
Federated Graph Classification over Non-IID Graphs

Han Xie 1 Jing Ma 1 Li Xiong 1 Carl Yang 1 †

Abstract
Federated learning has emerged as an important
paradigm for training machine learning models in
different domains. For graph-level tasks such as
graph classification, graphs can also be regarded
as a special type of data samples, which can be col-
lected and stored in separate local systems. Simi-
lar to other domains, multiple local systems, each
holding a small set of graphs, may benefit from
collaboratively training a powerful graph mining
model, such as the popular graph neural networks
(GNNs). However, we also find that different sets
of graphs, even from the same domain or same
dataset, are non-IID regarding both graph struc-
tures and node features. To handle this, we pro-
pose a graph clustered federated learning (GCFL)
framework that dynamically finds clusters of local
systems based on the gradients of GNNs, and the-
oretically justify that such clusters can reduce the
structure and feature heterogeneity among graphs
owned by the local systems. Extensive experimen-
tal results and in-depth analysis demonstrate the
effectiveness of our proposed framework.

1. Introduction
Federated learning (FL) as a distributed learning paradigm
that trains centralized models on decentralized data has at-
tracted much attention recently (McMahan et al., 2017b;
Zhao et al., 2018; Li et al., 2020; Karimireddy et al., 2019;
Kairouz et al., 2019). FL allows local systems to benefit
from each other while keeping their own data private. Es-
pecially, for local systems with scarce training data or lack
of diverse distributions, FL provides them with the poten-
tiality to leverage the power of data from others, in order
to facilitate the performance on their own local tasks. One
important problem FL concerns is data distribution hetero-

1Department of Computer Science, Emory University. Corre-
spondence to: Carl Yang <j.carlyang@emory.edu>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

geneity, since the decentralized data, collected by different
institutes using different methods and aiming at different
tasks, are highly likely to follow non-identical distribution.
Prior works approach this problem from different aspects,
including optimization process (Li et al., 2020; Karimireddy
et al., 2019), personalized FL (Huang et al., 2021; Dinh
et al., 2021; Fallah et al., 2020a), clustered FL (Ghosh et al.,
2020; Jeong et al., 2018; Briggs et al., 2020), etc.

As more advanced techniques are developed for learning
with graph data, using graphs to model and solve real-
world problems becomes more popular. One important
scenario of graph learning is graph classification, where
models such as graph kernels (Yanardag & Vishwanathan,
2015; Shervashidze & Borgwardt, 2009; Vishwanathan et al.,
2010; Yang et al., 2018) and graph neural networks (Kipf &
Welling, 2017; Xu et al., 2019; Ying et al., 2018; Yang et al.,
2020a;b; 2019) are used to predict graph-level labels based
on the features and structures of graphs. One real scenario of
graph classification is molecular property prediction, which
is an important task in cheminformatics and AI medicine.
In the area of bioinformatics, graph classification can be
used to learn the representation of proteins and classify them
into enzymes or non-enzymes. For collaboration networks,
graph classification can learn from its sub-networks about
the information of research areas, topics, genre, etc.

Since the key idea of FL is the sharing of underlying com-
mon information, as (Leskovec et al., 2005) discusses that
real-world graphs preserve many common properties, we be-
come curious about the question, whether real-world graphs
from heterogeneous sources (e.g., different datasets or even
divergent domains) can provide useful common informa-
tion among each other? To understand this question, we
first conduct preliminary data analysis to explore real-world
graph properties, and try to find clues about common pat-
terns shared among graphs across datasets. As shown in
Table 1, we analyze four typical datasets from different
domains, i.e., PTC MR (molecular structures), ENZYMES
(protein structures) and IMDB-BINARY (social communi-
ties), and MSRC 21 (superpixel networks). We find them to
indeed share certain properties that are statistically signif-
icant compared to random graphs with the same numbers
of nodes and links (generated with the Erdős–Rényi model
(Erdős & Rényi, 1959; Gilbert, 1959)). Such observations
confirm the claim about common patterns underlying real-
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Table 1. Data analysis on important graph properties shared among real-world graphs across different domains. For example, large
Kurtosis values (Pearson, 1905) indicate long-tail distribution of node degrees, which is observed in ENZYMES, IMDB-BINARY and
MSRC 21; similar average shortest path lengths are observed in PTC MR, ENZYMES and MSRC 21, although their actual graph sizes are
rather different; large CC are observed in ENZYMES, IMDB-BINARY, and MSRC 21 and large LC are observed in almost all graphs.

