
Federated Learning with Buffered Asynchronous Aggregation

John Nguyen 1 Kshitiz Malik 1 Hongyuan Zhan 1 Ashkan Yousefpour 1 Michael Rabbat 1 Mani Malek 1

Dzmitry Huba 1

Abstract
Federated Learning (FL) trains a shared model
across distributed devices while keeping the train-
ing data on the devices. Most FL schemes are
synchronous: they perform a synchronized ag-
gregation of model updates from individual de-
vices. Synchronous training can be slow because
of late-arriving devices (stragglers). On the other
hand, completely asynchronous training makes
FL less private because of incompatibility with
secure aggregation. In this work, we propose a
model aggregation scheme, FedBuff, that com-
bines the best properties of synchronous and asyn-
chronous FL. Similar to synchronous FL, FedBuff
is compatible with secure aggregation. Similar
to asynchronous FL, FedBuff is robust to strag-
glers. In FedBuff, clients trains asynchronously
and send updates to the server. The server ag-
gregates client updates in a private buffer until
K updates have been received, at which point a
server model update is immediately performed.
We provide theoretical convergence guarantees
for FedBuff in a non-convex setting. Empirically,
FedBuff converges up to 3.8× faster than previous
proposals for synchronous FL (e.g., FedAvgM),
and up to 2.5× faster than previous proposals for
asynchronous FL (e.g., FedAsync). We show that
FedBuff is robust to different staleness distribu-
tions and is more scalable than synchronous FL.

1. Introduction
Federated Learning (FL) trains a shared model across dis-
tributed clients while training data stays on the client devices.
The most common FL scenario is cross-device FL, where

1Facebook Inc., Menlo Park, CA, USA. Correspondence
to: John Nguyen <ngjhn@fb.com>, Kshitiz Malik <kma-
lik2@fb.com>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

typically a large number of client devices participate in the
training with a single server. Since the number of client de-
vices in cross-device FL is very large (Kairouz et al., 2019),
designing a scheme for FL comes with several challenges.

Challenge 1: Scalability. Practical FL systems often train
over hundreds or thousands of clients in parallel (Hard et al.,
2019). Hence, FL training algorithms must be scalable and
data-efficient — they should be able to exploit parallelism
across clients to speed up training.

Challenge 2: Device heterogeneity and data imbalance.
Client devices have heterogeneous compute power, differ-
ing by more than an order of magnitude (Wu et al., 2019).
Moreover, client devices can have vastly different amounts
of training data (Caldas et al., 2018). Therefore, training
time across clients has a large variance, driven by differ-
ences in device capabilities and the amount of training data.
Since FL algorithms typically make one or more complete
passes over a client’s data per round, variance in training
data per client further increases variance in training time.

Challenge 3: Privacy. Outside of model convergence, pri-
vacy is a big consideration when designing a protocol for
FL. Secure Aggregation and differential privacy make FL
more private, and more robust to attacks such as model
inversion, model poisoning, and training data poisoning. Se-
cure Aggregation (Bonawitz et al., 2016; Karl et al., 2020;
Emanuel) ensures that individual client updates are aggre-
gated together before they are visible to the server. For
differential privacy (DP), the DP-SGD algorithm (Abadi
et al., 2016) can be used to provide user-level DP guarantees
in FL (McMahan et al., 2018). When combined with Secure
Aggregation, user-level DP guarantees can achieve superior
privacy-utility trade-off.

While there are many other challenges in FL (Kairouz et al.,
2019), this paper focuses on the three mentioned above.

This paper proposes and analyzes FedBuff, a novel asyn-
chronous federated optimization framework using buffered
asynchronous aggregation. By using asynchronous updates,
we demonstrate that FedBuff can scale efficiently to 1000’s
of concurrent users, in addition to alleviating the straggler
issue. Moreover, by aggregating client updates in a secure
buffer before applying them at the server, FedBuff is directly

Federated Learning with Buffered Asynchronous Aggregation

Concurrently training users FedAvgM Number of rounds Training Time (# rounds)

CelebA

10 4,800 480 480
100 17,600 176 176

1000 104,000 104 104

Sent 140

10 53460 5346 5346
100 89100 891 891

1000 216000 216 216

Training Time (# rounds)
Concurrently training users CelebA Sent140 Celeba Speed Up Sent140 Speed Up Concurrently training users factor

10 480 5K 1x 1x 1
100 176 1K 3x 6x 10

1000 104 0K 5x 25x 100

Number of client updates
Concurrently training users CelebA Sent140 Celeba Speed Up Sent140 Speed Up

10 4,800 53K 1x 1x
100 17,600 89K 4x 2x

1000 104,000 216K 22x 4x

Figure 1 Figure 2

z

0
50

10
0

1 60

N
um

be
r o

f u
se

rs
 tr

ai
ni

ng

Time

Synchronous FL Asynchronous FL

Round
Completion

Straggler effect
Waiting for cohort

Figure 1. (left) Number of communication rounds and number of client updates required by FedAvgM (Hsu et al., 2019), a synchronous
FL algorithm, to reach a target accuracy on the Sent140 (Caldas et al., 2018). This figure demonstrates the diminishing returns from
increasing concurrency for synchronous FL in terms of training time. Increasing concurrency from 100 to 1000 decreases the number
of communication rounds by less than a factor of 2 and more than doubles the total number of client updates required. This is similar
to observations in conventional SGD training, where increasing the batch size eventually gives diminishing returns (Goyal et al., 2017;
Shallue et al., 2018; Ott et al., 2018; You et al., 2017; 2018; 2019). As concurrency increases, synchronous FL becomes less data-efficient.
The server learning rate and hyperparameters are tuned separately for each number of concurrently training users, and the number of
client updates does not include any overhead related to over-selection. (right) Training progress for asynchronous and synchronous FL,
and the associated delays. The y-axis in the figure shows the number of clients actively computing updates at any given point in time.
Synchronous FL proceeds in rounds. The number of active clients increases at the beginning of a round as clients join the cohort, and it
falls gradually towards the end of the round due to stragglers. In asynchronous FL, the number of active clients stays relatively constant
over time; as clients finish training and upload their results, other clients take their place.

compatible with existing secure aggregation and privacy
techniques, unlike previous asynchronous FL proposals.

Synchronous FL. Most works in FL have focused on syn-
chronous methods, as they are easier to analyze and debug.
Synchronous FL methods are also better suited for privacy
— the amount of noise added for user-level DP decreases as
the number of client updates increases(Kairouz et al., 2021;
McMahan et al., 2018). However, synchronous FL methods
are prone to stragglers. They proceed at the pace of the
slowest client; a round has to wait for all the participating
clients to finish. Additionally, the more heterogeneous the
clients, the worse the straggler problem.

Although the straggler problem in Synchronous FL has been
well-studied (Xie et al., 2019; van Dijk et al., 2020; Chai
et al., 2020; Chen et al., 2019; Wu et al., 2020), the scala-
bility of Synchronous FL is perhaps an even bigger concern
that has not received as much attention. In practical FL
systems at internet-scale (Bonawitz et al., 2019), only a
small fraction of clients train in parallel at any given time.
An important parameter in FL is the concurrency: the num-
ber of clients training concurrently (sometimes also called
users-per-round in synchronous FL). In synchronous FL,
the optimal server learning rate generally increases with
concurrency; aggregating over more users has a variance-
reducing effect, enabling the server to take longer steps.
Consequently, higher concurrency reduces the number of
rounds needed to reach a target accuracy, similar to in large-
batch training (Goyal et al., 2017; Ott et al., 2018; You
et al., 2019; 2018; 2017; Shallue et al., 2018). However,
to have stable, convergent training dynamics, the server

learning rate cannot be increased indefinitely. Eventually
it saturates, resulting in a sub-linear speed-up as illustrated
in Figure 1(left). As a result, practical synchronous FL sys-
tems cannot accelerate training through parallelism beyond
a few hundred clients, and synchronous FL training is of-
ten an order of magnitude slower than conventional server
training (Bonawitz et al., 2019).

Asynchronous FL. Asynchronous methods are a good
match for the FL setting, where device heterogeneity and
clients dropping out mid-round amplify the straggler prob-
lem. Asynchronous FL schemes solve the straggler problem
by incorporating a client update as soon as it is available
rather than over-selecting clients and then discarding their
updates. Asynchronous methods have their challenges, in-
cluding staleness of client updates which complicates analy-
sis, and non-determinism, which can complicate debugging.

In pure asynchronous FL methods (Xie et al., 2019), every
client update results in a server model update. This has
implications for privacy in FL. When every client update
forces a server update, Secure Aggregation cannot be used
to make FL more private; Secure Aggregation’s benefit is
in hiding updates in an aggregate. Additionally, providing
user-level DP in asynchronous FL is only feasible with local
differential privacy (LDP), where the client clips and adds
noise before sending the update to the server. LDP for high
dimensional data has been criticized for poor privacy-utility
trade-off (Erlingsson et al., 2020; Bittau et al., 2017).

