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Abstract
We study the problem of Byzantine fault-
tolerance in a federated optimization setting,
where there is a group of agents communicating
with a centralized coordinator. We allow up to
f Byzantine-faulty agents, which may not fol-
low a prescribed algorithm correctly, and may
share arbitrary incorrect information with the co-
ordinator. Associated with each non-faulty agent
is a local cost function. The goal of the non-
faulty agents is to compute a minimizer of their
aggregate cost function. For solving this prob-
lem, we propose a local gradient-descent (GD)
algorithm that incorporates a novel comparative
elimination (CE) filter (aka. aggregation scheme)
to provably mitigate the detrimental impact of
Byzantine faults. In the deterministic setting,
when the agents can compute their local gra-
dients accurately, our algorithm guarantees ex-
act fault-tolerance against a bounded fraction of
Byzantine agents, provided the non-faulty agents
satisfy the known necessary condition of 2f -
redundancy. In the stochastic setting, when the
agents can only compute stochastic estimates of
their gradients, our algorithm guarantees approx-
imate fault-tolerance where the approximation
error is proportional to the variance of stochastic
gradients and the fraction of Byzantine agents.

1. Introduction
We consider a distributed optimization framework where
there are N agents communicating with a single coordina-
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tor. Associated with each agent i is a function qi : Rd → R.
The goal of the agents is to find x? such that

x∗ ∈ arg min
x

N∑
i=1

qi(x), (1)

where each qi is given as

qi(x) , Eπi

[
Qi(x;Xi)

]
, (2)

for some random variable Xi defined over a compact sam-
ple set X i with a distribution πi. We assume that each
agent i only has access to the sequence {Gi(·)}, which
can be either the actual gradients {∇qi(·)} or stochastic
gradients {∇Qi(·, Xi)}. This is a common distributed ma-
chine learning setting, where there is a large number of data
distributed to different agents (or machines). The goal is
to design an algorithm that allow these agents is to jointly
minimize a loss function defined over their data, i.e., solve
optimization problem (1).

For solving (1), we consider the local gradient-descent
(GD) method, which has recently received significant at-
tention due to its application in federated learning (Kairouz
& McMahan, 2021; Li et al., 2020). In this method, the co-
ordinator maintains an estimate of a solution defined in (1).
This estimate is broadcast to all the agents, and each agent
updates its copy of the estimate by running a number of lo-
cal GD steps. The agents send back to the coordinator their
local updated estimates. Finally, the coordinator averages
the received estimates to obtain new global estimate of x?.
Eventually, if all the agents are non-faulty, the sequence
of global estimates converges to a solution (1). Since the
agents only share their local estimates and not their data,
local GD is widely used in federated learning where data
privacy is a major concern (Kairouz & McMahan, 2021).

Our interest is to study the performance of the local
GD method in the presence of up to f Byzantine faulty
agents (Lamport et al., 1982). Such faulty agents may be-
have arbitrarily, and their identity is a priori unknown. In
particular, Byzantine faulty agents may collude and share
incorrect information with the coordinator in order to cor-
rupt the output of the algorithm, e.g., see (Xie et al., 2019).
We aim to design a new local GD method that allows all the
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non-faulty agents to compute an exact minimum of the ag-
gregate cost of the non-faulty agents, despite the presence
of Byzantine agents. In particular, we consider the exact
fault-tolerance problem defined below. For a set H, |H|
denotes its cardinality.

Definition 1 (Exact fault-tolerance). Let H with |H| ≥
N − f be the set of non-faulty agents. A distributed opti-
mization algorithm is said to have exact fault-tolerance if
it returns

x?H ∈ arg min
x

∑
i∈H

qi(x). (3)

Since the identity of the Byzantine faulty agents is a priori
unknown, in general, exact fault-tolerance is unachiev-
able (Su & Vaidya, 2016). In particular, exact fault-
tolerance is impossible unless the non-faulty agents satisfy
the property of 2f -redundancy defined as follows (Gupta
& Vaidya, 2020a;b).

