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Abstract

The federated learning (FL) framework trains a
machine learning model using decentralized data
stored at edge client devices by periodically ag-
gregating locally trained models. Popular opti-
mization algorithms of FL use vanilla (stochastic)
gradient descent for both local updates at clients
and global updates at the aggregating server. Re-
cently, adaptive optimization methods such as
AdaGrad have been studied for server updates.
However, the effect of using adaptive optimiza-
tion methods for local updates at clients is not yet
understood. We show in both theory and practice
that while local adaptive methods can accelerate
convergence, they can cause a non-vanishing so-
lution bias, where the final converged solution
may be different from the stationary point of the
global objective function. We propose correction
techniques to overcome this inconsistency and
complement the local adaptive methods for FL.
Extensive experiments on realistic federated train-
ing tasks show that the proposed algorithms can
achieve faster convergence and higher test accu-
racy than the baselines without local adaptivity.

1. Introduction

Federated learning (FL) is an emerging paradigm to perform
distributed machine learning model training on decentral-
ized edge clients (e.g., mobile phones or IoT devices) under
the orchestration of a central server, while keeping private
training data on the client devices (Kairouz et al., 2019). In
the cross-device FL setting, a global model is usually trained
by a collaborative process of thousands or even millions of
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participating clients. In each training round of FL, the cen-
tral server broadcasts the global model to a random subset
of clients to perform local model training, and each partici-
pated client only uploads the model parameter changes back
to the server. Then, the server aggregates local changes
to update the global model and continues the next round.
This FL training procedure was proposed by McMahan et al.
(2017) as the federated averaging (FEDAVG) algorithm, and
widely applied in diverse applications (Hard et al., 2018;
Brisimi et al., 2018; Xu et al., 2020).

Recently, Reddi et al. (2020) proposed a generalization of
FEDAVG referred to as FEDOPT. FEDOPT is a flexible algo-
rithmic framework that allows the clients and the server to
choose different optimization methods (which are referred
to as CLIENTOPT and SERVEROPT) more general than
stochastic gradient descent (SGD) in FEDAVG. The key
idea is to treat the aggregated local changes from clients
as a “pseudo-gradient” and use it as input to SERVEROPT
when updating the global model. A few previous works ex-
plored the choices of server optimizer (SERVEROPT) in the
FEDOPT framework. For example, Hsu et al. (2019); Wang
et al. (2020b) used SGD with momentum at the server while
keeping client optimizer as SGD and observed significant
empirical improvements.

Adaptive methods, such as ADAGRAD (McMahan &
Streeter, 2010; Duchi et al., 2011), ADAM (Kingma & Ba,
2014), have achieved superior empirical performance over
SGD in centralized training of machine learning models
for some applications. In particular, ADAM and its vari-
ants (Reddi et al., 2019; Zaheer et al., 2018; Zhuang et al.,
2020) are widely recognized as the preferred optimizers for
language-related training tasks. Motivated by their superior
performance, Reddi et al. (2020) studied a specific class of
FEDOPT, where CLIENTOPT is still SGD but SERVEROPT
uses adaptive methods. It has been validated through exten-
sive experiments in (Reddi et al., 2020; Tong et al., 2020)
that the server-only adaptive methods can achieve faster con-
vergence than vanilla FEDAVG in many federated training
tasks.

Despite the success of using server-side adaptive methods,
the power of adaptivity has not been fully utilized in the FE-
DOPT framework, particularly on the client side. Instead of
using adaptive methods only in SERVEROPT for periodical
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Figure 1. The effects of local adaptive methods on a synthetic 2D quadratic problem. Instantiations of FEDOPT with local adaptivity can
be viewed as finding the fixed points of some operator E[.A]. For various methods, we plot (a) the norm ||z — E[A(x)]||, where darker
colors indicate closer to the fixed point (Under local ADAGRAD, the optimization landscape is better conditioned, but the fixed-point is
inconsistent with the global minimum of the original global objective.); (b) training curves where the client learning rate is decayed at
rounds 200, 400. We develop correction methods that can correct the inconsistency, while retaining the better conditioning.

updates per communication round, one can also choose to
use adaptive methods in CLIENTOPT for every local itera-
tion, or in both CLIENTOPT and SERVEROPT. Client adap-
tive methods can accelerate the local convergence by better
utilizing the geometric information of the local objectives.
Unfortuantely, there are little to no literature exploring this
promising direction. It remains an open problem whether
the faster local convergence can be translated into faster
global convergence and savings in communication rounds.

In this paper, we explore the usage of local adaptive methods
and provide affirmative answers to the question: Can feder-
ated learning effectively use adaptive optimization methods
on local clients? Specifically, our main contributions are
listed as follows.

1. We identify that naively changing CLIENTOPT in the FE-
DOPT framework from SGD to adaptive methods or other
stateful optimizers can be problematic, as it does not define
how to update client optimizer states (i.e., pre-conditioners
and momentum buffers) across rounds. We propose to over-
come this discontinuity issue by restarting the update of
client optimizer states at the beginning of each round. This
simple method enables the usage of local adaptivity in FE-
DOPT. We also show that, on many practical training tasks,
using adaptive optimizers on clients can achieve faster con-
vergence and higher test accuracy than previous methods.

2. We further provide a theoretical analysis for strongly
convex functions to understand the effects of various client
optimizers. Our theorem suggests that performing FEDOPT
can be viewed as finding the fixed points of some operator
E[A], the expression of which is determined by client op-
timizers. Local adaptivity can change E[A] in a way that
yields faster convergence. However, this enhanced optimiza-
tion may come with the cost of a non-vanishing solution bias
— the point we converge to may be far away from the global
minimizer of the original objective function, as illustrated

in Figure 1.

3. In order to overcome the side effects of using adaptive
client optimizers, we propose (1) local correction technique
that can help to mitigate the non-vanishing solution bias;
(2) global correction technique that can help to perserve the
fast convergence property of adaptive methods. Using one
or both of them on the top of adaptive client optimizers can
achieve the highest test accuracy on all considered federated
training tasks.

Related Works. In terms of using adaptive methods on
clients, Xie et al. (2019); Karimireddy et al. (2020) pro-
posed to use the same optimizer states (pre-conditioners and
momentum buffers) on all clients, which is similar to server
adaptive methods in (Reddi et al., 2020) and does not exploit
local adaptivity. To the best of our knowledge, this paper
is the first to let clients separately update their optimizer
states and study the effects of adaptive client optimizers.
Besides, there are few recent literature (Wang et al., 2020a;
Charles & Konec¢ny, 2021; Pathak & Wainwright, 2020;
Malinovskiy et al., 2020) also study the phenomenon that
FEDAVG-style algorithms can converge to a mismatched
solution from the optimal one. We refer readers to Section 4
for detailed comparisons with these works.

2. Preliminaries

The Federated Learning Setup. In federated learning, the
goal is to minimize the objective

F(x) = E;c[Fi(x)] (1)
where F(x) = ﬁ Y¢ep, fi(x, &) denotes the local ob-
jective function at client ¢, and f;(x, £) is the loss function
where ¢ represents one data sample from the local dataset.

In contrast to classic distributed learning, federated learn-
ing does not allow clients to share their local data with
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others or with the central server. As a consequence, the
local data distributions D; may differ across clients. The
term C denotes the distribution over the collection of all
clients. The probability of selecting client 7 is w; = P¢(7),
which is proportional to the dataset size of client 7. Thus,
for a finite set of M clients, the objective function becomes
F(z) = Y0, wiFy(w).

Operator View of Client Optimizers. In this paper, we are
going to use operators to represent the general optimizers on
clients. In particular, for each client 7, we have the following
definition.

