (3)-(4), we aim at approxi-
mating the full communication by a weighted sum over
selected clients in S with weights {γi}i∈S . However,
since we relax the problem to minimizing its upper bound
and the greedy solution does not guarantee to achieve the
global minimum of the relaxed objective, the weight as-
sociated with the greedy solution S, i.e., γi = |Ci| with
Ci = {k ∈ V |i ∈ argminj∈S

∥∥∇Fk(vk)−∇Fj(vj)
∥∥}, is

sub-optimal. In fact, given S, the optimal weight {γi}i∈S
can be achieved by directly minimizing the left hand side of
Eq. (3)-(4) but it is infeasible because the full aggregation∑
k∈[N ]∇Fk(vk) is not available in our setting. Though

there might exist better options, we find that simple uniform
weights work promisingly in all evaluated scenarios of our
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Algorithm 1 DivFL
Input: T,E, η, w0

1 for t = 0, · · · , T − 1 do
2 Server selects a subset of K clients St by greedy algo-

rithm in Eq. (5), and sends wt to them.
3 for device k ∈ St in parallel do
4 wk ← wt
5 Solve the local sub-problem of client-k inexactly by

updating wk for E local mini-batch SGD steps:
wk = wk − η∇Fk(wk)

6 Send ∆k
t := wkt − wt back to Server

7 end
8 Server aggregates {∆k

t }:

wt+1 ← wt +
1

|St|
∑
k∈St

∆k
t

9 end
10 return wT

experiments. The greedy selection in line 2 of Algorithm 1
requires collecting the local gradients of all clients, which
might be expensive in communication cost. In practice,
we can reduce the cost by querying the gradients every m
communication rounds. In experiments, we evaluate the
performance under different m.

4. Convergence Analysis
In this section, we provide a novel theoretical analysis of the
convergence behavior of Algorithm 1 for strongly convex
problems under practical assumptions of non-identically dis-
tributed data, partial device participation, and local updating.
Although the current analysis only holds for the proposed
client selection algorithm applied to FedAvg, we believe
that it can be extended to other federated learning methods
as well in the future. We note that this FL analysis is new, it
did not appear before as far as we know.

As discussed in Section 3.1, we draw connections between
full gradient approximation and submodular function maxi-
mization. By solving a submodular maximization problem
in the client selection procedure, we effectively guarantee
that the approximation error is small (see Eq. (4)). We state
an assumption on this below.
Assumption 1 (Gradient approximation error). At each
communication round t, we assume the server selects a
set St of devices such that their aggregated gradients (with
weights {γk}k∈St) is a good approximation of the full gra-
dients on all devices with error ε, i.e.,∥∥∥∥∥∥ 1

N

∑
k∈St

γk∇Fk(vkt )− 1

N

∑
k∈[N ]

∇Fk(vkt )

∥∥∥∥∥∥ ≤ ε.
The same assumption has been studied in previous works

on coreset selection for mini-batch SGD (Mirzasoleiman
et al., 2020). Next, we state other assumptions used in
our proof, which are standard in the federated optimization
literature (e.g., Li et al., 2019).
Assumption 2. Each Fk (k ∈ [N ]) is L-smooth.
Assumption 3. Each Fk (k ∈ [N ]) is µ-strongly convex.
Assumption 4. For k ∈ [N ], in-device variance of stochas-
tic gradients on random samples ζ are bounded, i.e.,
E[‖∇Fk(wkt , ζ)−∇Fk(wkt )‖2] ≤ σ2.
Assumption 5. For k ∈ [N ], the stochastic gradi-
ents on random samples ζ are uniformly bounded, i.e.,
‖∇Fk(wkt , ζ)‖2 ≤ G2.
Assumption 6 (Bounded heterogeneity). Statistical hetero-
geneity defined as F ∗ −

∑
i∈[N ] pkF

∗
k is bounded by C,

where F ∗ := minw f(w) and F ∗k := minv Fk(v).