Definition 2 ( 2f -redundancy). A set of non-faulty agents
H, with |H| ≥ n− f , is said to have 2f -redundancy if for
any subset S ⊆ H with |S| ≥ N − 2f ,

arg min
x

∑
i∈S

qi(x) = arg min
x

∑
i∈H

qi(x). (4)

The 2f -redundancy property is critical to our algorithm,
presented in Section 2, for solving (3). This property im-
plies that a minimum of the aggregate cost of any N − 2f
non-faulty agents is also a minimum of the aggregate cost
of all the non-faulty agents, and vice-versa. This seem-
ingly contrived redundancy condition arises naturally with
high probability in many practical applications, including
distributed sensing (Chong et al., 2015; Gupta & Vaidya,
2019; Mishra et al., 2016; Su & Shahrampour, 2019), and
distributed learning (Alistarh et al., 2018; Blanchard et al.,
2017; Charikar et al., 2017; Guerraoui et al., 2018). Note
that in the context of distributed learning, in the i.i.d. set-
ting, i.e., when all agents have the same data generating
distribution, 2f -redundancy hold true trivially. More gen-
erally, in the non-i.i.d. setting, 2f -redundancy holds true as
long as the learning problem can be solved (i.e., computing
an optimal model over the collective data of all non-faulty
agents) using data of only n − 2f non-faulty agents. For
further details on 2f -redundancy, and a formal proof of its
necessity, see (Gupta & Vaidya, 2020a;b; Liu et al., 2021).

As the identity of faulty agents is a priori unknown to
the coordinator, solving (3) is nontrivial even under the
2f -redundancy property, especially in the high dimension
case, e.g., see (Gupta & Vaidya, 2020a; Kuwaranancharoen
et al., 2020; Su & Shahrampour, 2019). The key element
of our algorithm is a filter named comparative elimina-
tion (CE), which is implemented at the coordinator to ag-
gregate the local updated estimates sent by the agents to

mitigate the detrimental impact of potentially adversarial
values from the Byzantine agents. In particular, instead
of simply averaging the agents’ estimates, the coordinator
eliminates f (out of N ) received estimates that are f far-
thest from the current global estimate. The new global esti-
mate is obtained by averaging the remaining N −f agents’
estimates. Details on our scheme are presented in Algo-
rithm 1 in Section 2. In the following, we summarize our
main contributions, and then discuss the related literature.

1.1. Main Contributions

We show that our proposed scheme, comparative elimina-
tion (CE) filter, when coupled with the local GD method
formulates a Byzantine robust distributed algorithm for
solving (3). Specifically, assuming each non-faulty agent’s
local cost to be L-smooth, the aggregate non-faulty cost
to be µ-strongly convex (but, the local costs may only be
convex) and the necessary condition of 2f -redundancy, we
present the following results:

• In the deterministic setting, when each non-faulty
agent i updates its local estimates using actual gradi-
ents of its cost function {∇qi(·)}, the CE filter scheme
guarantees exact fault-tolerance if f

|H| ≤
µ
3L . More-

over, the convergence rate is linear, similar to the fault-
free setting under strong convexity.

• In the stochastic setting, when a non-faulty agent i
can only access stochastic estimates of its local gra-
dients {∇Qi(·, Xi)} we guarantee approximate fault-
tolerance. Specifically, the sequence of global estimates
{x̄k} satisfy the following for all k:

E[‖x̄k − x?H‖2] ≤ λkE[‖x̄0 − x?H‖2] +O
(
σ2α+

σ2f

N − f

)
for some λ ∈ (0, 1) where α is some constant step-
size of the algorithm, and σ is the noise level of the
stochastic gradients.

Specific details of our results are given in Section 3.