Property kurtosis of degree distribution avg. shortest path length largest component size (LC, %) clustering coefficient (CC)

real random p-value real random p-value real random p-value real random p-value

PTC MR (chemical) 2.1535 2.4424 0.9999 3.36 2.42 ∼ 0 100 82.68 ∼ 0 0.0095 0.1201 ∼ 0
ENZYMES (biological) 3.0106 2.8243 0.0027 4.44 2.56 ∼ 0 98.24 97.69 0.2054 0.4516 0.1425 ∼ 0
IMDB-BINARY (social) 8.9262 2.2791 ∼ 0 1.48 1.54 ∼ 0 100 99.93 0.0023 0.9471 0.5187 ∼ 0
MSRC 21 (visual) 3.6959 2.9714 ∼ 0 4.09 2.81 ∼ 0 100 99.43 ∼ 0 0.5147 0.0655 ∼ 0

world graphs, which can largely influence the graph mining
models and motivates us to consider the FL of graph classi-
fication across datasets and even domains.

Although common patterns exist among graph datasets, we
can still observe certain heterogeneity. In fact, the detailed
graph structure distributions and node feature distributions
can both diverge due to various reasons. To demonstrate this,
we design and evaluate a structure heterogeneity measure
and a feature heterogeneity measure in different scenarios
(c.f. Section 4.1). We refer to the graphs possibly with
significant heterogeneity in our cross-dataset FL setting as
non-IID graphs, which concerns both structure non-IID and
feature non-IID, where naı̈ve FL algorithms like FedAvg

(McMahan et al., 2017b) can fail and even backfire (c.f. Sec-
tion 5.2). Moreover, as the heterogeneity varies from case
to case, a dynamic FL algorithm is needed to keep track
of such heterogeneity of non-IID graphs while conducting
collaborative model training.

Due to the observations that the graphs in one client can
be similar to those in some clients but not the others, we
get motivated by (Briggs et al., 2020) and find it intuitive
to consider a clustered FL framework, which assigns local
clients to multiple clusters with less data heterogeneity. To
this end, we propose a novel graph-level clustered FL frame-
work (termed GCFL) through integrating the powerful GIN
model (Xu et al., 2019) into clustered FL, where the server
can dynamically cluster the clients based on the gradients of
GIN without additional prior knowledge, while collabora-
tively training multiple GINs as necessary for homogeneous
clusters of clients. We theoretically analyze that the model
parameters of GIN indeed reflect the structures and features
of graphs, and thus using the gradients of GIN for clustering
in principle can yield clusters with reduced heterogeneity of
both structures and features.

We conducted extensive experiments with various settings to
demonstrate the effectiveness of our framework. The exper-
imental results show surprisingly positive results brought by
our novel setting of cross-dataset/cross-domain FL for graph
classification, where our GCFL framework can effectively
and consistently outperform the baselines.

2. Related Works
Federated Learning Federated learning (FL) has gained
increasing attention as a training paradigm under the setting
where data are distributed at remote devices and models
are collaboratively trained under the coordination of a cen-
tral server. FedAvg was first proposed by (McMahan et al.,
2017a) which illustrates the general setting of an FL frame-
work. Since the original FedAvg relies on the optimization
by SGD, data non-IID distribution will not guarantee the
stochastic gradients to be an unbiased estimation of the
full gradient, thus hurting the convergence of FL. In fact,
multiple experiments (Zhao et al., 2018; Li et al., 2020;
Karimireddy et al., 2019) have shown that the convergence
will be slow and unstable, and the accuracy will degrade
with FedAvg when data at each client are statistically het-
erogeneous (non-IID). (Zhao et al., 2018; Jeong et al., 2018;
Huang et al., 2020) proposed different data sharing strate-
gies to tackle the data heterogeneity problem by sharing
the local device data or server-side proxy data, which still
requires certain public common data, whereas other studies
explored the convergence guarantee under the data non-IID
setting by assuming bounded gradients (Wang et al., 2019;
Yu et al., 2019) or additional noise (Khaled et al., 2020).
There are also works seeking to reduce the variance of the
clients (Liang et al., 2019; Karimireddy et al., 2019; Li
et al., 2020). Furthermore, multiple works have been pro-
posed to explore the connection between model-agnostic
meta-learning (MAML) and personalized FL (Fallah et al.,
2020b; Chen et al., 2018). They aim to learn a generalizable
global model and then fine-tune it on local clients, which
may still fail when data on local clients are from divergent
domains with high heterogeneity. Some personalized FL
works (Dinh et al., 2021; Li et al., 2021) studied the bi-
level problem of optimization which decouples the local
and global optimization, while each client maintaining its
own model can be costly and inefficient.