Let w∗ ∈ argminw f(w) and v∗k ∈ argminv Fk(v) for k ∈
[N ]. Note that under Assumption 3 (µ-strongly convexity),
Assumption 6 implies that ‖

∑
k∈[N ] pkv

∗
k−w∗‖ is bounded

by a constant (which we denote as M ) observing that∥∥∥∥∥∥
∑
k∈[N ]

pkv
∗
k − w∗

∥∥∥∥∥∥ ≤
∑
k∈[N ]

pk ‖w∗ − v∗k‖

≤
∑
k∈[N ]

pk

(
1 + ‖w∗ − v∗k‖

2
)
≤ 1 +

2

µ

F ∗ − ∑
k∈[N ]

pkF
∗
k

 .

Setup. Following Li et al. (2019), we flatten local SGD
iterations at each communication round, and index gradient
evaluation steps with t (slightly abusing notation). We define
virtual sequences {vkt }k∈[N ] and {wkt }k∈[N ] where

vkt+1 = wkt − ηt∇Fk(wkt )

wkt+1 =

{
vkt+1, if not aggregate,
select St+1 and average {vkt+1}k∈St+1

, otherwise.

While all devices virtually participate in the updates of {vkt }
at each virtual iteration t, the effective updating rule of
{wkt } is the same as that in Algorithm 1. Further, let

vt :=
∑
k∈[N ]

pkv
t
k, wt :=

∑
k∈[N ]

pkw
k
t .

Therefore,

wt =

{
vt if not aggregate,
1
K

∑
k∈St

vkt otherwise.

Denote the aggregated stochastic gradient over all clients as
gt, i.e.,

vt+1 = wt − ηt

 ∑
k∈[N ]

pk∇Fk(wkt , ζ
k
t )

 := wt − ηtgt.
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We aim at approximating vt+1 by wt+1 (when aggregating)
and next state a main lemma bounding ‖wt+1 − vt+1‖.

Lemma 1. For any virtual iteration t, under Algorithm 1
and Assumptions 1-6, we have

‖wt+1 − vt+1‖ ≤LGE(E − 1)

(
1 +

E − 1

t+ γ − (E − 1)

)2

η2t

+ Eε

(
1 +

E − 1

t+ γ − (E − 1)

)
ηt.

Proof. We only need to consider the aggregation step t.
Let the last time of aggregation happens at step t0 = t +
1− E, when we select a subset S (associated with weights
{γk}k∈S) using the greedy algorithm. Under the updating
rule, the approximation in the E steps between t0 and t
fulfills

‖wt+1 − vt+1‖ ≤
t∑

τ=t0

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∆vkτ −
1

N

∑
k∈[N ]

∆vkτ

∥∥∥∥∥∥ ,
where ∆vkτ , −ητ∇Fk(vkτ ). Under Assumption 1, we
have that the approximation of the full gradients at each
communication round t0 satisfies∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkt0)− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥ ≤ ε,
For every local step τ ∈ (t0, t], we use the same S to
approximate the full gradient because we only communicate
the local gradients every E local steps. Note∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkτ )

∥∥∥∥∥∥
≤

∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈S

γk∇Fk(vkt0)

∥∥∥∥∥+∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkt0)− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

N

∑
k∈[N ]

∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥
≤ 2LG

τ∑
ν=t0

ην + ε,

where the first and the third term on the right hand side are
bounded using the L-smoothness of Fk(·) and G-bounded

norm of its stochastic gradient. Hence,

‖wt+1 − vt+1‖ ≤
t∑

τ=t0

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∆vkτ −
1

N

∑
k∈[N ]

∆vkτ

∥∥∥∥∥∥
=

t∑
τ=t0

ητ

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkτ )

∥∥∥∥∥∥
≤LGE(E − 1)η2t0 + Eεηt0

=LGE(E − 1)

(
1 +

E − 1

t+ γ − (E − 1)

)2

η2t+

Eε

(
1 +

E − 1

t+ γ − (E − 1)

)
ηt

With Lemma 1, we state our convergence results as follows.