1.2. Related Work

In recent years, several other aggregation schemes have
been proposed for Byzantine fault-tolerance in distributed
optimization or learning. Some of the prominent Byzan-
tine robust schemes are coordinate-wise trimmed mean
(CWTM) (Su & Vaidya, 2016; Su & Shahrampour,
2019; Yang & Bajwa, 2019; Yin et al., 2018), multi-
KRUM (Blanchard et al., 2017), geometric median-of-
means (GMoM) (Chen et al., 2017), coordinate-wise me-
dian (Sundaram & Gharesifard, 2018; Yin et al., 2018),
Bulyan (Guerraoui et al., 2018), minimum-diameter av-
eraging (MDA) (Guerraoui et al., 2018), phocas (Xie
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et al., 2018b), Byzantine-robust stochastic aggregation
(RSA) (Li et al., 2019), signSGD with majority vot-
ing (Sohn et al., 2020), and spectral decomposition based
filters (Diakonikolas et al., 2019; Prasad et al., 2020). Most
these works, with the exception of (Su & Vaidya, 2016;
Su & Shahrampour, 2019; Sundaram & Gharesifard, 2018;
Kuwaranancharoen et al., 2020; Li et al., 2019; Yang &
Bajwa, 2019), only consider the distributed GD framework
wherein the agents send gradients of their local costs, in-
stead of the federated local GD framework that we con-
sider. Nevertheless, from these works we infer that the
above aggregation schemes need not guarantee exact fault-
tolerance in general, even in the deterministic setting (i.e.,
when agents can compute actual gradients of their costs)
under 2f -redundancy, unless further assumptions are made
on the non-faulty agents’ costs.

Although (Su & Vaidya, 2016; 2020; Sundaram & Ghare-
sifard, 2018) implicitly show the exact fault-tolerance
properties of trimmed-mean and median, they only con-
sider the scalar case, i.e., when agents’ cost functions
are univariate. The extension of their results to higher-
dimensions is non-trivial and remains poorly understood,
e.g., see (Kuwaranancharoen et al., 2020; Su & Vaidya,
2016; Su & Shahrampour, 2019; Yang & Bajwa, 2017). For
instance, (Su & Vaidya, 2016) consider a special distributed
optimization problem wherein the agents’ cost functions
have a known common basis. The work (Su & Shahram-
pour, 2019) shows that CWTM can guarantee exact fault-
tolerance when solving the distributed linear least squares
problem, under 2f -redundancy, provided the agents’ data
satisfy an uncommon additional property. In (Yang &
Bajwa, 2019), they assume that the agents’ costs can be
decomposed into independent scalar strictly convex func-
tions. Recently, (Kuwaranancharoen et al., 2020) studied
the fault-tolerance of coordinate-wise trimmed mean (or
median) in a peer-to-peer setting (a generalization of fed-
erated model) for generic convex optimization problems;
their results suggest that CWTM need not provide exact
fault-tolerance even under 2f -redundancy, in general.

When applied to the federated local GD framework, some
of the above aggregation schemes, such as multi-KRUM,
Bulyan, CWTM, GMoM and MDA, only operate on the
local estimates sent by the agents and disregard the current
global estimate maintained by the coordinator (Fang et al.,
2020). On the other hand, CE filter exploits the (supposed)
closeness between the current global estimate and the non-
faulty agents’ local updated estimates to obtain improved
robustness against Byzantine agents. This similarity exists
due to Lipschitz smoothness of non-faulty agents’ costs,
and is critical to the fault-tolerance property of the algo-
rithm. Other works that exploit this similarity are RSA (Li
et al., 2019), and (Muñoz-González et al., 2019).

Recently, (Wu et al., 2020) have shown that geometric
median aggregation scheme provably provides improved
Byzantine fault-tolerance compared to other aggregation
schemes in federated model. However, computing geomet-
ric median is a challenging problem, as there does not exist
a closed-form formula (Bajaj, 1988). Moreover, existing
numerical algorithms for computing geometric median are
only approximate, and computationally quite complex (Co-
hen et al., 2016). Other schemes, such as the verifiable
coding in (So et al., 2020) and manual verification of infor-
mation sent by agents (Cao et al., 2020), are not directly ap-
plicable to the commonly used federated framework where
inter-agent communication is absent or there are a large
number of agents, and data privacy is a major concern.