Definition 1 (Client Optimizer Operator). We define an
operator A;(x; k,Z;, 8;) : RY — RY, which outputs the
updated model after performing k steps of a given client
optimizer on the local objective F;, from initial model x,
with initial optimizer states s; and random sources =; (e.g.,
noise in stochastic gradients).

The operator A; defines how the local models and the
client optimizer states (i.e., pre-conditioners and momen-
tum buffers) are updated. When the parameters k, s;, Z;
are given, the output of A; will only depend on the starting
point &. The specific form of .A; changes with the choice of
optimizers and its analytical expression can be complicated.
For example, when the client optimizer is pre-conditioned
SGD (a generalized version of ADAGRAD) (Martens, 2020),
we have

Ai( b, 2 80) = — s V20 PP gi(a9,69)) (2)

where 7); is the client learning rate, (%) is the local model
after s local iterations, g(x(*); £(*)) denotes the stochastic
gradient evaluated on a random mini-batch £(*), and Pi(s)
is referred to as the pre-conditioner.

Operator View of FEDOPT. Based on Definition 1, at
each round ¢ of FEDOPT, the server broadcasts the global
model z®) as an initial point to clients. Then, client ¢ uses
A; to obtain the locally updated model as follows:

ol = (w07, 20 s, 3)

K3 7

After that, the server aggregates local models changes
x®) — mgt’”) and uses SERVEROPT to update the global
model to (**1). Since the server optimizer does not influ-
ence the properties of .4; and the main purpose of this paper
is to understand the effects of client optimizers, we assume
SERVEROPT is gradient descent (GD) unless stated other-
wise, which means that each client participates every round
and there is no server pre-conditioner. Our results can be
naturally extended to other server optimizers and sampled
clients without changing the main insights on client optimiz-
ers. Then, the GD-based global update rule of FEDOPT can

be written as

2zt = 2 _ o Zf\il wi[x® — A;(2D; 7, E(t), sgt))]

@

where a denotes the server learning rate for SERVEROPT.

3. How to Apply Adaptive Methods on Clients

In this section, we describe the challenges of using local
adaptivity in FEDOPT and propose a simple, yet effective
method to enable the usage of local adaptivity in FEDOPT
without incurring additional communication costs.

Challenge in FEDOPT: Discontinuity of Client Opti-
mizer States. According to the update rules (3) and (4)
of FEDOPT, we observe that FEDOPT can not be directly
applied to adaptive client optimizers, as it lacks the artic-
ulation of handling the initial optimizer states s; across
rounds and clients. To be specific, in FEDOPT, the client
updates are isolated not only from each other but also from
different rounds due to the local iterations. While FEDOPT
uses SERVEROPT to bridge the gap between local iterates
in different rounds (i.e., it specifies how to obtain a(*+1)
from {asgt’”) 1), it does not define how to update the initial
optimizer states s; across rounds. We refer to this problem
as discontinuity of client optimizer states.

A natural but impractical idea to tackle the discontinuity
problem is to let each client inherit its own client opti-
mizer states from previous rounds. However, these pre-
vious states can be stale and inaccurate because they are

evaluated at point wgtfl’”) and do not take account of the
possibly dramatic changes from wgtfl’“) to the current it-
erate (). When the server only selects a random subset
of clients at each round, the staleness will be further exac-
erbated, as one client may be disconnected from the server
for multiple rounds. Besides, this solution is impossible
in many applications of FL (e.g., the cross-device setting)
that requires clients to be stateless and not to maintain any
persistent states across rounds, due to privacy and system
constraints (Kairouz et al., 2019).

Our Proposal: Restarting Client Optimizer States. To
work with the above challenges, we propose a simple yet
effective approach. Instead of applying potentially compli-
cated mechanisms to synchronize optimizer states across
clients, we restart the updates of client optimizer states at
the beginning of each round. That is, resetting the pre-
conditioners to a constant and resetting the momentum
buffers to zero. This strategy does not require any infor-
mation from previous rounds, so it is compatible with ap-
plication settings that require stateless clients. Also, it does
not incur addition communication costs, as only the local
model changes are aggregated.

To verify the advantage of this simple strategy, in Figure 1b,
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we provide simulation results on a toy problem of quadratic
functions with deterministic gradients. The result shows
the restarting strategy on local ADAGRAD (i.e., the green
curve) can achieve significantly faster convergence speed,
comparing to vanilla FEDAVG (i.e., the blue curve) when the
tolerance to the global optimal is relatively large. The fast
convergence is also observed on practical federated training
tasks (see Figure 2 and more discussions in Section 6).

4. Effects of Client Optimizers on
Convergence and Consistency

Another important observation from the toy example in
Figure 1b is that local ADAGRAD converges to a point
which is quite far away from the global optimum. Even if
we decay the client learning rate, this inconsistency problem
still cannot be mitigated or becomes even worse. In this
section, we will theoretically analyze the effect of client
optimizers on the convergence and provide insights into the
trade-off between convergence speed and the consistency of
the solution.

FEDOPT Performs Fixed Point Iteration. When using
the restarting strategy proposed in Section 3, the argument
s; representing the initial optimizer state in the operator A;
can be omitted since it is set to its default initial value and
is the same on all clients. We further define an operator
Alx) = Zﬁl w; A;(x; 7, E;). Accordingly, the global
update rule (see Eqn. (4)) of FEDOPT is equivalent to a
stochastic fixed point iteration, shown as follows:

2D =1 — a)z® + aE[A(zV)]

+a(A@?) — E[A(z")) )

where « denotes the server learning rate and the expectation
is taken over all random sources in local stochastic gradi-
ents at the current round. The deterministic version of (5)
is known as Mann’s iteration (Ryu & Boyd, 2016) and will
converge to the fixed points of E[.A] under certain condi-
tions. Replacing server GD with another server optimizer
can accelerate the convergence but it will not influence the
properties and the fixed points of the operator E[A].

We will analyze the convergence of FEDOPT (update rule of
which is (5)) in the setting where each local objective func-
tion F;(x) is L;-Lipschitz smooth and p;-strongly convex.
Besides, we make the following assumptions on the prop-
erties of each client optimizer .4; and show how the global
convergence is influenced by these properties. If the client
optimizer is SGD, then the contractive local operator and
bounded cumulative variance properties described below
follow directly from the strong convexity and smoothness of
the objective function, suggesting the following assumptions
are reasonable and mild.

Assumption 1 (Contractive Local Operator). The local

expected operator B[A;] is contractive, satisfying that
IE[A; (23 k, E)] — E[A(y; b, 2)]1? < ha(k) - |lz —y|°
for any z,y € RY where 0 < hi(k) < 1 is a decreas-
ing function of the number of local steps k.

Assumption 2 (Bounded Cumulative Variance). We assume
the local stochastic gradient g; is an unbiased estimator of
V F; and has bounded variance: E ||g;(z) — VF;(z)|* <
o2. Similarly, the local operator A; has bounded cumulative
variance: E || A;(x; k, 2) — E[A; (z; k, 2)] || < ¢:i(k) - 02,
where q;(k) > 0 is a non-decreasing function of the number
of local steps k.