Theorem 1 (Convergence of Algorithm 1). Under Assump-
tions 1-6, we have

E[‖w∗ − wt‖2] ≤ O(1/t) +O(ε).

In experiments, we observe that DivFL allows us to achieve
faster convergence (empirically) at the cost of additional
solution bias (a non-diminishing term dependent on ε).

We provide a sketch of the proof here and defer complete
analysis to Appendix A. Examine the distances between
wt+1 and w∗,

‖wt+1 − w∗‖2 =‖wt+1 − vt+1‖2 + ‖vt+1 − w∗‖2+

2〈wt+1 − vt+1, vt+1 − w∗〉.

If iteration t is not an aggregation step, wt+1 = vt+1 and

‖wt+1 − w∗‖2 = ‖vt+1 − w∗‖2,

which we can bound with Lemma 1 in Li et al. (2019):

E[‖vt+1 − w∗‖2] ≤ (1− ηtµ)E[‖wt − w∗‖2] + η2tB
(6)

for some constant B. If t is an aggregation step, we need to
bound

E[‖wt+1 − vt+1‖2] + E[‖vt+1 − w∗‖2]+

2E[〈wt+1 − vt+1, vt+1 − w∗〉].

The second term can be bounded by Eq. (6), which con-
tains (1− ηtµ)E[‖wt − w∗‖2]. Therefore, combined with
Lemma 1, with a decaying step size, we can obtain a recur-
sion on E[‖wt+1 − w∗‖2] which leads to Theorem 1. We
provide the complete proof in Appendix A.
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5. Experiments
Setup. We evaluate the diverse client selection approach
utilizing both synthetic and real federated data—Federated
Extended MNIST (FEMNIST) (Cohen et al., 2017). The
synthetic data enable us to control the heterogeneity across
clients for evaluation. In the case of FEMNIST, we only
utilize the 10 lowercase character classes of handwritten
alphanumeric characters and assign each client the data
drawn from 2 classes. We consider two baselines: a) random
sampling without replacement, and b) the power-of-choice
approach (Cho et al., 2020) where we first sample a random
subset of clients, and then select the devices with the largest
training losses. For DivFL, we employ the heuristic of
querying every device in the network for the gradients every
m communication rounds to estimate the dissimilarity, and
choose m to be 1 or 10. While the former provides the
upper bound on the performance, the latter approach and
other variants are amenable in more realistic settings. We
describe the results on datasets below.

5.1. Results on the Synthetic Dataset

We generate synthetic data following the setup described
in Li et al. (2020). The parameters and data are generated
from Gaussian distributions and the model is logistic re-
gression. y = argmax(softmax(WTX + b)). We consider
a total of 30 clients where the local dataset sizes for each
client follows the power law. We set the mini batch-size to
10 and the learning rate η = 0.01.

For all methods, we effectively select K = 5 clients at
each communication round. For power-of-choice, we first
randomly sample 24 devices, and further select 5 out of
them with the largest training losses. We report training
loss and test accuracy versus the number of communica-
tion rounds in Figure 1 for the synthetic IID setting. We
observe two key benefits of DivFL compared to random
sampling and power-of-choice approaches. On the one hand,
DivFL achieves a significant convergence speedup (∼10×
faster) to reach the same loss and accuracy relative to ran-
dom sampling and power-of-choice. Furthermore, DivFL
also achieve the lowest loss and highest accuracy among
the client selection approaches. As one would expect, the
choice of m affects the convergence as well as the overall
loss/accuracy with a larger value of m resulting in slightly
higher loss/lower accuracy (still outperforming the base-
lines). More results are presented in Appendix B.1.