Our proposal: FedBuff. In FedBuff, clients train and com-
municate asynchronously with the server. Unlike other asyn-
chronous methods, though, the client updates are aggregated

Federated Learning with Buffered Asynchronous Aggregation

in a secure buffer until K updates have been selected, at
which point a server model update is performed. The num-
ber of client updates required to trigger a server model up-
date, K, is a tunable parameter. We show in Section 3.1 that
small values of K (e.g., 10) result in fast and data-efficient
training, up to 3.8× faster than synchronous FL methods.
Larger values of K (e.g. 1000) require less noise with DP,
at the cost of slower training convergence. Unlike other
asynchronous FL proposals (Xie et al., 2019), FedBuff is
compatible with Secure Aggregation, especially techniques
that rely on a TEE (Karl et al., 2020; Emanuel).

Contributions. We highlight the main contributions here.

•We propose FedBuff, a novel asynchronous FL training
scheme, to simultaneously achieve scalability and compati-
bility with Secure Aggregation.

•We provide convergence analysis for general non-convex
settings. When FedBuff is configured to produce a server
update for every K client updates in the buffer and client
training is triggered asynchronously to take Q SGD steps,
FedBuff requires O

(
1/(ε2KQ)

)
server iterations to reach

ε accuracy (Appendix D).

•We show empirically that FedBuff is up to 3.8 times faster
than competing synchronous FL algorithms, even without
penalizing synchronous FL algorithms for stragglers. We
also demonstrate that FedBuff is up to 2.5 times faster than
its closest competing asynchronous FL algorithm, FedAsync
(Xie et al., 2019).

• We demonstrate that FedBuff’s speed up over compet-
ing synchronous and asynchronous FL methods are robust
across various staleness distributions and datasets. We show
that staleness distribution in a real-world setup; running
FL across millions of client devices closely approximates a
half-normal distribution. To the best of our knowledge, we
are the first to analyze empirical staleness distribution from
a production asynchronous FL system.

2. FedBuff: Federated Learning with
Buffered Asynchronous Aggregation

We consider the following optimization problem:

min
w∈Rd

f(w) :=
1

m

m∑
i=1

piFi(w) (1)

where m is the total number of clients and the function
Fi measures the loss of a model with parameters w on the
ith client’s data, and pi > 0 weighs the importance of the
data from client i. The goal is to find a model that fits all
client’ data well on (weighted) average. In FL, Fi is only
accessible by device i. For simplicity, in this paper we focus
on the unweighted setting, pi = 1 for all i, although our
analysis can be easily extended to the more general case

Algorithm 1 FedBuff-server
Input: global learning rate ηg, local learning rate η`, num.

client SGD steps, buffer size K, model w0

Output: FL-trained global model
1: repeat
2: c← sample available clients . async
3: run FedBuff-client(wt, η`, Q) on c . async
4: if receive client update then
5: ∆i ← received update from client
6: ∆

t ← ∆
t

+ ∆i . inside secure aggregator
7: k ← k + 1
8: end if
9: if k == K then

10: wt+1 ← wt − ηg∆
t

11: ∆
t ← 0, k ← 0, t← t+ 1 . reset buffer

12: end if
13: until Convergence

Algorithm 2 FedBuff-client
Input: server model w, local learning rate η`, number of

client SGD steps Q
Output: client update ∆

1: y0 ← w
2: for q = 1 : Q do
3: yq ← yq−1 − η`gq(yq−1)
4: end for
5: ∆← y0 − yq
6: Send ∆ to server

with non-uniform weights.

Synchronous FL methods need to aggregate and synchronize
clients after each round. Hence, concurrency in synchro-
nized FL is equal to the number of clients who participate
in a given round. In asynchronous methods, concurrency is
the number of clients in training at a given point in time. In
FedBuff (Algorithm 1), clients enter and finish local training
asynchronously. However, the server model is not updated
immediately upon receiving every client update. Instead, a
buffer is responsible for aggregating client updates, and a
server update only takes place once K client updates have
been aggregated, where K is a tunable parameter. It is im-
portant to note that, K is independent of concurrency —
the extra degree of freedom introduced by the buffer allows
the server to update more frequently than concurrency (as
in synchronous FL). This allows FedBuff to achieve data
efficiency at high concurrency while being compatible with
Secure Aggregation. Theoretical convergence guarantees
for FedBuff are provided in Appendix D.

Federated Learning with Buffered Asynchronous Aggregation

0 10 20 30 40 50
Staleness

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fn
(x

)

Production
Half Normal =1.25

Figure 2. Staleness distribution observed in production when train-
ing over millions of real clients for FedBuff. Overlaid on this
figure is the staleness distribution from our simulation when using
a half-normal with σ = 1.25. Our observation that execution time
on mobile clients exhibits a folded normal distribution is consistent
with previous findings (Wu et al., 2019).

3. Experiments
In this section, we experimentally compare the efficiency
and scalability of FedBuff with other synchronous and asyn-
chronous FL methods from the literature. We wish to un-
derstand how FedBuff behaves under different staleness
distributions, its scalability, and data efficiency.

Datasets, models, and tasks. We run experiments on two
problems from the LEAF benchmark (Caldas et al., 2018),
one text classification (binary sentiment analysis on Sent140
(Go et al., 2009)), and one image classification (multi-class
classification with CelebA (Liu et al., 2015)). We use the
standard non-iid client partitions from LEAF, and similar
models. For Sent140 (Go et al., 2009), we train an LSTM
classifier, where each Twitter account corresponds to a client.
For CelebA (Liu et al., 2015), we train the same convolu-
tional neural network classifier as LEAF, but with batch
normalization layers replaced by group normalization lay-
ers (Wu & He, 2018) as suggested in (Hsieh et al., 2020).
More details about datasets, models, and tasks are provided
in Appendix C.1.

Experimental setup. We implement all algorithms in Py-
Torch (Paszke et al., 2017). For asynchronous training, we
assume that clients arrive at a constant rate. Training dura-
tion of a client is sampled from a half-normal probability dis-
tribution. We chose this distribution because it best matches
the staleness distribution observed in our production FL sys-
tem, as illustrated in Figure 2. We also report results with
two other staleness distributions (uniform, as used in (Xie
et al., 2019), and exponential) below, demonstrating that
FedBuff performance improvements are consistent across
different staleness distributions. The best fit to the produc-
tion data is a half-normal distribution with σ = 1.25.

Baselines. We compare FedBuff with three synchronous
baselines, namely FedAvg (McMahan et al., 2016), Fed-

NEW NUMBERS
Sent140
Concurrently training usersFedAvgM FedBuff

10 53K 71K
100 89K 77K

1000 216K 125K

CelebA
Concurrently training usersFedAvgM FedBuff

10 5K 5K
100 18K 11K

1000 104K 27K

Figure 3. Number of client updates to reach target validation ac-
curacy. At low concurrency, FedBuff and FedAvgM perform sim-
ilarly. However, as concurrency increases, FedBuff outperforms
FedAvgM by increasingly larger amounts. In contrast to FedAvgM,
FedBuff’s data-efficiency and communication-efficiency degrade
less with concurrency.

Prox (Li et al., 2018), FedAvgM (Hsu et al., 2019), and
one asynchronous FL baseline, FedAsync (Xie et al., 2019).
We focus on non-adaptive methods here since FedBuff cur-
rently uses non-adaptive updates; FedBuff could also be
modified to use adaptive updates at the server, and we leave
this to future work. For more details see Appendix C.2.
Our implementation of FedBuff incorporates two practical
improvements, staleness scaling and learning rate normal-
ization, described in Appendix A.

Hyperparameters. For all algorithms, we run hyperpa-
rameter sweeps to tune learning rates η` and ηg, staleness
exponent α, server momentum β, and the proximal term µ
for FedProx. We fix β = 0 for FedAvg. Each client update
entails running one local epoch with batch size B = 32.
See Appendix C.3 for more on hyperparameter tuning.

Concurrency and K. In a practical FL deployment, only
a small fraction of all clients participate in training at any
point in time. As discussed earlier, concurrency — the max-
imum number of clients that train in parallel — significantly
impacts the performance of FL algorithms. For a fair com-
parison between synchronous and asynchronous algorithms,
we keep concurrency the same across all configurations that
are being compared. Recall the example in Figure 1 where
concurrency=100. For synchronous algorithms, this implies
that 100 clients are training and contributing in each round.
For asynchronous algorithms this implies that 100 clients
can train concurrently, and we can still vary the buffer size
K which will control how frequently updates occur.