The function h;(k) in Assumption 1 measures the local
training progress of CLIENTOPT. In intuition, when CLIEN-
TOPT has faster convergence rate or takes more local steps,
the output of E[A4;] will be closer to the minimum z, and
hence h; will become smaller. Besides, the function g¢; (k)
in Assumption 2 quantifies how the noise in stochastic gra-
dients are accumulated through & local updates. The ana-
lytical forms of h;, ¢; depend on the choice of CLIENTOPT.
For example, when the client optimizer is SGD with fixed
client learning rate, we formally prove in Appendix B that
hi(k) = (1 — m;p;)?* and ¢;(k) = n?k. For adaptive opti-
mizers, such as ADAGRAD and ADAM, while it is difficult
to obtain the analytical form of h;, we empirically validate
Assumption 1 in Appendix B.4 and found they can yield
smaller h; values than vanilla SGD.

Theorem 1 (Convergence of FEDOPT and Minimizer In-
consistency). Under Assumptions 1 and 2, the operator
E[A] is contractive and has a unique fixed point . After
total T communication rounds, E||z") — Z||? can be upper
bounded as follows for some positive constant c:

2\\M 2
o Zi:1 w;q;

¢ Wwilti i T M
i=1 1= wihy T (1 =37 wih)?

(6)

In the presence of data heterogeneity, the fixed point T of
E[A] is not necessarily the same as the optimum x* of the
global objective F'. We refer to this problem as minimizer
inconsistency.

Better Client Optimizers Can Accelerate the Global
Convergence. Theorem 1 provides a nice connection be-
tween local and global convergence. Specifically, if clients
use better client optimizers that have smaller contraction
constant h;, then the worst-case global convergence to the
fixed point & can be improved, as the error bound (6) mono-
tonically increases with h;. Therefore, a natural strategy to
speedup the global convergence is to separately minimize h;
on each client while keeping ¢; unchanged. One can achieve
this by either tuning a proper learning rate for each client,
or using adaptive client optimizers which could reduce the
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effective local condition number. Intuitively, using better
client optimizers makes the operator E[.A] to be more con-
tractive, and hence, it becomes easier to find its fixed points
(as corroborated in Figure 1a, the loss surface is better con-
ditioned when using local ADAGRAD). This acceleration
effects is complementary to that of the server optimizer,
which changes the form of the fixed point iteration without
affecting E[A]. Therefore, one can use both better client
and server optimizers to get the best performance, as we
will later illustrate in Section 6.

The Minimizer Inconsistency Problem. Theorem 1 also
shows that the speedup effects of client optimizers may
come with a price: the fixed point & can be different from
the optimal minimizer =*. When the objective function is
quadratic, CLIENTOPT is GD and all clients have the same
learning rates 1 and number of local steps 7, it has been
shown in (Charles & Kone¢ny, 2021; Pathak & Wainwright,
2020) that ||z — z*|| = O(n(r — 1)) such that one can
balance the trade-off between convergence speed and the
minimizer inconsistency by gradually decaying the client
learning rate. However, through a simple counterexample
below, we will show that using adaptive optimizers or differ-
ent hyper-parameters on clients leads to an additional gap
between T and x*, which does not vanish to zero with the
learning rate. This non-vanishing bias explains our empiri-
cal observations in Figure 1b and calls for new techniques
to overcome it.

Quadratic Example for Theorem 1. In this toy example,
we assume the loss function for client 7 is given by F;(x) =
iz Hyx — e/ x + ¢;, where H; is symmetric and positive
definite and e;, c; are some vectors. Accordingly, the mini-
mum of F; is simply } = H i_le,; and the minimum of the
global objective is 2* = (M w; H;) " oM w; Hyae?.
Theorem 2. For the quadratic problem, if the client opti-
mizer is preconditioned GD with a ﬁxed pre-conditioner P;,
then & = (310, will — Ki]) 1 Y0, wi[(T — K)a;] #
x*, where K; = (I — n; P,H;)™. If we let n; = ~;n and n
approach to zero, then it follows that

T = (Zzﬂil iniTiRH¢)71(2£1 w;vin PiH;x}) # x*.

Theorem 2 shows that as long as one of the factors (i.e.,
client learning rate, the number of local steps, the pre-
conditioners) is different across clients, then there would
appear a non-vanishing gap between & and *. In order
to get an intuition behind this phenomenon, we can check
the exact expression of x* — A(z*). If & = a*, then
x* — A(x*) should always be zero. However, we get the
following via Taylor approximation:

a;n;('ff;i—l) = ijl Wi mZLXTLLnLT VF ( ) =+ O(nLTL) (7)

where the first term (on the right hand side) corresponds to
the non-vanishing gap between  and «* as it can be treated

as a skewed version of the global gradient VF(z*) =
S M w;VF;(z*) = 0, and the second term can be omitted
when the client learning rate is sufficiently small. It is worth
noting that if n; = 0 or ; = 0, then & = A(x) for any
x € R?, as there is no optimization progress at all. There-
fore, in order to exclude this invalid solution, we divide
(max; n;7;) in (7).

Connections with Previous Works on Minimizer Incon-
sistency. When client learning rates, number of local steps
are the same across all clients, and non-adaptive, determinis-
tic CLIENTOPT are used, ||Z — 2*|| can vanish to zero along
with the learning rates. This phenomenon has been observed
and analyzed by few recent literature in different forms,
see (Charles & Konec¢ny, 2021; Malinovskiy et al., 2020;
Pathak & Wainwright, 2020). Theorem 1 generalizes these
results by allowing heterogeneous local hyper-parameters
and adaptive, stochastic client optimizers. In addition, the
non-vanishing bias was studied in (Wang et al., 2020a) by
assuming different local learning rates and local steps at
clients. In this paper, we further generalize the results by
showing that even when the learning rates and local steps
are the same, using local adaptive methods will lead to a
non-vanishing gap. We summarize the differences in Table 6
of Appendix D.

5. Correction Techniques to Overcome the
Non-vanishing Solution Bias

Local Correction: Reweighting Local Gradients. From
(7) in the quadratic example, one can observe that the non-
vanishing minimizer inconsistency comes from the fact that
FEDOPT implicitly and improperly weights each local gra-
dients by a matrix IN; = 7;7; P;. So a natural solution to
overcome the non-vanishing bias is to normalize the local
model changes before aggregating them on the server. In-
stead of sending z — A;(z) = N,;VF;(z) + O(n?) to the
server, each client can send the locally normalized version
N;'(x — A;(z)). This simple change can ensure that the
first term in (7) is always zero no matter which value is
the client learning rate. As a consequence, there is no non-
vanishing solution bias. The local correction technique also
automatically avoids the invalid solution & = A(x), Va by
dividing the client learning rate.

The local correction technique can be extended to more gen-
eral settings and work with any adaptive optimizers, such
as ADAGRAD, ADAM. If the local model changes of a spe-
cific client optimizer can be written as x — A;(x;7;) =

P BPVE (2®) where B is symmetric and
positive-definite and =(*) denotes the k-th iterate during
local updates, then we can choose the local correction ma-
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trix to be N; = 1y S5 B,fk) such that

St jwiNy (@ — Ai(@))
= Zf‘ilmVF,(:c*) +O(nimi) = O(miT3). (8)
—

=V F(x*)=0

If the client optimizer is ADAGRAD, then Bi(k) is just the

pre-conditioner Pi(k) used at the k-th local iteration; if the
client optimizer is ADAM, then BZ-(k) is a weighted summa-
tion of local pre-conditioners. In Appendix A.3, we provide
the pseudo-code of finding the expression of IV; for com-
mon optimizers; and in Appendix F, we formally prove
that local correction can help FEDOPT with deterministic
client optimizers converge to the stationary points of the
original objective function (even when it is non-convex).
For stochastic client optimizers, we empirically validate the
effectiveness of local correction through extensive experi-
ments in Section 6.