We report the training loss and testing accuracy for the
synthetic non-IID dataset in Figure 2. In this case, we
note that both the power-of-choice approach and DivFL
outperform random sampling on the two metrics. However,
DivFL is more robust to outdated client set selection when
increasing the local SGD steps E. Specifically, we note
that as we increase the number of local epochs (5 in this
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Figure 1. Training loss and test accuracy of DivFL compared with
random sampling and power-of-choice on the synthetic IID data.
For DivFL, we collect the gradients from all devices every m
communication round to estimate the dissimilarity matrix. We see
that DivFL achieves faster convergence and converges to more
accurate solutions than all baselines in terms of convergence.

case), the two metrics degrade for both power-of-choice and
DivFL but the former suffers more degeneration: DivFL
continues to outperform random sampling but the power-
of-choice approach becomes worse than random sampling.
As shown in Appendix B.2, DivFL provides the best trade-
off between mean and variance of the test accuracy. A
comprehensive set of results for different numbers of local
epochs τ and different K are given in Appendix B.2.
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Figure 2. Training loss and test accuracy of DivFL compared with
random sampling and power-of-choice on synthetic non-IID data.
DivFL converges to more accurate solutions than all baselines.

5.2. Results on FEMNIST

We also evaluate DivFL on a real dataset FEMNIST with
500 clients. In Figure 3, we show the training loss and test
accuracy of different approaches where K = 10 clients are
selected in each round. We train a CNN model with two
5× 5-convolutional and 2× 2-maxpooling (with a stride of
2) layers followed by a dense layer with 128 activations.

As in the case of synthetic data, DivFL clearly achieves a
higher accuracy and lower loss than the random sampling
approach. Comparing to the power-of-choice approach, its
test accuracy is marginally higher and the loss is compa-
rable. Moreover, DivFL converges faster than the base-
lines. Under the choice of K = 10, there is no significant
difference between m = 1 and m = 10, indicating the ro-
bustness/tolerance to the outdated client selection. DivFL
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Figure 3. Training loss and test accuracy of DivFL compared with
random sampling and power-of-choice on FEMNIST. DivFL con-
verges faster to more accurate solutions than all baselines.

also achieves lower variance of test accuracy than the base-
lines (see Figure 9 in Appendix B.3). We also test different
choices of number of selected clients K, and observe the
consistent improvement of DivFL. The additional results
are presented in Appendix B.3.
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Appendix

A. Complete Convergence Analysis
Below shows the convergence analysis. Many steps make a distinction between if we are doing an aggregating steps (from
the clients to the server), or not (when the clients do not communicate). We assume that we aggregate every E time steps.
Define virtual sequences {vkt }k∈[N ] and {wkt }k∈[N ] where for all k ∈ [N ],

vkt+1 = wkt − ηt∇Fk(wkt ) (7)

wkt+1 =

{
vkt+1 if not aggregating,
sample St+1 and average {vkt+1}k∈St+1

otherwise.
(8)

Let

vt :=
∑
k∈[N ]

pkv
t
k, (9)

wt :=
∑
k∈[N ]

pkw
k
t . (10)

where pk ≥ 0 is the given weight of the kth client and w.l.o.g., we assume
∑
k pk = 1. Therefore,

wt =

{
vt if not aggregating, i.e., when t 6= `E for some integer `,
1
K

∑
l∈St

vlt otherwise,
(11)

and

vt+1 = wt − ηt

 ∑
k∈[N ]

pkFk(wkt , ζ
k
t )

 := wt − ηtgt. (12)

We have

‖wt+1 − w∗‖2 = ‖wt+1 − vt+1 + vt+1 − w∗‖2 (13)

= ‖wt+1 − vt+1‖2 + ‖vt+1 − w∗‖2 + 2〈wt+1 − vt+1, vt+1 − w∗〉. (14)

If not aggregating,

wt+1 = vt+1. (15)

Hence

‖wt+1 − w∗‖2 = ‖vt+1 − w∗‖2. (16)

Using Lemma 1 in (Li et al., 2019), we know E[‖vt+1 −w∗‖2] ≤ (1− ηtµ)E[‖wt −w∗‖2] + η2tB holds for some constant
B. If we are aggregating, we need to bound

E[‖wt+1 − vt+1‖2] + E[‖vt+1 − w∗‖2] + 2E[〈wt+1 − vt+1, vt+1 − w∗〉]. (17)