Evaluation metrics. Synchronous FL algorithms are often
evaluated by the number of communication rounds taken
to converge to a target model accuracy. However, asyn-
chronous methods do not have the same notion of rounds;
clients join and leave asynchronously. For this reason, we
compare synchronous and asynchronous methods by the
number of client updates needed to reach a target accuracy.
For CelebA the target is 90% top-1 validation accuracy, and
for Sent140 the target is 69% classification accuracy. The
number of client updates measures both the computation

Federated Learning with Buffered Asynchronous Aggregation

Table 1. Number of client updates to reach target validation accuracy on CelebA and Sent140 (lower is better. Units = 1000 up-
dates).Concurrency, (M), is the maximum number of training clients at any point in time. We set M = 1000 for all methods and K = 10
for FedBuff. We ran CelebA for 240k and Sent140 for 600k updates. > 600 indicates the target accuracy was not reached for Sent140.

Dataset Target Accuracy FedBuff FedAsync FedAvgM FedAvg FedProx

CelebA 90% 27.1 28.7 (1.1×) 104 (3.8×) 231 (8.5×) 228 (8.4×)
Sent140 69% 124.7 308.9 (2.5×) 216 (1.7×) > 600 > 600

Table 2. Speed up of FedBuff over FedAvgM and FedAsync w.r.t
number of client updates to reach target validation accuracy, for
different staleness distributions. We setM = 1000 for all methods
and K = 10 for FedBuff. FedBuff’s speed up is consistent across
staleness distributions.

Staleness Speedup over Speedup over
Dataset Distribution FedAvgM FedAsync

Uniform 4.65× 1.64×
CelebA Half-Normal 3.83× 1.06×

Exponential 4.34× 1.07×
Uniform 1.25× 1.17×

Sent140 Half-Normal 1.73× 2.48×
Exponential 1.40× 1.96×

and communication required to reach the target accuracy.

Unless otherwise mentioned, the reported number of updates
does not account for over-selection, commonly used in prac-
tical implementations of synchronous FL methods. Since
we use the number of client updates to compare algorithms,
synchronous methods are not penalized for stragglers —
their behavior is independent of training time assumptions.

3.1. Results

Comparison of Methods. Table 1 shows the number of
client updates needed to converge to the target accuracy
on Sent140 and CelebA. For brevity, we only show results
from FedBuff with K=10. See Appendices B.1 and C.4 for
FedBuff results with other values of K and learning curves.
Compared to the best synchronous method in the experi-
ments (FedAvgM), FedBuff converges to target accuracy
1.7-3.8× faster. Compared to FedAsync, FedBuff converges
to target accuracy 1.1-2.5× faster.

Robustness to Staleness Distributions. To analyze the
sensitivity of FedBuff to different training time distributions,
we compare FedBuff against other competing algorithms
with different staleness distributions. Table 2 demonstrates
that FedBuff is robust and FedBuff’s speed up is consistent
across staleness distributions.

Scalablility of FedBuff. Figure 3 shows that FedBuff scales
much better to larger values of concurrency than FedAvgM,
the best-performing synchronous algorithm in our experi-

ments. FedBuff with K=10 scales better because it updates
the server model more frequently than FedAvgM when con-
currency is high. When concurrency is 10, both FedAvgM
and FedBuff update the server model after every 10 client
updates. However, when concurrency is 1000, FedBuff with
K = 10 updates the server model after every 10 client
updates, while FedAvgM updates the server model after
1000 client updates. One might argue that FedAvgM should
simply be run at lower concurrency (i.e. 10). However,
that leads to longer wall-clock training time because of less
parallelism being exploited, as shown in Figure 1 (left). For
synchronous methods, larger concurrency reduces training
time but is also less efficient. On the other hand, taking
server model steps more frequently is not free; FedBuff
has to deal with staleness as a consequence. Results show
that empirically, the benefits from frequently advancing the
server model outweigh the cost of staleness in client updates.

To summarize, synchronous FL algorithms have only one de-
gree of freedom: concurrency. Synchronous methods need
higher concurrency in practice to speed up training time by
increasing parallelism, but higher concurrency brings data
inefficiency. FedBuff has two degrees of freedom, concur-
rency and K, the frequency of server model updates. High
concurrency coupled with frequent server model updates
(small values of K) result in extremely fast training.

Large values of K. We saw that FedBuff trains fast when
run with small values ofK relative to the concurrency. How-
ever, large values of K are useful when providing user-level
DP guarantees because the noise added for user-level DP
decreases with K (Kairouz et al., 2021; McMahan et al.,
2018).

Next, we compare the training speed of FedBuff and syn-
chronous training in a setting where both algorithms pro-
duce a server update from the same number of aggregated
client updates. We fix concurrency at 1000, and have both
FedAvgM and FedBuff perform updates after aggregating
responses from K = 1000 clients. In this setting, FedBuff’s
main advantage is robustness to stragglers. It cannot take
advantage of frequent server updates, yet still needs to deal
with staleness.

Some synchronous FL systems (Bonawitz et al., 2019) use
over-selection, typically by 30%, to address stragglers. For
example, if 1000 users are needed to produce a server model

Federated Learning with Buffered Asynchronous Aggregation

Table 3. Wall-clock time to reach target validation accuracy on CelebA and Sent140 when K is large (Units for wall-clock time: mean
training time for one client. Units for Number of client updates: 1000 updates). Concurrency is the maximum number of training clients
at any point in time. For FedBuff, K=1000. FedAvgM with over-selection throws away results from the slowest 30% of users in each
round. These users are included when calculating the number of client updates

Dataset Algorithm Concurrency Wall-Clock Time Num Client Updates

FedBuff (K=1000) 1000 124 124
CelebA FedAvgM 1000 446 (3.6×) 104

FedAvgM, over-selection 1300 155 (1.25×) 135

FedBuff (K=1000) 1000 228 228
Sent140 FedAvgM 1000 927 (4.06×) 216

FedAvgM. over-selection 1300 322 (1.41×) 281

update, 1300 users may be selected. The round will finish
when the fastest 1000 users finish training. Results from
the slowest 300 users will be thrown away. Over-selection
makes synchronous FL more robust to stragglers, at the cost
of wasting some user compute and bandwidth.

Table 3 reports the wall-clock training time and number
of client updates to reach target accuracy for FedBuff and
FedAvgM with and without over-selection. We assume a
half-normal training duration distribution since that matches
the behavior observed in our production system (see Fig-
ure 2). We find that over-selection reduces the impact of
stragglers significantly. However, even with over-selection,
FedBuff is 25%-41% faster than FedAvgM, despite using
30% lower concurrency.

4. Related Work
We compared FedBuff with three synchronous algorithms
— FedProx, FedAvgM and FedAvg — in Section 3. Fed-
Prox (Li et al., 2018) improved upon the FedAvg (McMahan
et al., 2016) algorithm by adding a proximal term µ to the
local SGD solver. FedAvgM (Reddi et al., 2020) improves
synchronous FL convergence by adding server momentum.
Adaptive methods such as FedAdam have comparable per-
formance to FedAvgM (Reddi et al., 2020).

Previous works (Xie et al., 2019; van Dijk et al., 2020; Chai
et al., 2020; Chen et al., 2019; Wu et al., 2020) also proposed
asynchronous FL methods. However, the methods proposed
in those papers generally include aspects that make them
impractical for internet-scale deployment, e.g., involving
profiling client speed (Chai et al., 2020; Li et al., 2021),
assuming clients have same speed (van Dijk et al., 2020),
requiring information about participating clients (Wu et al.,
2020), frequently broadcasting the server model updates
to all participating clients (Chen et al., 2019), or being
incompatible with secure aggregation (Xie et al., 2019).

Asynchronous stochastic optimization in shared-memory
and distributed-memory systems has also been widely-

studied (Bertsekas & Tsitsiklis, 1989; Chaturapruek et al.,
2015; Niu et al., 2011; Lian et al., 2015; 2018; Chen et al.,
2016; Zheng et al., 2017; Mania et al., 2017; Leblond et al.,
2017; Reddi et al., 2015; Assran et al., 2020). In this work,
we show that in FL systems with a large number of clients,
the source of speed-up is not only due to avoiding stragglers,
but also achieving better data efficiency at high concurrency.

Many proposals aim understand and characterize conditions
under which linear speed-up for distributed SGD and lo-
cal SGD is achievable (Lin et al., 2018; Yu et al., 2019a;
Woodworth et al., 2020; Haddadpour et al., 2019). It is
well accepted that increasing concurrency eventually sat-
urates beyond certain batch size in synchronized methods
(Yin et al., 2017; Ott et al., 2018; Goyal et al., 2017; Ott
et al., 2018; You et al., 2019; 2018; 2017; Shallue et al.,
2018). However, most existing research focuses on scalabil-
ity across tens of server workers, each having iid-data - very
different from the FL setting.