Global Correction: Preserving the Fast Convergence.
Equation (8) shows that using the local correction technique
may change the scale of the aggregated model updates. In
particular, the first-order approximation of the aggregated
model updates just equals to plain gradients (the first term
in (8)) and may lose the local pre-conditioning effects. In
order to address this problem, one can use either adaptive
server optimizer that are more robust to the scale of its in-
puts, or a novel global correction technique that can help to
preserve the scale of local updates. To be specific, in global
correction, the server uses N+ 52 w; N7 a — Ay ()]
as the pseudo-gradient of SERVEROPT, where N is given
as N, = Zﬁl wT;Ni_l. We name this technique as global
correction, because it is applied on the server side. In order
to obtain IV, the clients need to send the local correction
matrices IN; to the server. But the server does not need
to broadcast the correction matrix N, back. Therefore, if
matrices {IN; } are diagonal, then the communication cost
per round of using global correction is only 1.5x than that
of without using it.

6. Experiments

We focus on three language-related tasks (Reddi et al., 2020),
which have the favored sparse structures for adaptive meth-
ods: (i) Next word prediciton using RNN on Stack Overflow
(SO NWP); (ii) next character prediction using RNN on
Shakespeare (Shakes. NCP); (iii) tag prediction using linear
regression on Stack Overflow (SO TP). For the first two
tasks, we report the validation/test accuracy. For SO TP
task, we report the validation/test Recall@5. Moreover, we
also evaluate the methods in image classification task on
the CIFAR100 dataset (Krizhevsky, 2009). The detailed
descriptions (hyper-parameter tuning ranges and choices) of
these federated training tasks are provided in Appendix A.
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Figure 2. Example of training curves of FEDOPT variants on the
SO NWP task. The adaptive client optimizer is used with the
proposed restarting strategy. In the legend, “C” and “S” denote the
CLIENTOPT and the SERVEROPT, respectively. Using ADAGRAD
on both clients and server is significantly faster than other variants.

Our implementation is based on the Tensorflow Federated
(TFF) package.

Faster Convergence. In Figure 2, we first compare the
training curves of different ways of using ADAGRAD in
FEDOPT on the SO NWP training task. One can either
use ADAGRAD on clients, or on the server, or on both. It
can be observed that using local ADAGRAD can signifi-
cantly speedup the convergence compared to using vanilla
SGD as the client optimizer. In particular, client-only ADA-
GRAD is even slightly faster than server-only ADAGRAD.
When the local epoch increases from 1 to 5, the improve-
ment of client-only ADAGRAD over server-only ADAGRAD
becomes more obvious. If we apply ADAGRAD on both
clients and the server, then FEDOPT achieves the fastest
convergence (about 4 x faster than server-only ADAGRAD
to achieve 20% validation accuracy in Figure 2a).

Higher Final Accuracy. We further report the test accuracy
or Recall@5 on different training tasks in Table 1. Similar
to the above discussions on faster convergence, changing
CLIENTOPT from SGD to ADAGRAD and using the restart-
ing strategy prposed in section 3 consistently improves the
test accuracy on multiple training tasks. And applying ADA-
GRAD on both clients and the server achieves the highest
test accuracy. For example, when the SERVEROPT is ADA-
GRAD, the test accuracy improves from 21.80% to 24.40%
on SO NWP, and from 57.68% to 57.85% on Shakes. NCP.
However, note that on the SO TP task, server ADAGRAD
plus client ADAGRAD with the restarting strategy performs
worse than server-only ADAGRAD (65.79 versus 66.39).
This performance degradation may come from the non-
vanishing solution bias, as we discussed in Section 4.

Then, we evaluate the proposed correction techniques in
Table 2 and compare the results with the best server-only
adaptive methods on each training tasks (the best server opti-
mizer is selected based on the results in (Reddi et al., 2020)).
On SO TP, by overcoming the non-vanishing bias, client
ADAGRAD with local correction can achieve much higher
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C:SGD C:ADAGRAD C:SGD C:ADAGRAD C:SGD C:ADAGRAD
s:SGD 1419 21.68 57.12 57.47 34.50 39.67
S:ApAGRAD | 21.80 24.40 57.68 57.85 66.39 65.79
(2) SO NWP (b) Shakes. NCP (c) SO TP

Table 1. The test accuracy (%) and recall@5 (x 100) after 1500 communication rounds of FEDOPT variants on different training tasks.

Darker color means better performance.

.. CLIENTOPT
Training Tasks | SERVEROPT SGD ADAGRAD + Local Cor. + Joint Cor.
SO NWP ADAM 24.40 24.70 24.81 24.85
Shakes. NCP ADAGRAD 57.68 57.85 57.75 58.06
SO TP ADAGRAD 66.39 65.79 67.04 66.94

Table 2. Comparison of our proposed methods (column 2,3,4) and the best server-only adaptive methods (column 1) for each training task.
The table shows the test accuracy (%) or recall@5 (x 100) after 1500 communication rounds. Bolded ones are the best results for each
training tasks. In the table, we fix ¢ = 10~ in CLIENTOPT and tune ¢, in SERVEROPT. Therefore, the performance of our proposed
methods (column 2,3,4) can be further improved by tuning the € parameter.
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Figure 3. How the test accuracy changes with server and client
learning rate in FEDOPT. Using local adaptive methods make the
algorithm be more robust to the hyper-parameter changes.

Recall@5 than vanilla SGD optimizer (67.04 versus 66.39).
Similar improvements also appear in SO NWP and Shakes.
NCP tasks. Besides client ADAGRAD, our proposed meth-
ods also work for other common momentum-based adaptive
optimizers (such as ADAM and YOGI (Zaheer et al., 2018)).
We present the experimental results on SO NWP in Table 3.
It can be observed that our proposed method relatively im-
proves the test accuracy of server ADAM plus client SGD
by 3.9% (25.35% versus 24.40%), and vanilla FEDAVG by
78.6% (25.35% versus 14.19%).

Less Sensitive to Hyper-parameter Changes. In Figure 3,
we report how the test accuracy changes with server and
client learning rates on the SO NWP task. We observe that
for server-only ADAGRAD, there is only two out of 28 learn-
ing rate combinations that can achieve a 20%- test accuracy.
On the other hand, using ADAGRAD on both clients and
server are more robust to the learning rate changes. There
are 10 out of 28 combinations reaching a 20%-+ test accu-
racy. The less sensitivity to learning rate changes can help
people to save hyper-parameter tuning time in practice.

Comparison with the Synchronizing States Strategy.
We further compare the proposed restarting optimizer

states strategy to a synchronizing strategy where local pre-
conditioners are synchronized after each round. Surpris-
ingly, the additional communication in the synchronized
strategy does not help and achieves even worse accuracy.
For instance, on Shakes. NCP, server ADAGRAD plus syn-
chronized client ADAGRAD has a test accuracy of 56.89%,
which is lower than that of the restarting one (57.85%).

Results on Image Classification Task. At last, we exam-
ine the performance of the proposed methods on patholog-
ical version of CIFAR100, following the setup in (Reddi
et al., 2020). The observations are similar to language re-
lated tasks. Naively using client adaptive methods in FE-
DOPT is not guaranteed to have better performance. But
when combining local adaptvity with the proposed cor-
rection techniques, the performance consistently improves.
Specifically, after 8000 communication rounds, while server
ADAM plus client ADAGRAD has worse test accuracy than
server-only ADAM (54.68% vs 56.64%), using local correc-
tion can improve the accuracy to 56.80%.