Federated Learning on Graphs Although FL has been
intensively studied with Euclidean data such as images,
there exist few studies about FL for graph data. (Lalitha
et al., 2019) first introduced FL on graph data, by regard-
ing each client as a node in a graph. (Caldarola et al.,
2021) studied the cross-domain heterogeneity problem in
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FL by leveraging GCN to model the interaction between do-
mains. (Chen et al., 2020) proposed a generalized federated
knowledge graph embedding framework that can be ap-
plied for multiple knowledge graph embedding algorithms.
Moreover, there are several works exploring the Graph Neu-
ral Networks (GNNs) under the FL setting: (Jiang et al.,
2020; Zhou et al., 2020; Wu et al., 2021) focused on the
privacy issue of federated GNNs; (Wang et al., 2020) incor-
porated model-agnostic meta-learning (MAML) into graph
FL; (Zhang et al., 2021) studied the missing neighbor gen-
eration problem in the subgraph FL setting; (Wang et al.,
2021) proposed a computationally efficient way of GCN
architecture search with FL. Most existing works consider
node classification and link prediction on graphs, which can-
not be trivially applied to our graph classification setting.

3. Preliminaries
3.1. Graph Neural Networks (GNNs)

In general, given the structure and feature information of a
graph G = (V,E,X), where V , E, X denote nodes, edges
and node features, GNNs target to learn the representations
of graphs, such as a node embedding hv ∈ Rdv , or a graph
embedding hG ∈ RdG . A GNN typically includes message
propagation and neighborhood aggregation, in which each
node iteratively gathers the information propagated by its
neighbors, and aggregates them with its own information to
update its representation. Generally, a L-layer GNN can be
formulated as

h(l+1)
v = σ(h(l)

v , agg({h(l)
u ;u ∈ Nv})),∀l ∈ [L], (1)

where h(l)
v is the representation of node v at the lth layer,

and h(0)
v = xv is the node feature. Nv is neighbors of node

v, agg(·) is a aggregation function that can vary for different
GNN variants, and σ represents a activation function. For
a graph-level representation hG, it can be pooled from the
representations of all nodes, as

hG = readout({hv; v ∈ V }), (2)

where readout(·) can be implemented as mean pooling, sum
pooling, etc, which essentially aggregates the embeddings
of all nodes on the graph into a single embedding vector to
achieve tasks like graph classification and regression.

3.2. The FedAvg algorithm

FedAvg (McMahan et al., 2017b) is the first basic FL algo-
rithm and is commonly used as the starting point for more
advance FL framework design. The key idea of FedAvg is
to aggregate the updated model parameters transmitted from
local clients and then re-distribute the averaged parameters
to clients. Specifically, given m clients in total, at each
communication round t, the server first samples a partition

of clients {Si}(t). For each client Si in {Si}(t), it locally
trains the model downloaded from the server with its own
data distribution Di for Elocal epochs. The client Si then
transmits its updated parameters w(t)

i to the server, and the
server will aggregate these updates by

w(t+1) =

m∑
i=1

|Di|
|D|

w
(t)
i , (3)

where |Di| is the size of data samples in Si and |D| is
the total size of samples over all clients. Next, the server
broadcasts the new parameters w(t+1) to remote clients, and
at the (t + 1) round clients use w(t+1) to start their local
training for another Elocal epochs.