5. Conclusions
In this paper, we propose FedBuff, an asynchronous training
scheme for FL that incorporates a private buffer. Compared
to synchronous FL proposals, FedBuff is more scalable
to large values of concurrency because it can update the
server model more frequently. Additionally, FedBuff is
robust to stragglers. Compared to asynchronous FL pro-
posals, FedBuff is more private as it is compatible with
Secure Aggregation. We analyze the convergence behavior
of FedBuff in the non-convex setting. Empirical evaluation
shows that FedBuff is up to 3.8× faster than synchronous
FL (FedAvgM (Hsu et al., 2019)), and up to 2.5× faster than
asynchronous FL (FedAsync (Xie et al., 2019)). Addition-
ally, FedBuff is robust to different staleness distributions.

FedBuff, being an asynchronous method, may be harder to
debug than synchronous methods. In the setting where
K=concurrency, FedBuff does update the server model
more frequently than synchronous methods, and then its
only advantage is robustness to stragglers. Our empirical

Federated Learning with Buffered Asynchronous Aggregation

evaluation makes assumptions about staleness distributions.
We have validated these assumptions in a production sys-
tem and also simulate with different distributions. However,
under other staleness assumptions, FedBuff may behave
differently. FedBuff adds an extra hyperparameter (stale-
ness exponent) that needs to be tuned. We leave a rigorous
analysis of FedBuff with differential privacy as future work.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Assran, M., Aytekin, A., Feyzmahdavian, H. R., Johansson,
M., and Rabbat, M. G. Advances in asynchronous parallel
and distributed optimization. Proceedings of the IEEE,
108(11):2013–2031, 2020.

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, 1989.

Bittau, A., Erlingsson, Ú., Maniatis, P., Mironov, I., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes,
J., and Seefeld, B. Prochlo: Strong privacy for analytics
in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 441–459, 2017.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečnỳ, J., Mazzocchi,
S., McMahan, H. B., et al. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046,
2019.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for feder-
ated learning on user-held data. In NIPS Workshop
on Private Multi-Party Machine Learning, 2016. URL
https://arxiv.org/abs/1611.04482.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Chai, Z., Chen, Y., Zhao, L., Cheng, Y., and Rangwala,
H. Fedat: A communication-efficient federated learning
method with asynchronous tiers under non-iid data. arXiv
preprint arXiv:2010.05958, 2020.

Chaturapruek, S., Duchi, J. C., and Ré, C. Asynchronous
stochastic convex optimization: the noise is in the noise
and sgd don’t care. Advances in Neural Information
Processing Systems, 28:1531–1539, 2015.

Chen, J., Monga, R., Bengio, S., and Jozefowicz, R. Revisit-
ing distributed synchronous sgd. In International Confer-
ence on Learning Representations Workshop Track, 2016.
URL https://arxiv.org/abs/1604.00981.

Chen, Y., Ning, Y., Slawski, M., and Rangwala, H. Asyn-
chronous online federated learning for edge devices with
non-iid data. arXiv preprint arXiv:1911.02134, 2019.

Emanuel, H. Pysyft, pytorch and Intel SGX: Secure ag-
gregation on trusted execution environments. Avail-
able online at https://blog.openmined.org/
author/hericles/, version dated April 15, 2020.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A.,
Song, S., Talwar, K., and Thakurta, A. Encode, shuffle,
analyze privacy revisited: Formalizations and empirical
evaluation. arXiv preprint arXiv:2001.03618, 2020.

Go, A., Bhayani, R., and Huang, L. Twitter sentiment
classification using distant supervision. CS224N project
report, Stanford, 1(12):2009, 2009.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017. URL
http://arxiv.org/abs/1706.02677.

Haddadpour, F. and Mahdavi, M. On the convergence of lo-
cal descent methods in federated learning. arXiv preprint
arXiv:1910.14425, 2019.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and
Cadambe, V. R. Local sgd with periodic averaging:
Tighter analysis and adaptive synchronization. arXiv
preprint arXiv:1910.13598, 2019.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction,
2019.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. The
non-iid data quagmire of decentralized machine learning.
In International Conference on Machine Learning, pp.
4387–4398. PMLR, 2020.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A.,
Bengio, Y., and Storkey, A. J. Three factors influencing
minima in SGD. CoRR, abs/1711.04623, 2017. URL
http://arxiv.org/abs/1711.04623.

https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1604.00981
https://blog.openmined.org/author/hericles/
https://blog.openmined.org/author/hericles/
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1711.04623

Federated Learning with Buffered Asynchronous Aggregation

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learn-
ing without sampling or shuffling. arXiv preprint
arXiv:2103.00039, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143. PMLR, 2020.

Karl, R., Takeshita, J., and Jung, T. Cryptonite: A frame-
work for flexible time-series secure aggregation with on-
line fault tolerance. 2020. https://eprint.iacr.
org/2020/1561.

Leblond, R., Pedregosa, F., and Lacoste-Julien, S. ASAGA:
Asynchronous Parallel SAGA. In Singh, A. and Zhu,
J. (eds.), Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pp. 46–54, Fort Lauderdale, FL, USA, 20–22 Apr
2017. PMLR. URL http://proceedings.mlr.
press/v54/leblond17a.html.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

Li, X., Yang, W., Wang, S., and Zhang, Z. Communica-
tion efficient decentralized training with multiple local
updates. 2019.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. 2020.

Li, X., Qu, Z., Tang, B., and Lu, Z. Stragglers are not disas-
ter: A hybrid federated learning algorithm with delayed
gradients. arXiv preprint arXiv:2102.06329, 2021.

Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous
parallel stochastic gradient for nonconvex optimization.
Advances in neural information processing systems, 2015.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. In In-
ternational Conference on Machine Learning, pp. 3043–
3052. PMLR, 2018.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchan-
dran, K., and Jordan, M. I. Perturbed iterate analysis for
asynchronous stochastic optimization. SIAM Journal on
Optimization, 27(4):2202–2229, 2017.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629, 2016.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In International Conference on Learning Representations,
2018.

Niu, F., Recht, B., Re, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradient
descent, 2011.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling neu-
ral machine translation. arXiv preprint arXiv:1806.00187,
2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pennington, J., Socher, R., and Manning, C. D. In EMNLP.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
On variance reduction in stochastic gradient descent and
its asynchronous variants. Advances in neural informa-
tion processing systems, 2015.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of data
parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.
Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489, 2017.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25:
2951–2959, 2012.

Stich, S. U. Local sgd converges fast and communicates
little. 2019.

https://eprint.iacr.org/2020/1561
https://eprint.iacr.org/2020/1561
http://proceedings.mlr.press/v54/leblond17a.html
http://proceedings.mlr.press/v54/leblond17a.html

Federated Learning with Buffered Asynchronous Aggregation

van Dijk, M., Nguyen, N. V., Nguyen, T. N., Nguyen, L. M.,
Tran-Dinh, Q., and Nguyen, P. H. Asynchronous feder-
ated learning with reduced number of rounds and with
differential privacy from less aggregated gaussian noise.
arXiv preprint arXiv:2007.09208, 2020.

Woodworth, B., Patel, K. K., Stich, S., Dai, Z., Bullins, B.,
Mcmahan, B., Shamir, O., and Srebro, N. Is local sgd
better than minibatch sgd? In International Conference
on Machine Learning, pp. 10334–10343. PMLR, 2020.

Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury,
S., Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia,
B., Leyvand, T., Lu, H., Lu, Y., Qiao, L., Reagen, B.,
Spisak, J., Sun, F., Tulloch, A., Vajda, P., Wang, X., Wang,
Y., Wasti, B., Wu, Y., Xian, R., Yoo, S., and Zhang, P.
Machine learning at facebook: Understanding inference
at the edge. pp. 331–344, 2019. doi: 10.1109/HPCA.
2019.00048.

Wu, W., He, L., Lin, W., Mao, R., Maple, C., and Jarvis,
S. A. Safa: a semi-asynchronous protocol for fast feder-
ated learning with low overhead. IEEE Transactions on
Computers, 2020.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Xie, C., Koyejo, S., and Gupta, I. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos,
D. S., Ramchandran, K., and Bartlett, P. L. Gradi-
ent diversity empowers distributed learning. CoRR,
abs/1706.05699, 2017. URL http://arxiv.org/
abs/1706.05699.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer,
K. Imagenet training in minutes. In Proceedings of the
47th International Conference on Parallel Processing, pp.
1–10, 2018.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Yu, H., Jin, R., and Yang, S. On the linear speedup analysis
of communication efficient momentum sgd for distributed
non-convex optimization. In International Conference on
Machine Learning, pp. 7184–7193. PMLR, 2019a.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 5693–5700, 2019b.

Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.-M.,
and Liu, T.-Y. Asynchronous stochastic gradient descent
with delay compensation. In International Conference on
Machine Learning, pp. 4120–4129. PMLR, 2017.

http://arxiv.org/abs/1706.05699
http://arxiv.org/abs/1706.05699

Supplementary Material for
Federated Learning with Buffered Asynchronous Aggregation

A. Practical Improvements
Staleness scaling. Corollary 1 is derived based on constant learning rate. Equation (5) suggests a server learning rate
adaptive to the staleness can potentially be beneficial in practice. To control the effect of staleness τi(t) in client i’s
contribution to the t-th server update, we adopt a polynomial staleness function, s(τi(t)) := 1/(1 + t)α, as suggested in (Xie
et al., 2019) to adaptively discount stale client terms when they are aggregated at the server.