7. Conclusions

In this paper, we first propose techniques that enable the use
of adaptive optimization methods for local updates at clients
in federated learning. Through the analysis on effects of
client optimizers for smooth and strongly convex functions,
we show that although local adaptive methods can accelerate
the convergence in some scenarios, it introduces an addi-
tional non-vanishing gap between the converged point and
the optimal solution. To mitigate the side effects of using
local adaptivity, we further propose local and global correc-
tion techniques. We verified the advantages of the proposed
methods regarding fast convergence, better test accuracy
with extensive experiments on benchmark datasets.
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CLIENTOPT No Cor. Local Cor. Joint Cor.
YOGI (Zaheer et al., 2018) 24.80 25.29 25.33
ADAM 24.86 25.15 25.35

Table 3. Performance (test accuracy (%) after 1500 rounds of training) of momentum-based adaptive client optimizers on SO NWP. The
SERVEROPT is fixed as ADAM. Recall that the test accuracy of sever ADAM plus client SGD is 24.40%.
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A. Experimental Details

In this section, we describe our experimental setup in more detail. A brief summary of tunning ranges and default values for
hyper-parameters are summarized in Table 4.

Tasks SO NWP  Shakes. NCP SO TP
Models RNN RNN LR
Total number of clients 342477 715 342477
Maximal elements per client 128 N/A 1000
Active clients per round 50 10 10
Mini-batch size 16 4 100
Default Local epochs 1 1 1
Total rounds 1500 1500 1500
Client learning rate log,,(n) {-3,-2.5,...,—-1,0,0.5} {-1,-0.5,...,2,2.5}
Server learning rate log, (o) {-1.5,—1,-0.5,0,0.5,1}  {-0.5,0,0.5,1,1.5}
Parameter ¢, in SERVEROPT logyg(es) = {-7,—5,-3,—1}
Parameter ¢ in CLIENTOPT logo(e) = {-T7}

Table 4. Experimental settings, default values and tuning ranges of hyper-parameters.

A.1. Training Tasks

Next-Word Prediction on Stack Overflow (SO NWP for short). Stack Overflow is a language modeling dataset from
the question and answer site, Stack Overflow. The datasets consists of questions and answers from 342, 477 unique users,
each of which is treated as a client in our experiments. We perform next-word prediction task on this dataset and restrict to
the 10,000 most frequently used words. The preprocess procedure of this datasets follows (Reddi et al., 2020). Specifically,
we let each client only use the first 128 sentences of its local dataset, in order to avoid that clients have extremely different
amount of data. Padding and truncation are used to ensure that sentences have 20 words. The metrics we report are the top-1
validation and test accuracy over the 10, 000-word vocabulary. It does not include padding, out-of-vocab, or beginning or
end or sentence tokens. The neural network model we use is a RNN with single LSTM layer, which is the same as that of
(Reddi et al., 2020).

Tag Prediction on Stack Overfolow (SO TP for short). Tag prediction via logistic regression is another training task on
the Stack Overflow datasets. It has the same number of clients and vocabulary size as SO NWP. Besides, following the setup
in (Reddi et al., 2020), we use the 500 most frequent tags and a one-versus-rest classification strategy.

Next Character Prediction on Shakespeare (Shakes. NCP for short). Shakespeare is another language modeling
dataset built from the works from William Shakespeare. Each client corresponds to a speaking role with at least two lines.
The lines of each speaking role is splitted into sequences of 80 characters, padding if necessary. The vocabulary size is 90.
The neural networks model we use is the same as (Reddi et al., 2020): a RNN with two LSTM layers.

A.2. Best Performing Hyper-parameters
We report the best performed hyper-parameters in Table 5. The hyper-parameters are selected in a way such that the average
validation accuracy (or recall@5) over the last 100 rounds achieves the highest value.

A.3. Pseudo-Codes of The Proposed Algorithms

We present the pseudo-codes for our proposed algorithms in Algorithm 1. It is worth noting that Algorithm 1 only provides
a concrete specification of the proposed local and global correction techniques. Beyond our choices, there may exist many
other algorithmic variants.
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Training Tasks | SERVEROPT | CLIENTOPT
| SGD ADAGRAD + Local Cor. + Joint Cor.
SGD (—0.5,0,NA) (—0.5,0,NA) (0,0.5,NA) (—0.5,0,NA)
SO NWP ADAGRAD | (—0.5,-1.5,-3)  (=0.5,—1,-5)  (—0.5,—1,-5)  (~0.5,—1,-7)
ADAM (=0.5,—1.5,—5) (—0.5,—1.5,—3) (—1,-15,-5) (—1,—1.5, —5)
SGD (0,0,NA) (—0.5,—0.5,NA)  (=0.5,2,NA)  (—0.5,0,NA)
Shakes. NCP 1 \paGrap | (0.5, -1, 1) 0,-1,-3)  (~0.5,—~1,-5) (=0.5,~0.5,~1)
SGD (2.5,0,NA) (1.5,0,NA) (1.5,1.5,NA) (1.5,0,NA)
SO TP ADAGRAD (0.5,1,—5) (=0.5,1,-5) (=0.5,1,—7) (=0.5,1,—5)
ADAM (1.5,-0.5,—5) (1,-0.5,-5)  (0.5,—0.5,—7)  (1,—0.5,—5)

Table 5. Best performed hyper-parameters in all training tasks. The tuple in each cell corresponds to (77, o, €5): client learning rate, server
learning rate, and adaptivity parameter ¢, in the SERVEROPT.

Algorithm 1 Local adaptive FEDOPT with the restarting strategy and local correction , global correction techniques

1: Input: Initial model (*), CLIENTOPT, SERVEROPT
2: fort € {0,1,...,T—1} do
3:  for client i in the random set S*) in parallel do

4 Initialization mgt’o) =z, mgt’_l) =0, Pz-(t’_l) =lcl, Nim =0, Mi(t’fl) =0
5 fork € {0,...,7:, — 1} do

6: Compute local stochastic gradient g; (wgtk)) and update local pre-conditioner P;t’k)
7: Update momentum mgt’k) = /Blml(-t’k71) +(1- ﬁl)gi(wgt’k))

8: Update local model wgt’k“) = mét’k) — nﬂ(t’k)mgt‘k)

9: Mi(tvk) — ﬁlMi(tvk*U + (1 _ ﬁl)Pi(tvk)

10: N « N 4 po»

11: end for

12: Local changes A{") = () — ("7

13 AD € (N®)-1a0

14:  end for

15:  Aggregate A®) = ls(—l,)‘ D ies® N
16:  Aggregate N = ﬁ Yiese (NF)Land set A® « (N{)~L1A®

17: @Y = SERVEROPT(2V, A a,t)
18: end for

B. Justifications of Assumptions 1 and 2 for Vanilla SGD Client Optimizer
B.1. Two Useful Lemmas

Before we dive into the proofs, we would like to first introduce two useful lemmas, which will be repeatedly applied later on.

Lemma 1. Suppose function F is twice-differentiable. Then, for any points x,y € R?, we have
VF(z) - VF(y) = H(z — y) ©)

where H = fol V2F(y + s(x —y))ds.