4. The GCFL Framework
4.1. Non-IID Structures and Features across Clients

From Table 1 we notice that real-world graphs tend to share
certain general properties across different graphs, datasets
and even domains, which motivates the graph-level FL
framework. However, there still exist differences when
the detailed graph structures and node features are being
considered. In Table 2, we present the average pair-wise
structure and feature heterogeneity among graphs in a single
dataset, a single domain, and multiple domains. Specifically,
for structure heterogeneity, we use the Anonymous Walk
Embeddings (AWEs) (Ivanov & Burnaev, 2018) to generate
representations for graphs, and compute the Jensen-Shannon
(JS) distance between the AWEs of each pair of graphs; for
feature heterogeneity, we calculate the empirical distribu-
tion of feature similarity between all pairs of linked nodes
in each graph, and compute the JS divergence between the
feature similarity distributions of each pair of graphs.

As we can observe in Table 2, both graph structures and
features demonstrate different levels of heterogeneity within
a single dataset, a single domain, and across domains. We
refer to graphs with such structure and feature heterogeneity
as non-IID graphs. Intuitively, directly applying naı̈ve FL
algorithms like FedAvg on clients with non-IID graphs can
be ineffective and even backfiring. To be specific, structure
heterogeneity makes it difficult for a model to capture the
universally important graph structure patterns across differ-
ent clients, whereas feature heterogeneity makes it hard for a
model to learn the universally appropriate message propaga-
tion functions across different clients. How can we leverage
the shared graph properties among clients while addressing
the non-IID structures and features across clients?

4.2. Problem Formulation

Motivated by our real graph data analysis in Tables 1 and
2, we propose a novel framework of Graph Clustered
Federated Learning (GCFL). The main idea of GCFL is
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Table 2. Summary of the average structure/feature heterogeneity for some datasets. In general, the structure heterogeneity increases from
the settings of one dataset to across-dataset, and to across-domain. However, the feature heterogeneity is more case-by-case, and the high
variances indicate that graphs could have large feature divergence even within the same dataset. Additionally, it is not necessarily true that
one dataset itself should be more homogeneous (e.g., IMDB-BINARY).

dataset IMDB-BINARY (social) COX2 (molecules) COX2 (molecules) COX2 (molecules) COX2 (molecules)
PTC MR (molecules) ENZYMES (proteins) IMDB-BINARY (social)

avg. struc. hetero. 0.4406 (±0.0397) 0.3246 (±0.0145) 0.3689 (±0.0540) 0.5082 (±0.0399) 0.6079 (±0.0331)
avg. feat. hetero. 0.1785 (±0.1226) 0.0427 (±0.0314) 0.1837 (±0.1065) 0.1912 (±0.1000) 0.1642 (±0.1006)

to jointly find clusters of clients with graphs of similar struc-
tures and features, and train the graph mining models with
FedAvg among clients in the same clusters.

Specifically, we are inspired by the Clustered Federated
Learning (CFL) framework on Euclidean data (Sattler et al.,
2020) and consider a CFL setting with one central server
and a set of n local clients {S1,S2, . . . ,Sn}. Different from
the traditional FL setting, the server can dynamically cluster
the clients into a set of clusters {C1,C2, . . .} and maintain
m cluster-wise models. In our GCFL setting, each local
client Si owns a set of graphs Gi = {G1, G2, . . .}, where
each Gj = (Vj , Ej , Xj , yj) ∈ Gi is a graph data sample
with a set of nodes Vj , a set of edges Ej , node features
Xj , and a graph class label yj . The task on each local
client Si is graph classification that predicts the class label
ŷj = h∗k(Gj) for each graph Gj ∈ Gi, where h∗k is the
collaboratively learned optimal graph mining model for
cluster Ck to which Si belongs. Our goal is to minimize the
loss function F (Θk) := ESi∈Ck

[f(θk,i;Gi)], for all clusters
{Ck}. The function f(θk,i;Gi) is a local loss function for
client Si which belongs to cluster Ck. In the meantime, we
also aim to maintain a dynamic cluster assignment Γ(Si)→
{Ck} based on the FL process.

4.3. Technical Design

GNNs are demonstrated to be powerful for learning graph
representations and have been wildly used in graph mining.
More importantly, the model parameters and their gradients
of GNNs can reflect the graph structure and feature infor-
mation (more details in Section 4.4). Thus, we use GNNs
as the graph mining model in our GCFL framework.