Learning rate normalization. In practical FL implementations, each client is typically asked to perform a fixed number of
epochs over their local training data, rather than a fixed number Q of steps, using a server-prescribed batch size B which is
the same for all clients. Because different clients have different amounts of data, some clients may only have a fraction of
a batch. Previous work has suggested that increasing batch size and learning rate are complementary (Goyal et al., 2017;
Smith et al., 2017; Jastrzebski et al., 2017). When a client performs a local update with a batch size smaller than B, we have
it linearly scale the learning rate used for that local step; i.e., ηLRN := η` · nti,q/B, where nti,q ≤ B is actual batch size used
for the step. We find that this small change can improve the behavior of asynchronous FL. A theoretical justification and
detailed comparison is provided in Appendix B.2.

B. Additional Experiments
B.1. FedBuff with Different Values of K

In Table B.1 we present the number of client updates to reach validation accuracy on CelebA and Sent140 for different
values of K. As with all experiments, we tune for the best learning rates and server momentum. We find that FedBuff
with lower values of K reaches high accuracy quicker on CelebA, though increasing K from 1 to 10 speeds up training on
Sent140. Note that there is a point of diminishing returns as K increases. We show the training curves of FedBuff along
with other algorithms in Appendix C.4.

Table B.1. Number of client updates (lower is better) to reach validation accuracy on CelebA (90%) and Sent140 (69%). We setM = 1000
for all methods (Units = 1000 updates).

Dataset K Number of Client Updates

1 20.8
CelebA 10 27.1

100 57.6

1 190.0
Sent140 10 124.7

100 178.2

B.2. Learning Rate Normalization (LR-Norm)

B.2.1. THEORETICAL JUSTIFICATION

Recall that LR-Norm aims to address the situation where a client performing local updates may need to perform an update
using a batch size b smaller than the server-prescribed batch size B. This may occur when processing a batch at the end
of one epoch, including the first batch if the client has fewer than B samples in total. Since this only pertains to the local
updates performed at clients, let us simply write such an update as

yq = yq−1 − ηqg(bq)q , (2)

Federated Learning with Buffered Asynchronous Aggregation

without referring to any specific client index i or global iteration index t. Here g(bq)q denotes a stochastic gradient of F (the
client’s local objective) evaluated at yq using batch size bq .

Assume that F is L-smooth, i.e.,
‖∇F (y)−∇F (y′)‖ ≤ L ‖y − y′‖ .

Also assume that the stochastic gradients are unbiased and have variance satisfying a weak growth condition. Specifically,
assume that with batch size bq = 1,

E[g(1)q |yq] = ∇F (yq),

E[
∥∥∥g(1)q −∇F (yq)

∥∥∥2] ≤ σ2
` +M ‖∇F (yq)‖2 .

Note that in the proof of Theorem 1, we make the stronger assumption of bounded variance, corresponding to M = 0.

Furthermore, suppose that a mini-batch stochastic gradient g(n)q with batch size bq > 1 is obtained by averaging the gradients
evaluated at bq independent and identically distributed samples. Thus,

E[g(bq)q |yq] = ∇F (yq),

E[
∥∥∥g(bq)q −∇F (yq)

∥∥∥2] ≤ σ2
`

bq
+
M

bq
‖∇F (yq)‖2 .

Uniform batch sizes. If all steps use the same batch size bq = B with constant step-size ηq = η` satisfying

0 < η` ≤
1

L(M/B + 1)
,

then it is well-known that the SGD iterates satisfy

E

[
1

Q

Q∑
q=1

‖∇F (yq)‖2
]
≤ 2(F (y1)− F ∗)

η`Q
+
η`Lσ

2
`

B
;

see, for example, Theorem 4.8 in L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale machine
learning,” SIAM Review, 2019.

Non-uniform batch sizes. Now suppose that some steps will use batch size 1 < bq ≤ B. In this case one can show the
following result.

Theorem. Consider updates as in (2) with per-iteration batch size

ηq = η`
bq
B
,

and let AQ =
∑Q
q=1 ηq = η`

B

∑Q
q=1 bq . Suppose that η` satisfies

0 < η` ≤
1

L(M/B + 1)
.

Then

E

[
1

AQ

Q∑
q=1

‖∇F (yq)‖2
]
≤ 2(F (y1)− F ∗)

AQ
+
η`Lσ

2
`

B
.

First, note that AQ is strictly increasing in Q, since 1 ≤ bq ≤ B. In the special case where bq = B for all q we exactly
recover the result above for uniform batch sizes. More generally, when bq < B for some steps, the asymptotic residual
is identical to the case with uniform-batch size. This justifies using the LR-Norm step-size rule ηq = η`bq/B when
encountering batches of size bq < B. The proof follows from similar arguments to those of Theorem 4.8 in L. Bottou,
F. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” SIAM Review, 2019.

Federated Learning with Buffered Asynchronous Aggregation

Proof. Let Eq denote expectation with respect to all randomness up to step yq . Because F is L-smooth,

Eq[F (yq+1)]− F (yq) ≤ −ηq
〈
∇F (yq),Eq[g(bq)q]

〉
+
η2qL

2
Ek[
∥∥∥g(bq)q

∥∥∥2].

From the weak growth assumption, it follows that

Ek[
∥∥∥g(bq)q

∥∥∥2] ≤ σ2
`

bq
+

(
M

bq
+ 1

)
‖∇F (yq)‖2 ,

and thus

Eq[F (yq+1)]− F (yq) ≤ −ηq ‖∇F (yq)‖2 +
η2qL

2

(
σ2
`

bq
+

(
M

bq
+ 1

)
‖∇F (yq)‖2

)
= −ηq

(
1− ηqL

2

(
M

bq
+ 1

))
‖∇F (yq)‖2 +

η2qLσ
2
`

2bq
.

Based on the relationship ηq = η`bq/B and the upper-bound assumed on η`, we have

ηqL

2

(
M

bq
+ 1

)
≤ 1

2
.

Consequently,

Eq[F (yq+1)]− F (yq) ≤ −
ηq
2
‖∇F (yq)‖2 +

η2qLσ
2
`

2bq
.

Rearranging, we get

ηq
2
‖∇F (yq)‖2 ≤ F (yq)− Eq[F (yq+1)] +

η2qLσ
2
`

2bq
.

Summing both sides over q = 1, . . . , Q and taking the total expectation yields

Q∑
q=1

ηq
2
E[‖∇F (yq)‖2] ≤ F (y1)− E[F (yQ)] +

Q∑
q=1

η2qLσ
2
`

2nq

≤ F (y1)− F ∗ +

Q∑
q=1

η2qLσ
2
`

2nq
.

Now, multiplying both sides by 2/AQ, we obtain

1

AQ

Q∑
q=1

ηqE[‖∇F (yq)‖2] ≤ 2(F (y1)− F ∗)
AQ

+
1

AQ

Q∑
q=1

η2qLσ
2
`

nq

=
2(F (y1)− F ∗)

AQ
+
η`Lσ

2
`

B
.

B.2.2. EMPIRICAL EVALUATION

In Table B.2, we compare LR-Norm against two other weighting schemes: Example Weight where the weight is the number
of training examples for each client, and Uniform Weight where all clients have weight of 1. We see that LR-Norm performs
competitively on CelebA. For CelebA, all weighting schemes, Uniform, Example, and LR-Norm perform similarly. This is
because all clients in CelebA have one batch of data and number of examples per client is fairly centered around the mean, as
it is illustrated in Figure B.1. On the other hand, LR-Norm significantly outperforms Example Weight and Uniform Weight
on Sent140. LR-Norm is beneficial when there is a high degree of data imbalance across clients, as in Sent140. Sent140
is more representative of real world FL applications where there is a long tail in the number of examples and number of
batches per client, as it is illustrated in Figure B.2.

Federated Learning with Buffered Asynchronous Aggregation

Table B.2. Number of client updates (lower is better) to reach validation accuracy on CelebA (90%) and Sent140 (69%). We setM = 1000
for all methods. We compare LR-Norm against two other popular weighting schemes. Example weight is when the weight is the number
of training examples for each client. Uniform weight is where all clients have weights of 1. (Units = 1000 updates.)