Proof. Due to the linearity of integral, we have

1
VF(z) ~ VF(y) = / V2F(y + s(z — ) (@ — y)ds = H(z — y). (10)
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Lemma 2. Suppose x and y are random variables with the same random sources €. Then, if a function F' is L-lipschitz
smooth and p-strongly convex, then we have

IE[VF(z) - VE)|* 4* |Elz — y]||” (11
IE[VF(z) - VEW)II* <L (E[z - y], E[VF(z) — VF(y)]) (12)
(+ L) (E[VF(z) - VF(y)], E[(x — y)]) > |[E[VF (z) — VF(y)]|* + pL ||E[z — y]||” (13)

Proof. Based on lemma 1, we have E[VF(z) — VF(y)] = E[H (x — y)]. And hence,

IE[VF(z) - VE()II* = (E[H (2 — y)|, E[H (z — y))) (14)
=E(H(x —y), E[H(z — y)]). (15)

Since u < H < L, it follows that
p(Ele —y], E[H(z —y)]) <E(H(z —y), E[H(z - y)]) < L (E[z -y, E[H(x - y)]) . (16)
Combining (15) and (16), we prove the second inequality in Lemma 2. Furthermore, note that
(Elz —y], E[H(z —y)]) = E(E[z —y|, H(z —y)) = pE (E[z -y, (z —y)). (17)
We have
(E[H (z —y)], E[H (x — y)]) > 4* (Elx -y, E[z — y]). (18)
This completes the proof of the first inequality in Lemma 2. Using the similar technique as above, one can prove that
IE[H (2 — y) — u(@ — y)|I* <(L - ) (Ble -y, E[(H — uI)(@ - y))) . (19)

Besides, note that

IE[H (2 — y) — pl@ — )I* =|E[H (@ - y)])|” + #* |E[z - y]|’

—2u(E[H (x — y)], Elz — y]). (20)

Substituting (20) into (19) and rearranging, we obtain that
(L+ ) (E[H(x - y)), E[z - y]) > [|E[H (2 — y)]|* + pL|[E[z — y]|*. 2D
Here we complete the proof of the last inequality in Lemma 2. O

B.2. Proof of Assumption 1 for Vanilla SGD Client Optimizer

For the ease of writing, we denote (*) = A;(x; k,Z) and y*) = A;(y; k, Z) where = = {£© ... ¢*~1D1] represents
the random sources through & local steps. According to the update rule of SGD, we have

Eja* ] - E[y* 1] =E[z®) — ng;(@™®))] — Ely™ — ngi(y™))] (22)

=Elz® —y] — nE[VF; (") - VF(y™)). (23)

We are going to use induction to prove ||E[z*) — y(*)] H2 < (1= mips)? ||l — y||*. When k = 1, we have

W _ 2
|Blz® —y O =l — y — YV Fi(w) - VE ()] 24)
=~y +2 [VFi(2) - VE()|* - 20 (z -y, VF(x) - VE(y) (9

2u; L 2 9 2n; 9
<({1l———— — - VFE; — VF; 26
< (1= 288 oyl + (32 - 22 ) IVEG@) - VR 2
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where the last inequality comes from the Lipschitz smoothness and strongly convexity of F;. When the client learning rate
satisfies 7; (u; + L;) < 2, we have

2 2/11 i 2,“1"71
[ 0l < (1= 225 Y o -yl + (a2 - 252 ) o - wi? @
=(1—mip)* llz —y. (28)

So Assumption 1 is true when k = 1. Now we assume that Assumption 1 holds for some £ > 1 and examine the value of
|E[z*+1) — y*+D]||. In particular, we have

2 2 2
B0 — 0] | B ® — y )|+ 92 |[E[VF(2®) - TF(y®)]|

— 2 <E[ac(k) — y®)), E[VE,(z®) — VFi(y(k))]> . (29)
According to (11) and (13) of Lemma 2, we have

2 2 pi L 2
|ttt — yn)|* < (1 _ 2 ) & — |

i L
272' 2
+ (- ) HE[VFi(w““)) - VEGY)| (30)
2
< (1 _ 27)7,”’1 > y(k)}H
i L
2 2 ﬁzﬂz 2
+ |\ mipy — it L (31)
2
<(1—mpi)? HJE[sc ® y““)]H (32)
<(1— i) * Y ||z — g (33)

Here we complete the induction procedure and prove that Assumption 1 holds for vanilla SGD client optimizer and
hi(k) = (1 = mips)**

B.3. Proof of Assumption 2 for Vanilla SGD Client Optimizer

For the ease of writing, we define z*) = A; (x; k) and Z*) = E[2(*)]. We are going to use induction to prove that
2
E Haz(k) —f(k)H < kn2o?. (34)
When k = 1, we have

2
E|le®) 20| = Ell-ngi(a: &) + nVE @) < o 35)
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We assume that Assumption 2 holds for some k£ > 1. Then, according to the update rule of SGD, we have

< Hw(k—i-l) . ]E[m(k-‘rl)]HQ

5 0% - igs(a®) — Elo®] + nE[VF (2] (36)
=E H_nigi(x(k)) + i VE; (™) + 2® —n,VE (™) — E[z®™] + ,E[VE; (2®)] H2 37)
7B 92 — VE(@®)| +E[[e® — 5V (®) ~ Bo®] + nE[VE@®)]| (39)
<nfo® + E @ - n.VF(2") - Efo®] + niE[VFi (2)] H2 (39)

—n?o® +E |2 - ]E[:A’C)]HQ +12E||VF(29) — E[VFi (2)] H2
— 2, <m(k) —E[z®], VF;(x®) - E[vm(m<k>)1> (40)
<(k+ 1o +77E | VE@®) - BV E )]
—omE <m(k) —E[z®], VF(x®) - IE[VFZ»(:C(’“))]> . 1)
Then, we define ¢ = z(*) — z k), Accordingly, we have

E HVFZ-(:B(’“)) _E[VE ()] H2

=E |VE,@E"Y +¢) — E¢[VFi(@™ + ()] H2 (42)
=E. |[E[VF(@E® +¢) - VFE @ + ¢)) H2 (43)
<LE. <]E<[e — (), B¢ [VE (@Y +¢) - VEE" + C)]> (44)
—LE. e, B[VE@® +¢) - VEE®Y +¢)) 45)
_LE <:c(k) ~Ejz®], VE(z®) - IE[VFi(m(k))]> (46)

where (44) is because of the second inequality (12) in Lemma 2. As a consequence, when 7; L; < 2, we have
i va(m(’ﬂ) - E[VFl-(a:(k))]HQ < onpE <w(k) —Elz®], VE(a®) - E[VE,(z® )]> . 47)
Substituting (47) back into (41), it follows that
E Hx(kﬂ) _ E[x(k+1)]H2 < (k+ 1)2o”. 48)
Here we complete the induction and prove that Assumption 2 holds for SGD and g; (k) = knZo?.

B.4. Empirical Validations for Adaptive Client Optimizers

While for vanilla SGD client optimizer, we can get the analytical expressions of h;, ¢; in Assumptions 1 and 2, it can be
complicated to perform the same analysis for adaptive client optimizers. So in this subsection, we are going to provide some
empirical evidence that adaptive optimizers (such as ADAM) also satisfies Assumption 1 and can yield smaller h; values
than vanilla SGD.

In particular, we evaluate the performance of vanilla SGD and ADAM on the MNIST dataset (Deng, 2012). For each
optimizer, we train two logistic regression models, which start from two different initial points x, y but traverse the same
sequence of mini-batches of data. After repeating the same experiment multiple times with different random seeds, we
report h; = |E[A;(x; k)] — E[A;(y; k)]||?/||z — yl||? in Figure 4. One can observe that, given a number of local steps k&,
ADAM can have a smaller value of h; than vanilla SGD.
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Figure 4. Empirical validation of Assumption 1 for various client optimizers. The value of h is evaluated by training logistic regression

models on the MNIST dataset. For each optimizer, we select the best client learning rate from {0.5,0.2,0.02,0.002}.