Let the last time of aggregation happens at step t0 = t + 1 − E, when we select a subset S (associated with weights
{γk}k∈S) using the greedy algorithm. To bound the first term above,

‖wt+1 − vt+1‖ =

∥∥∥∥∥∥
(
wt0 +

1

N

∑
k∈S

γk

t∑
τ=t0

∆vkτ

)
−

wt0 +
1

N

∑
k∈[N ]

t∑
τ=t0

∆vkτ

∥∥∥∥∥∥ (18)

=

∥∥∥∥∥∥
t∑

τ=t0

 1

N

∑
k∈S

γk∆vkτ −
1

N

∑
k∈[N ]

∆vkτ

∥∥∥∥∥∥ (19)

≤
t∑

τ=t0

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∆vkτ −
1

N

∑
k∈[N ]

∆vkτ

∥∥∥∥∥∥ (20)
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Similar to the CRAIG paper (Mirzasoleiman et al., 2020), we assume that the subset S selected in step t0 = t + 1 − E
provides an approximation of the full gradient such that

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkt0)− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥ ≤ ε, (21)

For every local step τ ∈ (t0, t], we use the same S to approximate the full gradient because we only communicate the local
gradients every E local steps. To bound the gradient approximation at step τ using the stale S, we have

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkτ )

∥∥∥∥∥∥ ≤
∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈S

γk∇Fk(vkt0)

∥∥∥∥∥+ (22)

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkt0)− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥+ (23)

∥∥∥∥∥∥ 1

N

∑
k∈[N ]

∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkt0)

∥∥∥∥∥∥ (24)

≤ 2LG

τ∑
ν=t0

ην + ε, (25)

where the first and the third term on the right hand side are bounded using the L-smoothness of Fk(·) and G-bounded norm
of its stochastic gradient. Hence, we can continue to bound the first term in Eq. (20) by

‖wt+1 − vt+1‖ ≤
t∑

τ=t0

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∆vkτ −
1

N

∑
k∈[N ]

∆vkτ

∥∥∥∥∥∥ (26)

=

t∑
τ=t0

ητ

∥∥∥∥∥∥ 1

N

∑
k∈S

γk∇Fk(vkτ )− 1

N

∑
k∈[N ]

∇Fk(vkτ )

∥∥∥∥∥∥ (27)

≤ 2LG

t∑
τ=t0

τ∑
ν=t0

ητην + Eεητ (28)

≤ LGE(E − 1)η2t0 + Eεηt0 (29)

= LGE(E − 1)

(
1 +

E − 1

t+ γ − (E − 1)

)2

η2t + Eε

(
1 +

E − 1

t+ γ − (E − 1)

)
ηt (30)

where E is the number of local steps between two communication (aggregation) rounds. Therefore, Eq. (17) can be bounded
as follows:

E[‖wt+1 − w∗‖2] (31)

≤E[‖wt+1 − vt+1‖2] + E[‖vt+1 − w∗‖2] + 2E[〈wt+1 − vt+1, vt+1 − w∗〉] (32)

≤
(
LGE(E − 1)η2t0 + Eεηt0

)2
+
[
(1− ηtµ)E[‖wt − w∗‖2] + η2tB

]
+ 2

(
LGE(E − 1)η2t0 + Eεηt0

)
E[‖vt+1 − w∗‖]

(33)

≤(1− ηtµ)E[‖wt − w∗‖2] + Eερηt0 +
[
LGE(E − 1)ρ+ (LGE(E − 1)ηt0 + Eε)2

]
η2t0 +Bη2t (34)

≤(1− ηtµ)E[‖wt − w∗‖2] + ερEηt0 +
[
LGρ+ (LGEηt0 + ε)2

]
E2η2t0 +Bη2t , (35)
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where ηt = β
t+γ , ηt0 = β

t−E+1+γ and E[‖vt+1 − w∗‖] ≤ ρ.