Dataset K LR-Norm Example Weight Uniform Weight

1 20.8 23.9 20.7
CelebA 10 27.1 25.5 28.7

100 57.6 57.6 54.4

1 190.0 201.9 201.9
Sent140 10 124.7 207.9 136.6

100 178.2 570.3 231.7

C. Experiment Details
C.1. Datasets and Models

Sent140. We train a sentiment classifier on tweets from the Sent140 dataset (Caldas et al., 2018; Go et al., 2009) with a
two-layer LSTM binary classifier. The LSTM binary classifier contains 100 hidden units with a top 10,000 pretrained word
embedding from 300D GloVe (Pennington et al.). The model has a max sequence length of 25 characters. The model first
embeds each of the characters into a 300-dimensional space by looking up GloVe, pass through 2 LSTM layers and a 128
hidden unit linear layer to output labels 0 or 1. We set our dropout rate to 0.1. We split the data into 80% training set, 10%
validation set, and 10% test set using script provided by (Caldas et al., 2018). Due to memory constraint, we use 15% of the
entire dataset using the script provided by (Caldas et al., 2018), with split seed = 1549775860.

CelebA. We study an image classification problem on the CelebA dataset (Liu et al., 2015; Caldas et al., 2018) using a four
layer CNN binary classifier with dropout rate of 0.1, stride of 1, and padding of 2. As it is standard with image datasets, we
preprocess train, validation, and test images; we resize and center crop each image to 32× 32 pixels, then normalize by 0.5
mean and 0.5 standard deviation.

C.2. Implementation Details

We implemented all algorithms in Pytorch (Paszke et al., 2017) and evaluated them on a cluster of machines, each with
eight NVidia V100 GPUs. Independently, we built a simulator to simulate large-scale federated learning environments. The
simulator can realistically simulate clients, server, communication channels between clients and server, model aggregation
schemes, and local training of clients. We intend to open source the simulator, making it available for the research
community.

For our experiments, we assume clients arrive to the FL system at a constant rate. To simulate device heterogeneity, we
sample each client training duration from a half-normal, uniform, or exponential distribution. Moreover, our implementation
has two other important distinctions. First, each client does one epoch of training over its local data; this distinction stems

5 10 15 20 25 30 35
Number of Examples

101

102

103

Nu
m

be
r o

f U
se

rs

Figure B.1. Statistics for CelebA dataset. For this dataset, we use batch size of 32, hence each user has a single batch.

Federated Learning with Buffered Asynchronous Aggregation

0 50 100 150 200 250 300
Number of Examples

100

101

102

103

104

105

Nu
m

be
r o

f U
se

rs

2 4 6 8 10
Number of Batches (Batch Size 32)

100

101

102

103

104

105

Nu
m

be
r o

f U
se

rs

Figure B.2. Statistics for Sent140 dataset.

from two observations in our production stack: that our FL production stack has plenty of users to train on, and that we train
small capacity models in FL (e.g., less than 10 million parameters) because of bandwidth and client compute. Second, we
use the weighted sum of the client updates instead of the weighted average. This is because each client update has different
levels of staleness; taking the average cannot capture the true contribution for each client.

C.3. Hyperparameters

For all experiments, we tune hyperparameters using Bayesian optimization (Snoek et al., 2012). For optimizer on clients,
we use minibatch SGD for all tasks. We select the best hyperparameters based on the number of rounds to reach target
validation accuracy for each dataset.

C.3.1. HYPERPARAMETER RANGES

Below, we show the range for the client learning rate (η`), server learning rate (ηg), server momentum (β), proximal term
(µ) sweep ranges.

β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
η` ∈ [1e−8, 10000]

ηg ∈ [1e−8, 10000]

µ ∈ {0.001, 0.01, 0.1, 1}

C.3.2. BEST PERFORMING HYPERPARAMETERS

Table C.1 illustrates the best value for client and server learning rates (η`, ηg), server momentum (β), and proximal term (µ)
for tasks in Table 1. For experiments in Table 3, we set staleness exponent α = 10. We set α = 0.5 for all other experiments.

Table C.1. The best performing hyperparameters for Table 1

FedBuff FedAsync FedAvgM FedAvg FedProx

η` = 4.7e−6 η` = 5.7 η` = 1.1e−1 η` = 1.0e2 η` = 4.9e−4

CelebA ηg = 1.0e3 ηg = 2.8e−3 ηg = 2.4e−1 ηg = 1.6e−3 ηg = 1.0e2

β = 3.0e−1 β = 8.3e−1 µ = 1.0e−2

η` = 1.3e1 η` = 1.7e1 η` = 1.5 η` = 2.6e−3 η` = 2.0e−3

Sent140 ηg = 4.9e−2 ηg = 1.5e−2 ηg = 3.4e−1 ηg = 1.0e3 ηg = 1.03

β = 5.0e−1 β = 9.0e−1 µ = 1.0e−3

Federated Learning with Buffered Asynchronous Aggregation

0 200 k 400 k 600 k
Number of Client Updates

45

50

55

60

65

70
Ac

cu
ra

cy
 (%

)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 200 k 400 k 600 k
Number of Client Updates

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 200 k 400 k 600 k
Number of Client Updates

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

Figure C.1. Validation accuracy over the course of training for all algorithms on Sent140 for different distributions (left: uniform, center:
half-normal, right: exponential) of staleness.

0 200 k 400 k 600 k
Number of Client Updates

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Tr
ai

n
Lo

ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 200 k 400 k 600 k
Number of Client Updates

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Tr
ai

n
Lo

ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 200 k 400 k 600 k
Number of Client Updates

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Tr
ai

n
Lo

ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

Figure C.2. Train loss over the course of training for all algorithms on Sent140 for different distributions (left: uniform,
center: half-normal, right: exponential) of staleness.

C.4. Learning Curves

In this appendix we show the learning curves for each algorithm in Figures C.1, C.3, C.2 and C.4. These figures demonstrate
FedBuff’s robustness to different staleness distributions. Synchronous FL algorithms, FedAvgM, FedAvg and FedProx, are
unaffected by the change in staleness distribution because they simply wait for all clients in the round.

For both CelebA and Sent140, FedBuff with K = 10 can reach the target validation accuracy quicker than other values of
K. At K = 10, FedBuff appears to have the optimal balance between speed and variance reduction.

We find that algorithms without momentum, FedProx and FedAvg, have erratic train loss curves. This highlights the
importance of momentum tuning in FL. The erratic train loss curves for FedProx and FedAvg is consistent with findings in
(Li et al., 2018).

D. Convergence Analysis
This section provides a convergence guarantee for FedBuff in the smooth, non-convex setting. A summary of the notation
used is provided in Table C.2. Most previous work analyzes synchronous federated learning methods (Lin et al., 2018;
Li et al., 2018; Reddi et al., 2020; Li et al., 2020; Stich, 2019; Yu et al., 2019b; Li et al., 2019; Haddadpour & Mahdavi,
2019; Karimireddy et al., 2020). In contrast, in FedBuff, clients are trained asynchronously and the client updates are first

Federated Learning with Buffered Asynchronous Aggregation

0 50 k 100 k 150 k
Number of Client Updates

50

55

60

65

70

75

80

85

90
Ac

cu
ra

cy
 (%

)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 50 k 100 k 150 k
Number of Client Updates

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 50 k 100 k 150 k
Number of Client Updates

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

Figure C.3. Validation accuracy over the course of training for all algorithms on CelebA for different distributions (left:
uniform, center: half-normal, right: exponential) of staleness.

0 50 k 100 k 150 k
Number of Client Updates

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 50 k 100 k 150 k
Number of Client Updates

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

0 50 k 100 k 150 k
Number of Client Updates

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

FedBuff-1
FedBuff-10
FedBuff-100
FedAvg
FedAvgM
FedProx
FedAsync

Figure C.4. Train loss over the course of training for all algorithms on CelebA for different distributions (left: uniform,
center: half-normal, right: exponential) of staleness..

aggregated in a buffer before producing a global model update. Hence, it is important to understand the relationship between
client computation and global communication under asynchrony and buffered aggregation. We use the following notation
throughout: [m] represents the set of all client indices, ∇Fi(w) denotes the gradient with respect to the loss on client i’s
data, gi(w; ζi) denotes the stochastic gradient on client i, K is the buffer size for aggregation before producing each server
update, and Q denotes the number of local steps taken by each client. We make the following assumptions in the analysis.
Assumption 1. (Unbiasedness of client stochastic gradient) Eζi [gi(w; ζi))] = ∇Fi(w).
Assumption 2. (Bounded local and global variance) for all clients i ∈ [m],

Eζi|i[‖gi(w; ζi)−∇Fi(w)‖2] ≤ σ2
` ,

and
1

m

m∑
i=1

‖∇Fi(w)−∇f(w)‖2 ≤ σ2
g .

Assumption 3. (Bounded gradient) ‖∇Fi‖2 ≤ G for all i ∈ [m].
Assumption 4. (Lipschitz gradient) for all client i ∈ [m], the gradient is L-smooth,

‖∇Fi(w)−∇Fi(w′)‖
2 ≤ L ‖w − w′‖2

Federated Learning with Buffered Asynchronous Aggregation

Table C.2. Summary of notation

Description Symbol

number of server updates, server update index T , t
set of clients updates used in server update t St

number of clients, client index m, i or k
number of local steps per round, round index Q, q

server model after t steps wt

stochastic gradient at client i gi(w; ζi) := gi(w)
local learning rate ηl

global learning rate ηg
number of clients in update K

local and global gradient variance σ2
` , σ2

g

delay/staleness of client i’s model update for the tth server update τi(t)
maximum delay τmax

Assumption (1) - (4) are commonly made in analyzing federated learning algorithms(Reddi et al., 2020; Li et al., 2020;
Stich, 2019; Yu et al., 2019b). We make an additional assumption on the delay under asynchrony.