C. Proof of Theorem 1

We first prove E[A] is a contractive operator. Based on its definition, we have

[E[A(z)] - E[A

M
< Zwi IE[A;i(x) — Ai(y)HIQ

M
2
<Y wihi | —y|
=1

(49)

(50)

(S

where (50) comes from the Jensen’s inequality and (51) is based on Assumption 1. Since 0 < Zf\il w;h; < 1, according to
the Banach fixed-point theorem (Ryu & Boyd, 2016), operator E[.A] is contractive and has a unique fixed point, denoted by

z.

Then, according to the global update rule (5) of FEDOPT, we have
2
E [[+) - H ~[1- 0@ - 7) + a@LAE=") - )|

M 2
Z wi Ay (x®) — ]E[Z wi A(z®)]

+ o’E

The first term in (52) can be bounded as follows

|- )@ ~ &) + a@AE®) - )

where (53) comes from the fact that for any vectors a, b, we have |Jaa + (1 — a)b||*> < a|la|® + (1 — ) ||b]|

(52)

(53)

(54)

2, and the
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last inequality is from the contraction property of E[A]. For the second term in (52), we have

M
E ZwlAz Zw .A t)
i=1

ZuPE HA ®) (m(t))]H2 (55)

<o Z wig (56)

Substituting (54) and (56) back into (52) we have

et o < |11 - S| -3+ Y-t o

Taking the total expectation on both sides, one can get
9 M
E Haz(t"’l) — EH < [1 —a(l - Zwihi)} E Hm(t) - :BH + a?5? Zw Q- (58)
i=1

In order to get the final convergence rate, we need a technical lemma from (Stich, 2019), stated as follows.
Lemma 3 (Stich (2019)). Suppose there are two non-negative sequences {ry},{s:} that satisfy the relation

rep1 < (1 — aye)ry — byesy + cy? (59)
for all t > 0 and for parameters b > 0,a,c¢ > 0 and non-negative stepsizes {v:} with v < 1/d for a parameter
d > a,d > 0. Then, there exists weights wy > 0, Wy := ZZ;O wy, such that:

T T
7 36¢ [ aT] 36¢ 60)

b a
W—T ;stwt + arr41 < 32drg (1 — 8) + oT < 32drg exp 5d

By setting ry = EHCD t) me 8¢ =0,a=1-— ZL L wihi, c= o? Zl 1 W; 2¢;,d = 1, we can obtain from Lemma 3:

T
2 32||g0® ~I12 M 2 3602 5 M w2
EH;[;(T'H) _%H *M [Zwihi + 0" it Wi 61)
L= Yimwihi [ T(1 =0, wihi)?
T
S e -7 1 2EM wie
<c- Zwihi Hw MwH +=7 Zzﬂ:flwzqz ©2)
i=1 1= wihy T (1 =300 wihy)?

where c is a positive constant. Here we complete the proof of Theorem 1.

Special Case: Client Optimizer is GD. When the client optimizer is GD (i.e., o = 0), all clients have the same 7, 7, i, L,
and w; = 1/M, we have h; = (1 — nu)?". Then, we can directly set o = 1 in (58), we get

2 2
1EHa;<TLaEH g(l—nu)QTTHa:(O)—iH . 63)

If all local operator .A; have the same fixed point &} = x*, then we have & = «* and (63) recovers the convergence rate of
local GD in the IID data setting.

Special Case: Client Optimizer is SGD. When the client optimizer is SGD, all clients have the same 7, 7, u, L, and
w; = 1/M, we have h; = (1 — nu)?™ and ¢; = Tn?c2. Substituting these into (58), we get
2 a2n2o?r

E[«® - :EH2 <[l—a(l— (-] E |20 - g + 17T (64)
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Now we are going to prove that for any 7' > 0, with o = 2/[(1 — (1 — nu)?7)(t + B)],

~2 422
Mpmfﬂ\< 70T (65)

TM(1 = (1 =nu)? )T+ B)

where 3 is a constant, that satisfies that 0 < 3 < 40?7 /[(1 — (1 — nu)*7) ||2(®) — Z[|]2. When ¢ = 0, the inequality (65)
automatically holds according to the definition of 3. Then, we assume (65) for some ¢ > 1 and examine the situation ¢ + 1.

~||? 2 40°n*r 40%n?T
ot -3 < |1 2] + (66)
t+p8] M1 —(L—=nu)?7)?(t+B) M1 —(1-nu)?*)*(t+pB)?
t+pB-1 40?0 67
t+p4 M —(1—nu)7)*(t+p5)
4 2,,2
< L : (68)
M1 = (1 =nu)?7)*(t+1+5)
So (65) also holds for ¢t + 1. We complete the induction procedure and conclude that
|12 40’0
]EH:B(T) —wH < (69)
M1 = (1 =np)?")*(T + 5)
o? 2nut 2
=2 ( ks 27‘) : (70)
prMT(T + ) \1—(1—np)
When 7 = 1, we have Z = x* and
_||? o2 2nu 2
e -5l St ()
prM(T + ) \1— (1 —np)?
2 2 2
S ( L ) (72)
p2M(T + 5) \nu(2 — np)
2 2 2
-
pAM(T + B) \ 2 —nu
402
< 74
TP M(T + ) i

where the last inequality follows from nu < 1. The result (74) recovers the optimal rate for distributed synchronous
SGD (Bottou et al., 2018). When 7 > 1, one can obtain that

2

E HfB(T) - 5H2 Sm [2())? (75)

where z(z) = 227/(1 — (1 — x)?7) for z > 0. When nu — 0, we have z(np) ~ 1. In other cases, we are going to prove
that if nu7 is upper bounded, then z(nu) can also be upper bounded by some constant. In particular, we first need to prove
z(x) is monotonically increasing with = by checking the derivative of z(z):

27[1 — (1 — 2)?7] — da72(1 — x)?7—1

2 (x) = 1-(1—2)22 6
= U—(fﬁ 1=+ 27— Da](1 —2)> ] -
) [1—(12% L= () ] (79)

2r

T - (1-a)27)? [1-(1—2?)"] >0 (80)
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Suppose nur < 1, it follows that

max z(nu) = z(1/7) = < < 3. (81)
Substituting (81) into (75), we have
2 902
o - 3 < 2 o
= 2MA(T + B) ®2
which matches the lower bound of local SGD in the IID data setting (Woodworth et al., 2020), in which all local operator
share the same fixed point £ = x* = « for all 4.

D. Connection with Previous Works on the Minimizer Inconsistency

When client learning rates, number of local steps are the same across all clients, and non-adaptive, deterministic CLIENTOPT
are used, || — x*|| can vanish to zero along with the learning rates. This phenomenon has been observed and analyzed by
few recent literature in different forms, see (Charles & Kone¢ny, 2021; Malinovskiy et al., 2020; Pathak & Wainwright,
2020). Theorem 1 generalizes these results by allowing heterogeneous local hyper-parameters and adaptive, stochastic client
optimizers. In addition, the non-vanishing bias was studied in (Wang et al., 2020a) by assuming different local learning rates
and local steps at clients. In this paper, we further generalize the results by showing that even when the learning rates and
local steps are the same, using local adaptive methods will lead to a non-vanishing gap. We summarize the differences in
Table 6.

Papers \ Different n, 7  Stochastic CLIENTOPT  Adaptive CLIENTOPT  Non-vanishing bias
(Charles & Kone¢ny, 2021) X X X X
(Malinovsky et al., 2020) X X X X
(Pathak & Wainwright, 2020) X X X X
(Wang et al., 2020a) v v X v
This paper v v 4 4

Table 6. Comparison with previous works that studied minimizer inconsistency in different forms.