E
∥∥vt+1 − w∗

∥∥ ≤ E

∥∥∥∥∥∥vt+1 −
∑
i∈[N ]

piv
∗
i

∥∥∥∥∥∥+ E

∥∥∥∥∥∥
∑
i∈[N ]

piv
∗
i − w∗

∥∥∥∥∥∥ (36)

≤ E

∥∥∥∥∥∥vt+1 −
∑
i∈[N ]

piv
∗
i

∥∥∥∥∥∥+M (37)

≤
∑
i∈[N ]

E‖pi(vt+1
i − v∗i )‖+M (38)

≤
∑
i∈[N ]

pi
µ
E
∥∥∇fi(vti)∥∥+M (39)

≤ G

µ
+M ≤ ρ. (40)

The final convergence rates follows from Lemma 3 in Mirzasoleiman et al. (2020).

B. Additional Experiments
B.1. Synthetic IID Dataset

The average test accuracies and the variances of test accuracies on synthetic IID dataset are presented in Figure 4 and 5.
The test performance is observed for different choices of number of local epochs τ as well as the number of clients K
participating in each global round. For all choices of (τ,K), both variations of DivFL, i.e., DivFL (m=1) and DivFL
(m=10) achieve higher average and lower variance of accuracies. The relative gains for DivFL w.r.t Random sampling and
Power-of-Choice approaches vary, however, depending on the choice of (τ,K). For example, for small values of K, τ , the
relative gains of DivFL are the highest. The relative gains start diminishing as both (τ,K) increase. This is explained by
the fact that as K increases, the similarity between all client selection approaches start increasing. Likewise, as the number
of local iterations τ increases, the submodular metrics become increasingly suboptimal leading to diminished gains. It is,
however, important to note that the two variants of DivFL do not have a significant difference in the performance except for
the case τ = 1,K = 5. This is highly encouraging since this shows that in a practical setting, DivFL can be implemented
with submodular metric exchanged only periodically between clients and server, thereby reducing computational and
communication overheads.
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Figure 4. Average Test Accuracy on Synthetic IID
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Figure 5. Variance of Test Accuracy on Synthetic IID

B.2. Synthetic non-IID Dataset

Figure 6 and 7 show the mean and variances of accuracies on synthetic non-IID dataset. One can observe that the DivFL
approach achieves an improved solution with the highest mean accuracies for different choices of τ,K. The power-of-choice
approach has the lowest variance of accuracies between clients. However, this comes at a cost of the overall accuracy which
falls under random sampling, especially, when τ > 1. The DivFL approach provides the best tradeoff between mean
accuracy and variance of accuracies. The impact of a large m is notable in the mean accuracy for DivFL approach only
when τ > 1. In such cases, the DivFL approach with m = 10 achieves about the same mean accuracy as random sampling,
although with a lower variance compared to random sampling. Further, K does not impact the final mean and variance of
accuracy for DivFL in relation to the baselines.

B.3. FEMNIST Dataset

Figures 8 and 9 show the mean and variances of accuracies on FEMNIST dataset for different choices of K. The DivFL
approach has a comparable final mean test accuracy (86%) and variance of accuracies 0.01 for both K = 10 and K = 20.
On the other hand, the accuracies of the baselines for K = 10 drops significantly lower (especially for random sampling)
than DivFL. Random sampling achieve a test accuracy of only 60% while the power-of-choice approach reaches a test
accuracy of 67%. WhenK = 20, however, random sampling achieves a final test accuracy of 78.7% and the power-of-choice
approach marginally outperforms DivFL at 89.7%. This is an important advantage for DivFL approach where a small
value of K is able to achieve a solution that’s comparable to large values of K for baselines for the same number of
communication rounds. But this also leads to a significant reduction in overhead in computational resources at clients as
only fewer clients need to participate in training.
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Figure 6. Average Test Accuracy on Synthetic non-IID
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Figure 7. Variance of Test Accuracy on Synthetic non-IID
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Figure 8. Average Test Accuracy on FEMNIST Dataset
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Figure 9. Variance of Test Accuracy on FEMNIST Dataset