Besides federated local GD framework, the proposed CE
filter can also guarantee exact fault-tolerance in the dis-
tributed GD framework where agents share their gradi-
ents instead of estimates (references omitted to preserve
authors’ anonymity). Also, for the distributed GD frame-
work, recent works have shown that momentum helps im-
prove the fault-tolerance of a Byzantine-robust aggregation
scheme (Mhamdi et al., 2021; Karimireddy et al., 2020).
However, adaptation of their results to federated local GD
method is non-trivial and remains to be investigated.

2. Local GD under Byzantine Model
We now present the proposed algorithm for solving (1) in
the presence of at most f Byzantine faulty agents. We note
that the Byzantine agents can observe the values of other
agents and send arbitrarily values to the coordinator. To
handle this scenario, the main idea of our approach is a
Byzantine robust aggregation rule (or filter), named com-
parative elimination (CE) filter, which is implemented at
the coordinator. This filter together with the local GD for-
mulates our proposed method, formally presented in Algo-
rithm 1 for solving (3).

In Algorithm 1, each agent i maintains a local variable xi,
and the coordinator maintains x̄, the average of these xi. At
any iteration k ≥ 0, agent i receives x̄k from the coordina-
tor and initializes its iterate xik,0 = x̄k. Here xik,t denotes
the iterate at iteration k and local time t ∈ [0, . . . , T − 1]
at agent i. Agent i then runs a number T of local GD steps
using time-varying step sizes αk and its local direction
Gi(xik,t), which can be either the actual gradient∇qi(xik,t)
or a stochastic estimate∇Qi(·, Xi) of its gradient based on
the data {Xi

k,t} sampled i.i.d from πi. After T local GD
steps, the agents then send their new local updates xik,T
to the coordinator. However, Byzantine agents may send
arbitrary values to disrupt the learning process. The coor-
dinator implements the CE filter (in steps 2(a) and 2(b) of
Algorithm 1) to dilute the impact of “bad” values sent by
the Byzantine agents. The main of this filter is to discard
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Algorithm 1 Local GD with CE Filter
Initialization: The coordinator initializes x̄0 ∈ Rd. Agent
i initializes step sizes {αk} and a positive integer T .
Iterations: For k = 0, 1, 2, ...

1. Agent i

(a) Receive x̄k sent by the server and set xik,0 = x̄k

(b) For t = 0, 1, . . . , T − 1, implement

xik,t+1 = xik,t − αkGi(xik,t). (5)

2. The coordinator receives xik,T from each agent i and
implement the CE filter as follows.

(a) Compute the distances of xik,t with its current value
x̄k, and sort them in an increasing order

‖x̄k − xi1k,T ‖ ≤ . . . ≤ ‖x̄k − x
iN
k,T ‖. (6)

(b) Discard the f -largest distances, i.e., it drops
x
iN−f+1

k,T , . . . , xiNk,T . Let Fk = {i1, . . . , iN−f}.
(c) Update its iterate as

x̄k+1 =
1

|Fk|
∑
i∈Fk

xik,T . (7)

f -values (or estimates) that are f -farthest from the current
global estimate x̄k. Finally, the coordinator averages the
N−f remaining estimates, as shown in (7), to compute the
new global estimate. Note that without the CE filter (i.e.,
without steps 2(a) and 2(b), and Fk = [1, N ]), Algorithm
1 reduces to the traditional local GD method.