Specifically, our GCFL framework dynamically clusters
clients by leveraging their transmitted gradients {∆θi}ni=1,
in order to maximize the collaboration among more homo-
geneous clients and eliminate the harm from heterogeneous
clients. According to (Sattler et al., 2020), if the data distri-
bution of clients are highly heterogeneous, FL cannot jointly
optimize all local loss functions, which means that the norm
of gradients are greater than zero. Here, we introduce a
hyper-parameter ε1 as a criterion

δmean = ‖
∑
i∈[n]

∆θi‖ < ε1. (4)

to check for stopping the general FL stage in GCFL. In
the meantime, if some gradients have a large norm, which
means that they fail to approach to their stationary points, a
clustering step is needed to eliminate the negative influence
among heterogeneous clients. We then introduce the second
criterion with a hyper-parameter ε2 to split the clusters when

δmax = max(‖∆θi‖) > ε2 > 0. (5)

The GCFL framework follows a top-down bi-partitioning
mechanism. At each communication round t, the server re-
ceives m sets of gradients {{∆θi1}, {∆θi2}, . . . , {∆θim}}
from clients in clusters {C1,C2, . . . ,Cm}. For a cluster
Ck, if δkmean and δkmax satisfy the Eqs. 4 and 5, the server
will calculate a cluster-wise cosine similarity matrix αk, and
use it to perform an agglomerative clustering, which divides
the cluster Ck → {Ck1,Ck2}. The clustering mechanism
based on Eqs. 4 and 5 can automatically and dynamically
determine the number of clusters along the FL, while the
two hyper-parameters ε1 and ε2 can be easily set through
some simple experiments following (Sattler et al., 2020).

For a client Si in cluster Ck, it tries to find θ̂k,i that is close
to the real solution θ∗k,i = arg minθi∈Θk

f(θk,i;Gi). At a
communication round t, the client Sk transmits its gradient
to the server

∆θtk,i = θ̂tk,i − θt−1
k,i . (6)

Since the server maintains the cluster assignments, it can
aggregate the gradients cluster-wise by

θt+1
k = θtk +

∑
i∈[nk]

∆θtk,i. (7)

4.4. Theoretical Analysis

We theoretically analyze that the gradient-based FL algo-
rithm on GNNs can in principle reduce the structure and
feature heterogeneity in clusters, by proving that the gradi-
ents of GNNs can reflect the structures and features of their
training graphs.

Definition 4.1 Let a function f : X → Y which maps
from the metric space (X , d) to (Y, d′), the function f is
considered to have δ distortion if ∀u, v ∈ X , 1

δd(u, v) ≤
d′(f(u), f(v)) ≤ d(u, v).
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Theorem 4.1 (Bourgain theorem (Bourgain, 1985)) Given
an n-point metric space (X , d) and an embedding function
f as defined above, ∀u, v ∈ X , there exist an embedding
mapped from (X , d) to Rk with the distortion of the embed-
ding being O(log n).

Problem 1. GCFL which involves the communication of
the gradients between graphs with heterogeneous structures
distributed among different clients, the structure and feature
difference can be captured by the GNN gradients.

For simplicity, we solve Problem 1 with the GNN of Simple
Graph Convolutions (SGC) (Wu et al., 2019), through the
following two propositions.

Proposition 4.1 Given a graph G with fixed structure
represented by the normalized graph Laplacian L =
D̃−

1
2 ÃD̃−

1
2 , feature represented with X , and an SGC

f(L, X) = softmax(LKXΘ) with weights Θ trained on
graph G. If we have another graph G′ with different struc-
ture L′, the weight difference ||Θ′ −Θ||2 is bounded with
the structure difference.

Proposition 4.2 Given a graph G with fixed structure
represented by the normalized graph Laplacian L =
D̃−

1
2 ÃD̃−

1
2 , feature represented with X , and an SGC

f(L, X) = softmax(LKXΘ) with weights Θ trained on
graph G. If we have another graph G′ with different feature
X ′, the weight difference ||Θ′ − Θ||2 is bounded with the
feature difference.

We prove proposition 4.1 and 4.2 in the Appendix. We use
the Bourgain theorem to bound the difference between em-
beddings generated with different graph structures/features,
and prove that the feature and structure information of a
graph is incorporated into the model weights (gradients). By
proving that the model weights (gradients) are bounded with
the structure/feature difference, we show that the gradient
will change with the structure and feature. This further justi-
fies that our proposed gradient based clustering framework
GCFL can capture the structure and feature information.