Assumption 5. (Bounded delay) For all clients i ∈ [m] and for each server step t, the delay τi(t) between the checkpoint in
which FedBuff-client is triggered, and the checkpoint in which ∆i is used to modify the global model is not larger
than τmax.

Theorem 1. Let η(q)` be the local learning rate of client SGD in the q-th step, and define α(Q) :=
∑Q−1
q=0 η

(q)
` , β(Q) :=∑Q−1

q=0 (η
(q)
`)2. Choosing ηgη

(q)
` KQ ≤ 1

L for all local steps q = 0, · · · , Q − 1, the global model iterates in FedBuff
(Algorithm 1) achieve the following ergodic convergence rate

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2
(
f(w0)− f(w∗)

)
ηgα(Q)TK

+ 3L2Qβ(Q)
(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

+
L

2

ηgβ(Q)

α(Q)
σ2
` . (3)

The proof of Theorem 1 is provided in Appendix E.

Corollary 1. Choosing constant local learning rate η` and ηg such that ηgη`KQ ≤ 1
L , the global model iterates in FedBuff

(Algorithm 1) are bounded by

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2F ∗

ηgη`QKT
+
L

2
ηgη`σ

2
` + 3L2Q2η2`

(
η2gK

2τ2max + 1
)
σ2, (4)

where F ∗ := f(w0)− f(w∗) and σ2 := σ2
` + σ2

g +G. Further, choosing η` = O
(
1/
√
TKQ

)
, for all ηg > 0 satisfying

ηgη`KQ ≤ 1
L and sufficiently large T , we have

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2] ≤ O(F ∗

ηg
√
TKQ

)
+O

(
ηgσ

2
`√

TKQ

)
+O

(
Qσ2

TK

)
+O

(
η2gQKσ

2τ2max

T

)
. (5)

Corollary 1 yields several insights:

Worst-case iteration complexity. Taking ηg = O (1) and satisfying the step-size constraint in Corollary 1, the convergence
rate of FedBuff is dominated by O

(
σ2
`/
√
TKQ

)
for large T . FedBuff requires T = O

(
1/(ε2KQ)

)
server updates to

guarantee (1/T)
∑T
t=1 E[‖∇f(wt)‖2] ≤ ε. This is of the same order as the dominant term in synchronous methods such as

FedAvg and SCAFFOLD (Karimireddy et al., 2020).

Federated Learning with Buffered Asynchronous Aggregation

Relation between communication and local computation. Note that in equation (5), increasing the number of local
steps Q improves the first term related to F ∗ and the second term related to the local variance σ2

` , but increases the third and
fourth term. The first term with constant F ∗ characterizes the distance to optimal loss. Hence, increasing local computation
Q reduces the loss faster, but it also leads to more drift, enlarging the effect of the global variance σ2 and the impact of the
worst-case delay τmax.

Effect of server learning rate ηg . In (5), ηg is reciprocal in the first term compared to the second and the fourth term.
When taking a large server learning rate, the loss F ∗ decreases faster, but the effect of variance σ2

` , σ2, and staleness τmax

are amplified. On the other hand, a smaller server learning rate ηg controls the variance and the effect of delay at the cost of
amplifying the dominant term involving F ∗. This suggests that in practice it may be better to initially have larger ηg , when
F ∗ dominates the error, and to reduce ηg later in training then the local noise σ2

` dominates the error.

Effect of staleness. The effect of delay between the initialization of ClientOpt and the server update dissipates at the
rate of 1/T according to the fourth term in (5). The effect of staleness can be controlled by taking the server learning rate as
ηg = O (1/τmax), at the cost of slower convergence of the loss term F ∗.

E. Proof of Convergence Rate
In this appendix, we prove the main convergence result for FedBuff.

Observe that FedBuff updates can be described succinctly as

wt+1 = wt + ηg∆
t

= wt + ηg
1

K

∑
k∈St

(
−η`

Q∑
q=1

gk(y
t−τk(t)
k,q)

)
,

where St denotes the set of clients that contribute to the t’th server update, and τk(t) ≥ 1 is the staleness of an update
contributed by client k to the t’th server update. Specifically, when k ∈ St, the update returned by client k was computed by
starting from wt−τk(t) and performing Q local gradient steps. When τk(t) = 1 there is no staleness in the update, and more
generally τk(t) > 1 corresponds to some staleness; i.e., t− τk(t) server updates have taken place between when the client
last pulled a model from the server and when the client’s update is being incorporated at the server.

In addition to the assumptions stated in Appendix D, in the proof below we assume that St is a uniform subset [n]; i.e., in
any given round any client is equally likely to contribute. This can be justified in practice as follows. To avoid having any
client contribute more than once to any update, after the client returns an update contributing to ∆

t
, the server can only

sample that client after the server has performed another update.

We first state a useful lemma.

Lemma 1. E
[
‖gk‖2

]
≤ 3(σ2

` + σ2
g +G), where the total expectation E[·] is evaluated over the randomness with respect

to client participation and the stochastic gradient taken by a client.

Proof. From the law of total expectation we have E = Ek∼[m]Eζk|k. Hence,

E
[
‖gk(w)‖2

]
= Ek∼[m]Eg|k

[
‖gk(w)−∇Fk(w) +∇Fk(w)−∇f(w) +∇f(w)‖2

]
≤ 3Ek∼[m]Eg|k

[
‖gk(w)−∇Fk(w)‖2 + ‖∇Fk(w)−∇f(w)‖2 + ‖∇f(w)‖2

]
= 3(σ2

` + σ2
g +G)

(6)

E.1. Proof of Theorem 1

Theorem. Let η(q)` be the local learning rate of client SGD in the q-th step, and define α(Q) :=
∑Q−1
q=0 η

(q)
` , β(Q) :=∑Q−1

q=0 (η
(q)
`)2. Choosing ηgη

(q)
` KQ ≤ 1

L for all local steps q = 0, · · · , Q − 1, the global model iterates in FedBuff

Federated Learning with Buffered Asynchronous Aggregation

(Algorithm 1) achieve the following ergodic convergence rate

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2
(
f(w0)− f(w∗)

)
ηgα(Q)TK

+ 3L2Qβ(Q)
(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

+
L

2

ηgβ(Q)

α(Q)
σ2
` (7)

Proof. By L-smoothness assumption,

f(wt+1) ≤ f(wt)− ηg〈∇f(wt),∆
t〉+

Lη2g
2

∥∥∥∆
t
∥∥∥2

≤ f(wt)−ηg
∑
k∈St

〈
∇f(wt),∆

t−τk(t)
k

〉
︸ ︷︷ ︸

T1

+
Lη2g

2

∥∥∥∥∥∑
k∈St

∆
t−τk(t)
k

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

(8)

where ∆
t−τk(t)
k is the client delta which is trained using the global model after t− τk(t) updates as initialization. We will

next derive the upper bounds on T1 and T2.

T1 = −ηg
∑
k∈St

〈
∇f(wt),

Q−1∑
q=0

η
(q)
` gk(y

t−τk(t)
k,q)

〉
= −ηg

∑
k∈St

Q−1∑
q=0

η
(q)
`

〈
∇f(wt), gk(y

t−τk(t)
k,q)

〉
(9)

Using conditional expectation, the expectation operator can be written as E[·] := EHEkEgk|k,H[·], where EH is the
expectation over the history of the iterates, Ek is evaluated over the randomness over the distribution of clients k ∼ [m]
checking in at time-step t, and the inner expectation operates over the stochastic gradient of one step on a client. Hence,
following unbiasedness,

E[T1] =− ηgEH
∑
k∈St

Q−1∑
q=0

η
(q)
` Ek∼[m]Egk|k

〈
∇f(wt), gk(y

t−τk(t)
k,q)

〉

=− ηgEH
∑
k∈St

Q−1∑
q=0

η
(q)
` Ek∼[m]

〈
∇f(wt),∇Fk(y

t−τk(t)
k,q)

〉

=− ηgEH
∑
k∈St

Q−1∑
q=0

η
(q)
`

〈
∇f(wt),

1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)
〉
.