E. Proof of Theorem 2

In the quadratic problem, we can write down the analytical expression of operator 4;. Specifically, for the K-th local iterate
of client 7, we have

2® D) —g®) _ p PR (z®) (83)
=) —pPH; (2™ — x}) 84
—(I - PH,)(@" —a}) +a;. (85)

That is,
204D gt = (1 — P (2 — @), (86)

According to the definition of A4;, we have

Ai(z; ) =(I —ny P H;)" (x — x7) + 7, 87
M

Alx) = wil(I — 0, PH,)™ (x — a}) + ). (88)
=1

We first show that A is contractive. Note that
M

Alx) — Aly) = |>_wi(I =0 PH)™ | (z — y). (89)

i=1
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Therefore, as long as the operator norm of Z —, wi(I —n; P;H;)™ is smaller than 1, the operator .4 is contractive and has
a unique fixed point . Next, we are going to find the analytical expression of . We have

Zwl (I — P H,)"|(Z — ) = 0. (90)

After minor rearranging, it follows that

M
a:[ wilI — (I - mPH)ﬂ]] [sz (I - PH;)" |z ] 1)
i=1
When 7; = ~;n and ) approaches to zero, we have I — (I — n; P;H;)™ ~ n;7; P;H; and
M “lrwm
lim & = [Z; wmmm] [X; wmnPiHim,;] : (92)
Here we complete the proof.
F. Proof for the Convergence of Local Correction
F.1. Main Results
Without loss of generalities, suppose that at the ¢-th round, the local model changes of client 7 can be written as
Ti— 1
2 — A(@"7) =0,y BIIVE @) (93)
k=0

where 1) is the client learning rate, {Bi(t’k)} are symmetric and positive definite matrices, and a:,Et’k) denotes the local iterate
after performing & local steps. When the local correction technique is applied, the client will send the following normalized
local changes to the server:

T, —1 T, —1
¢ 1 X (t.k tk X (t.k tk
hg):WZB WE (™)=Y AMVE ) 94)
- k=0
where A( Bt / Z”_l B(t ") and Yo zt - Then, the server will aggregate the normalized local changes

and update the global model as follows
M
2D =2 — 03" w;n! (95)
i=1

where « denotes the server learning rate.

Our convergence analysis will be centered around the following assumptions.

Assumption 3. Each local objective is Lipschitz smooth, that is, |V F;(x) — VF;(y)|| < L|z — y||, Vi € [M].
Assumption 4. The matrices {Agt’k)} are positive-definite symmetric matrices and have bounded operator norm:
HAgt’k) < A/tau;.

op

Assumption 5. The pre-conditioned gradients at each local iteration have bounded norm, i.e.,

B"MVE ") <c.

Theorem 3 (Convergence Guarantee for Local Correction Technique). Suppose all clients have the same client learning
rate 1) and the same number of local sptes T. Under Assumptions 3 to 5, if the server learning rate is set as « = nt < 1/L

and the client learning rate is
11 D \?
. 96
n= mln{ Py (LQAGQ) } (96)
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where D = F (a:(o)) — Fjyy, then the global iterate (95) converges at the following rate:

2 1 A%G%
i F(z® H —ol= . 97
min [ VP () Tt o)

It is worth noting that the convergence rate (97) matches previous results in (Koloskova et al., 2020; Khaled et al., 2020) in
the deterministic, non-IID data setting. Theorem 3 shows that using adaptive client optimizers together with local correction
can preserve the same convergence rate as vanilla SGD client optimizer and there is no non-vanishing solution bias.

F.2. Technical Lemmas

Lemma 4. Suppose Ay, € R4 k ¢ [1, K] are symmetric positive definite matrices.

< A,

” Z | Ak, l1bx® (98)

where A = Zle Ay

Proof. We define Ay, = (Y1, Ag) ' Ay, = A7 Ay. It directly follws that Y4, A, = I. For the left hand side of (98),
we have

K 2 K - —2 =12
> A :HASZAkbk = [l < Al (B o
k=1 k=1

where b = Zszl A,by.. On the other hand, let v, = by, — b and note that

K K
Tr (Z Akbkka) =Tr (Z Ai(by —b+b)(b — b+b)T> (100)
k=1

k=1
K
=Tr (Z Ay, (rukv,j tob +bo] +55 ) (101)
k=1
K K
— Ty <2Akvkvk> T (Z Ayob ) T (ZA bv ) +Tr (BBT). (102)
k=1 k=1 k=1
>0 =0

For the third term, we have
K o K o K o
Tr (Z Akbv,j> =Tr (Z u,jAkb) =Tr <Z v,;rA,Ib> =0. (103)
k=1

Therefore, we can obtain that

K
[B]* =T (83" ) < v (Z Akbkb,j> (104)
k=1
K ~
=3 6] Avb (105)
k=1
K ~
<> | newi? (106)
k=1

S _

S

OPZHAkHop (L (107)



Local Adaptivity in Federated Learning: Convergence and Consistency

Substituting (107) into (99), it follows that

K
ZAkbk < A2 UPZIIAICHOp bk (108)
k=1
O
F.3. Proof of Theorem 3
Since each local objective is L-smooth, we have
F(z) — F(z®)
M 2
<-a <VF(:c(t))7 > wih§”> w;h{Y (109)
i=1 i=1

[ M M 2
__ @ | RO _|lvE@®) 0
=2 HVF(:B )+ leh Zw A 2w,hi (110)

M
<-2 vzf(ar,-<t>)H2+g ®) waih(»t) (111)
- 2 i=1 '
M

<—9(VF(w(t))H2+32w (@) — h| (112)
=73 2 2 i

where (110) uses the fact: {a, b) = %[HaH2 + 181> = lla — b||?], (111) follows from the assumption oL, < 1, and (112) is
obtained by applying Jensen’s Inequality. For the second term in (112), we can further bound it as follows:

2
HVF (z®) - (”H (&.5) [VH(m(”) VE (" ’”)} (113)
7'1'—_1
<> [an (@) - VE @) (114)
k=0
Ti—1 2
<2y ||afH| [l= - 2P| (115)
k=0
L2A k) [|2
S
2
_LPAR H (117)

where (114) follows Lemma 4, (115) is based on the L1psch1tz smoothness of the local objectives, and (116) uses the
assumption that matrices Agt’k) have bounded operator norm. Substituting (117) into (112), we have

rit) - pie < or S S

Taking the sum from ¢t = 0 to ¢ = T' — 1 and rearranging, we obtain

T—1 T—1 M Ti
1 2 (F(x®) — F(x(™M))
7 I < Jaco)
T;HVF(;B | < — Z; - Z A (119)
T—l

2(F(2©) — Fly) M
= ol Z; z;

2
HAE“’”H . (120)

'L
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On the other hand, note that

Substituting (121) into (120), we have

LS oran <20

If weleta = Zi\il w;n;7; < /L, then it follows that

k—1 2
ZB£t7S)VFi(:c£t’S)) < EnPG? < P0G
(0)) _ Finf) LQA T—1 M
+ = D ) w6
of T t=0 i=1
Q(F(m(o)) — Fiat) 24 2 < 2 2
L°AG iNET
o + ; win; T
F(z©®) - F, M
( g\f ) in) +L2AGQZwm§TE.
> iz Wi T |

T—1

1 2 2
TZHVF@“))H <
t=0

When n; = n,7; = 7,w; = 1/M, we have

T

ntT

<DL+
- T

T—1

1 2 (F(x®) - F,

fE HVF(w(t))H < (£ (=) f)+L2AG2n27'2
t=0

(D2L2AG?)3

where D := F(ac(o)) — Fjyr and the client learning rate is set as

n:min{

1 1

TL’ TT%

(

T3

b
LZAG?

'}

(121)

(122)

(123)

(124)

(125)

(126)

(127)