5. Experiments
5.1. Experimental Settings

Datasets We use 13 graph classification datasets (Morris
et al., 2020) from 3 domains including 7 molecule datasets
(MUTAG, BZR, COX2, DHFR, PTC MR, AIDS, NCI1), 3
protein datasets (ENZYMES, DD, PROTEINS), and 3 social
network datasets (COLLAB, IMDB-BINARY, IMDB-MULTI),
each with a set of graphs. Node features are available in
some datasets, and graph labels are either binary or multi-
class. Details of the datasets are presented in the Appendix.

We design two settings that follow different data partition-
ing schemes. One setting is to randomly distribute graphs

from a single dataset to a number of clients, with each
client holding a distinct set of 30-50 graphs, among which
10% are held out for testing. In the other setting, we use
multiple datasets either from a single domain or multiple
domains. Each client holds a distinct set of 50 graphs from
one dataset, among which 10% are held out for testing. In
the first setting, we use NCI1, PROTEINS, and IMDB-BINARY
from 3 domains and distribute them to 80, 30, 20 clients,
respectively. In the second setting, we create 3 data groups
including MOLECULES which consists of 7 datasets from the
molecule domain distributed into 7 clients, BIOCHEM where
we add 3 datasets from the protein domain into MOLECULES
and distribute them into 10 clients, MIX where we add 3
datasets from the social domain into BIOCHEM and dis-
tribute them into 13 clients.

Baselines We use self-train1 as the first baseline to
test whether FL can bring improvements to each client
through collaborative training. In self-train, each client
first downloads the same randomly initialized model from
the server and then trains locally without communications.
Then we implement two widely used FL baselines FedAvg
(McMahan et al., 2017a) and FedProx (Li et al., 2020), the
latter of which can deal with data and system heterogeneity
in non-graph FL. For the graph classification model, we use
the same GIN design (Xu et al., 2019), which represents the
state-of-the-art GNN for graph-level tasks. We fix the GIN
architecture and hyper-parameters through all baselines.

Parameter settings We use the two-layer GINs with hid-
den size of 64. We use a batch size of 32, and an Adam
(Kingma & Ba, 2017) optimizer with learning rate 0.001
and weight decay 5e−4. The µ for FedProx is set to 0.01.
For all FL methods, the local epoch E is set to 3. The two
important hyper-parameters ε1 and ε2 as clustering criteria
vary in different groups of data, which are set through of-
fline training for about 50 rounds following (Sattler et al.,
2020). We run all experiments for five random repetitions
on a server with 8 24GB NVIDIA TITAN RTX GPUs.

5.2. Experimental Results

Federated graph classification within single datasets
Conceptually, clients in this setting are more homogeneous.
As can be seen from the results in Table 3 (upper part), our
framework can obviously improve the performance of graph
classification over local clients. For NCI1 distributed on
80 clients, GCFL achieves 5.57% performance gains over
self-train, and it helps 17 more clients than FedAvg and
12 more clients than FedProx. For PROTEINS on the total 30
clients, the average performance gain over self-train is
more significant, i.e., 12.88%. The GCFL framework is able
to improve all 30 clients. For IMDB-BINARY on 20 clients,

1We do not have a global model as baseline as datasets are
from various domains and their tasks are divergent.
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Table 3. Average accuracy and minimum gain over self-train on all clients, and the ratio of clients which get improved.

Single dataset multiple client setting

Dataset (# clients) NCI1 (80) PROTEINS (30) IMDB-BINARY (20)

Accuracy average min gain ratio average min gain ratio average min gain ratio

self-train 0.5874(±0.018) — — 0.5979(±0.028) — — 0.6178(±0.024) — —

FedAvg 0.6013(±0.021) -0.0423 56/80 0.6477(±0.027) -0.0125 28/30 0.6122(±0.031) -0.0300 5/20
FedProx 0.6019(±0.020) -0.0443 60/80 0.6430(±0.023) -0.0339 28/30 0.6117(±0.028) -0.0380 10/20

GCFL 0.6201(±0.015) -0.0326 73/80 0.6749(±0.023) 0.0268 30/30 0.6345(±0.020) -0.0100 17/20

Multiple datasets multiple client setting

Dataset (# domains) MOLECULES (1) BIOCHEM (2) MIX (3)