(10)

From the identity

〈a, b〉 =
1

2
(‖a‖2 + ‖b‖2 − ‖a− b‖2)

we have

E[T1] = −Kηg
2

(
Q−1∑
q=0

η
(q)
`

)∥∥∇f(wt)
∥∥2 +

Q−1∑
q=0

Kηgη
(q)
`

2

(
− EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

+ EH

∥∥∥∥∥∇f(wt)− 1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

︸ ︷︷ ︸
T3

) (11)

Now for T3, from the definition f(wt),

EH[T3] = EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(wt)−
1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

EH
∥∥∥∇Fi(wt)−∇Fi(yt−τi(t)i,q)

∥∥∥2 (12)

Federated Learning with Buffered Asynchronous Aggregation

Further, by telescoping, T3 can be decomposed as

E[T3] =
1

m

m∑
i=1

EH
∣∣∣∣∣∣∇Fi(wt)−∇Fi(wt−τi(t)) +∇Fi(wt−τi(t))−∇Fi(yt−τi(t)i,q)

∣∣∣∣∣∣2
≤ 2

m

m∑
i=1

EH
(∣∣∣∣∣∣∇Fi(wt)−∇Fi(wt−τi(t))∣∣∣∣∣∣2︸ ︷︷ ︸

staleness

+
∣∣∣∣∣∣∇Fi(wt−τi(t))−∇Fi(yt−τi(t)i,q)

∣∣∣∣∣∣2︸ ︷︷ ︸
local drift

)

≤ 2

m

m∑
i=1

(
L2EH

∥∥∥wt − wt−τi(t)∥∥∥2 + L2EH
∥∥∥wt−τi(t) − yt−τi(t)i,q

∥∥∥2).
(13)

The upper bound on T3 can be understood as sums of bounds on the effect of staleness and local drift during client training,
and local variance induced by client-side SGD. Further, we need to obtain an upper bound on the staleness of initial model
from which the client models are trained.∥∥∥wt − wt−τi(t)∥∥∥2 =

∥∥∥∥∥∥
t−1∑

ρ=t−τi(t)

(wρ+1 − wρ)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
t−1∑

ρ=t−τi(t)

ηg
∑
jρ∈Sρ

∆ρ
jρ

∥∥∥∥∥∥
2

= η2g

∥∥∥∥∥∥
t−1∑

ρ=t−τi(t)

∑
jρ∈Sρ

Q−1∑
l=0

η
(l)
` gjρ(y

ρ
jρ,l

)

∥∥∥∥∥∥
2

(14)

Taking expectation in terms ofH, we have

EH
∥∥∥wt − wt−τi(t)∥∥∥2 ≤ η2gQKτi(t) t−1∑

ρ=t−τi(t)

∑
jρ∈Sρ

Q−1∑
l=0

(η
(l)
`)2E

∥∥∥gjρ(yρjρ,l)∥∥∥2

≤ 3η2gQK
2 max
τi(t)

τi(t)
2
(Q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

≤ 3η2gQK
2τ2max

(Q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

(15)

where the last inequality follows from the assumption on maximal delay and applying Lemma 1. Similarly, we can find an
upper bound for the local drift term as

E
∥∥∥wt−τi(t) − yt−τi(t)i,q

∥∥∥2 = E
∥∥∥yt−τi(t)i,0 − yt−τi(t)i,q

∥∥∥2
≤ E

∥∥∥∥∥
q−1∑
l=0

η
(l)
` gi(y

t−τi(t)
i,l)

∥∥∥∥∥
2

≤ 3q

(
q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

(16)

Thus, the upper bound on T3 becomes:

E[T3] ≤ 6

(
L2η2gQK

2τ2max

(Q−1∑
i=0

(η
(i)
`)2

)(
σ2
` + σ2

g +G
)

+ L2q

(
q−1∑
i=0

(η
(i)
`)2

)(
σ2
` + σ2

g +G
))

≤ 6L2
(Q−1∑
i=0

(η
(i)
`)2

)
(η2gQK

2τ2max + q)
(
σ2
` + σ2

g +G
)

≤ 6L2Q
(Q−1∑
i=0

(η
(i)
`)2

)
(η2gK

2τ2max + 1)
(
σ2
` + σ2

g +G
)

(17)

Federated Learning with Buffered Asynchronous Aggregation

Plugging the upper bound on T3 into (11), we have,

E[T1] ≤− Kηg
2

(
Q−1∑
q=0

η
(q)
`

)∥∥∇f(wt)
∥∥2 +

Q−1∑
q=0

Kηgη
(q)
`

2
E[T3]

−
Q−1∑
q=0

Kηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

(18)

Let α(Q) :=
∑Q−1
q=0 η

(q)
` , β(Q) :=

∑Q−1
q=0 (η

(q)
`)2,

E[T1] ≤− Kηgα(Q)

2

∥∥∇f(wt)
∥∥2 + 3KηgL

2Qα(Q)β(Q)
(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

−
Q−1∑
q=0

Kηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

︸ ︷︷ ︸
T4

(19)

To derive the upper bound on the R.H.S. of (8), we now need an upper bound for E[T2].

E[T2] = E

[
Lη2g

2

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` gk(y

t−τk(t)
k,q)

∥∥∥∥∥
2]

= E

[
Lη2g

2

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
`

(
gk(y

t−τk(t)
k,q)−∇Fk(y

t−τk(t)
k,q)

)
+
∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(y

t−τk(t)
k,q)

∥∥∥∥∥
2]

(A.)
=

Lη2g
2

E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
`

(
gk(y

t−τk(t)
k,q)−∇Fk(y

t−τk(t)
k,q)

)∥∥∥∥∥
2

+
Lη2g

2
E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(y

t−τk(t)
k,q)

∥∥∥∥∥
2

(B.)
=

Lη2g
2

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2E

∥∥∥(gk(y
t−τk(t)
k,q)−∇Fk(y

t−τk(t)
k,q)

)∥∥∥2 +
Lη2g

2
E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(y

t−τk(t)
k,q)

∥∥∥∥∥
2

≤
LKη2gβ(Q)σ2

`

2
+
LKQη2g

2

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2EHEk∼[m]|H

∥∥∥∇Fk(y
t−τk(t)
k,q)

∥∥∥2
=
LKη2gβ(Q)σ2

`

2
+
LKQη2g

2

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2EH

[
1

m

m∑
i=1

∥∥∥∇Fi(yt−τi(t)i,q)
∥∥∥2]

=
LKη2gβ(Q)σ2

`

2
+
LK2Qη2g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

[∥∥∥∇Fi(yt−τi(t)i,q)
∥∥∥2]︸ ︷︷ ︸

T5

(20)

where (A.) follows from the unbiasedness of gk, and (B.) follows from the fact that gk −∇Fk is independent and unbiased

Federated Learning with Buffered Asynchronous Aggregation

for k ∼ [m]. To obtain an upper bound on E[T1 + T2], we need to make sure T4 + T5 ≤ 0.(
T4 + T5

)
=−

Q−1∑
q=0

Kηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τi(t)i,q)

∥∥∥∥∥
2

+
LK2Qη2g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

∥∥∥∇Fi(yt−τi(t)i,q)
∥∥∥2

=−
Q−1∑
q=0

m∑
i=1

Kηgη
(q)
`

2m
EH
∥∥∥∇Fi(yt−τi(t)i,q)

∥∥∥2 +
LK2Qη2g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

∥∥∥∇Fi(yt−τi(t)i,q)
∥∥∥2

=

Q−1∑
q=0

m∑
i=1

(
−
Kηgη

(q)
`

2m
+
LK2Qη2g(η

(q)
`)2

2m

)
EH
∥∥∥∇Fi(yt−τi(t)i,q)

∥∥∥2
(21)

To ensure T4 + T5 ≤ 0, it is sufficient to choose ηgη
(q)
` KQ ≤ 1

L for all local steps q = 0, · · · , Q− 1.

Now, plugging (19), (20) and (21) into (8),

E[f(wt+1)] ≤ E[f(wt)]− ηgKα(Q)

2

∥∥∇f(wt)
∥∥2

+ 3ηgL
2KQα(Q)β(Q)

(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

+
L

2
η2gβ(Q)Kσ2

`

(22)

Summing up t from 1 to T and rearrange, yields

T−1∑
t=0

ηgKα(Q)E
[∥∥∇f(wt)

∥∥2]
≤
T−1∑
t=0

2
(
E[f(wt)]− E[f(wt+1)]

)
+ 3

T−1∑
t=0

ηgL
2KQα(Q)β(Q)

(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

+
L

2
η2gβ(Q)Kσ2

`

≤2
(
f(w0)− f(w∗)

)
+ 3

T−1∑
t=0

ηgL
2Kα(Q)β(Q)

(
η2gK

2τ2max +Q
)(
σ2
` + σ2

g +G
)

+
L

2
η2gβ(Q)Kσ2

` .

(23)

Thus we have

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2] ≤ 2
(
f(w0)− f(w∗)

)
ηgα(Q)TK

+ 3L2Qβ(Q)
(
η2gK

2τ2max + 1
)(
σ2
` + σ2

g +G
)

+
L

2

ηgβ(Q)

α(Q)
σ2
` (24)