Accuracy average min gain ratio average min gain ratio average min gain ratio

self-train 0.6992(±0.027) — — 0.6405(±0.022) — — 0.6136(±0.022) — —

FedAvg 0.7133(±0.029) -0.0211 4/7 0.6539(±0.030) -0.0237 6/10 0.6307(±0.027) -0.0322 9/13
FedProx 0.7082(±0.025) -0.0468 3/7 0.6507(±0.032) -0.0433 7/10 0.6237(±0.026) -0.0383 8/13

GCFL 0.7356(±0.029) -0.0010 6/7 0.6785(±0.018) -0.0017 9/10 0.6526(±0.026) -0.0068 12/13

both FedAvg and FedProx fail to improve the clients on
average, and FedAvg can help only 5 clients. This is consis-
tent with the results shown in Table 2 that IMDB-BINARY
itself has relatively high structure and feature heterogeneity,
which makes FedAvg ineffective. Our GCFL framework
can still improve the performance on IMDB-BINARY on av-
erage, and help 17 out of 20 clients. These experimental
results demonstrate that our frameworks are effective on the
single-dataset multi-client FL setting.

Federated graph classification across multiple datasets
According to our data analysis in Tables 1 and 2, clients in
such a setting are more heterogeneous. As can be seen in
Table 3 (lower part), our framework GCFL can significantly
improve the performance of clients with distinct datasets.
We conduct experiments with multiple datasets in two set-
tings: single domain (using the data group MOLECULES),
and across domains (using the data groups BIOCHEM and
MIX). The results show 5.21%− 6.36% improvements of
our frameworks compared to self-train. A noticeable re-
sult is that our GCFL framework improves almost all clients’
performance for all 3 data groups. These results indicate
that graphs across datasets or even across domains are able
to help each other through proper FL, which is a surprising
and interesting start point for further study.

Convergence analysis We visualize the testing loss with
respect to the communication round to show the conver-
gence of GCFL compared with the standard federated learn-
ing baselines. Figure 1 shows the training curves on two
settings, which illustrates that GCFL achieves similar con-
vergence rate as FedProx, which is the state-of-the-art FL
framework dealing with non-IID Euclidean data. We also
notice that both GCFL and FedProx can converge to a
lower loss compared with FedAvg, which corroborates our
consideration of the non-IID problem in our setting.
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Figure 1. Average with standard deviation of the training curves of
all clients.

More results in Appendix In Table 3, we averaged the
accuracy across all clients for presentation simplicity. To
understand the detailed performance by clients, we present
different Violin plots in the Appendix. Besides, we also
show more results regarding various settings (overlapping
clients and real vs. synthetic node features) in the Appendix.

6. Conclusion
In this work, we propose a novel setting of cross-dataset and
cross-domain federated graph classification. The technique
(GCFL) we develop allow multiple data owners holding
structure and feature non-IID graphs to collaboratively train
powerful graph classification neural networks without the
need of direct data sharing. As the first trial, we focus on
the effectiveness of FL in this setting and have not care-
fully studied other issues such as data privacy, although it
is intuitive to preserve the privacy of clients by introduc-
ing an encryption mechanism (e.g. applying orthonormal
transformations), and to prevent from adversarial scenarios
by clustering out the malicious clients. Due to its evident
motivations and proofs on the effective FL in a new setting,
we believe this work can serve as a stepping stone for many
interesting future studies.
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A. Missing Proofs in Section 4.4
A.1. Proof of Proposition 4.1

Assume the structure difference between graph G and G′ is
bounded with

||L′ − L||22 = ||EL||22 ≤ εL, (8)

The difference between the original weights Θ and the
weights trained on the new graph structure Θ′ is represented
as

||Θ′ −Θ||22 = ||(L′X)−1Y ′ − (LX)−1Y ||22
= ||X−1(L′−1Y ′ − L−1Y )||22.

(9)

Given that ||L · L′||22 = ||L · (L + EL)||22 ≥ ||LEL||22. Let
||LEL||22 = δL , then we can get ||L′−1−L−1||22 = ||EL−1 || ≤
εL
δL

.

Given the Bourgain theorem (You et al., 2019), the differ-
ence between the embedding Y and Y ′ is bounded with

||Y ′ − Y||22 = ||EY ||22 ≤ εY , (10)

The weight difference can then be bounded with

||Θ′ −Θ||22 ≤ ||X−1||22||(L−1 + EL−1)(Y + EY )− L−1Y ||22
= ||X−1||22||L−1EY + EL−1Y + EL−1EY ||22

≤ ||X−1||22
[
εY ||L−1||22 +

εL
δL
||Y ||22 +

εLεY
δL

]
.

(11)

With the trained SGC, the feature and graph structure is
fixed as X and L. Thus the weight difference is bounded
with X and L.
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Table 4. The statistics of datasets.
dataset statistics dataset statistics

#graphs avg. #nodes avg. #edges #classes node features #graphs avg. #nodes avg. #edges #classes node features

MUTAG 188 17.93 19.79 2 original ENZYMES 600 32.63 62.14 6 original
BZR 405 35.75 38.36 2 original DD 1178 284.32 715.66 2 original
COX2 467 41.22 43.45 2 original PROTEINS 1113 39.06 72.82 2 original
DHFR 467 42.43 44.54 2 original COLLAB 5000 74.49 2457.78 3 degree
PTC MR 344 14.29 14.69 2 original IMDB-BINARY 1000 19.77 96.53 2 degree
AIDS 2000 15.69 16.20 2 original IMDB-MULTI 1500 13.00 65.94 3 degree
NCI1 4110 29.87 32.30 2 original

A.2. Proof of Proposition 4.2

Assume the feature difference between graph G and G′ is
bounded with

||X ′ −X||22 = ||EX ||22 ≤ εX , (12)

The difference between the original weights Θ and the
weights trained on the new graph structure Θ′ is represented
as

||Θ′ −Θ||22 = ||(LX ′)−1Y ′ − (LX)−1Y ||22 (13)

Given that ||X · X ′||22 = ||X · (X + EX)||22 ≥ ||XEX ||22 .
Let ||XEX ||22 = δX , then we can get ||X ′−1 − X−1||22 =

||EX−1 || ≤ εX
δX

.

Given the Bourgain theorem (You et al., 2019), the differ-
ence between the embedding Y and Y ′ is bounded with

||Y ′ − Y||22 = ||EY ||22 ≤ εY , (14)

The weight difference can then be bounded with

||Θ′ −Θ||22 = ||(X ′−1L−1Y ′ −X−1L−1Y ||22
= ||(X ′−1L−1(Y + EY )−X−1L−1Y ||22
= ||(X ′−1L−1Y +X ′−1L−1EY −X−1L−1Y ||22
= ||(X ′−1L−1Y −X−1L−1Y +X ′−1L−1EY ||22
= ||(X ′−1 −X−1)L−1Y +X ′−1L−1EY ||22
= ||EX−1L−1Y + (X + EX)−1L−1EY ||22
= ||EX−1L−1Y + (LX + LEX)−1EY ||22

≤ εX
δX
||L−1Y ||22 +

ε2XεY
δX
||(LX)−1||22

+ εXεY ||(LX)−1||42
(15)

With the trained SGC, the feature and graph structure is
fixed as X and L. Thus the weight difference is bounded.

B. More Detailed Experiment Results
Violin plots instead of tables Figures 2 and 3 show the
detailed experiment results regarding more various client set-
tings.In Figure 2 and 3, each violin represents a distribution
of all clients’ performance gain using one algorithm. In Fig-
ures 2 and 3, the blue left sides of violins are corresponding
to the results in the main tables 3.

Overlapping versus non-overlapping For distributing
one dataset to multiple clients, we compare the two settings
of allowing overlapping (same graphs appearing multiple
clients) and not. As can be seen in Figure 2, our framework
can also improve on overlapped clients. Although in Figure
2a, overlapped clients show less performance gains.

Original node features versus other features Apart
from the original node features, we also use one-hot node
degree features and extra continuous node attributes, in or-
der to study the influence of node features. Figure (3a, 3b)
and (3c, 3d) show the comparisons between original features
and one-hot degree features, and between original features
and extra node attributes, respectively. Overall, our frame-
work can consistently improve when using one-hot degree
features and continuous node attributes.
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Figure 2. Distributions of performance gains of all clients with
overlapped versus non-overlapped data partitioning.
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Figure 3. Distributions of performance gains of all clients using
different node features.