3. Main Results
In this section, we present the main results of this pa-
per, where we characterize the convergence of Algorithm
1 for solving problem (3). We consider two cases, namely,
the deterministic settings (when Gi(·) = ∇qi(·)) and the
stochastic settings (when Gi(·) = ∇Qi(·, Xi)).1 In both
cases, our theoretical results are derived when the non-
faulty agents’ cost functions are smooth. Moreover, we
also assume the average non-faulty cost function, denoted
by qH(x), to be strongly convex. Specifically,

qH(x) =
1

|H|
∑
i∈H

qi(x). (8)

These assumptions are formally stated as follows.

Assumption 1 (Lipschitz smoothness). The non-faulty
agents’ functions have Lispchitz continuous gradients, i.e.,

1Proofs of all the theorems presented in this section are de-
ferred to the appendix attached after the list of references.

there exists a positive constant L <∞ such that, ∀i ∈ H,

‖∇qi(x)−∇qi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

Assumption 2 (Strong convexity). qH is strongly convex,
i.e., there exists a positive constant µ <∞ such that

(x− y)T (∇qH(x)−∇qH(y)) ≥ µ‖x− y‖2, ∀x, y ∈ Rd.

To this end, we assume that these assumptions and the 2f -
redundancy property always hold true. Note that Assump-
tions 1 and 2 hold true simultaneously only if µ ≤ L.

Remark 1. Assumption 2 implies that there exists a unique
solution x?H of problem (3). However, this assumption does
not imply that each local function qi is strongly convex.
Indeed, each qi can have more than one minimizer. Under
the 2f -redundancy property one can show that

x?H ∈
⋂
i∈H

arg min
x∈Rd

qi(x). (9)

Thus, one can view that Algorithm 1 tries to search one
point in the intersection of the minimizer sets of the local
functions qi. However, we do not assume we can compute
these sets since this task is intractable in general. Finally,
our analysis given later will rely on (9), whose proof can
be found in (Gupta & Vaidya, 2020a, Appendix B).

3.1. Deterministic Settings

In this section, we consider the deterministic setting of Al-
gorithm 1, i.e., Gi(·) = ∇qi(·). For convenience, we first
study the convergence of Algorithm 1 when T = 1 in Sec-
tion 3.1.1 and generalize to the case T > 1 in Section 3.1.2.

3.1.1. THE CASE OF T = 1

When T = 1, Algorithm 1 is equivalent to the popular
distributed (stochastic) gradient method. Indeed, by (5) we
have for any i ∈ H

xik,1 = xik,0 − αk∇qi(xik,0) = x̄k − αk∇qi(x̄k). (10)

We denote by B the set of Byzantine agents, i.e.,N = |B|+
|H| and |B| ≤ f . Without loss of generality we assume that
|B| = f . Similarly, let Bk be the set of Byzantine agents in
Fk and Hk be the set of nonfaulty agents in Fk. Then we
have |Bk| = |Fk \ Hk| ≤ f , for any k ≥ 0.

Theorem 1. Let {x̄k} be generated by Algorithm 1 with
T = 1. We assume that the following condition holds

f

N − f
≤ µ

3L
· (11)

Let αk be chosen as

αk = α ≤ µ

4L2
· (12)
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Then we have

‖x̄k − x̄?H‖2 ≤
(

1− µα

6

)k
‖x̄0 − x?H‖

2
. (13)

Remark 2. In Theorem 1 we show that under the 2f redun-
dancy, Algorithm 1 returns an exact solution x?H of problem
(3) even under of at most f Byzantine agents. Moreover, the
convergence is linear, which is the same as what we expect
in the non-faulty case (no Byzantine agents).

3.1.2. THE CASE OF T > 1

We now generalize Theorem 1 to the case T > 1, i.e., each
agent implements more than 1 local GD steps. This is in-
deed a common practice in federated optimization. When
T > 1, by (5) we have ∀i ∈ H and t ∈ [0, H)

xik,t+1 = x̄k − αk
t∑
`=0

∇qi(xik,`), (14)

Theorem 2. Assume that (11) hold and let αk satisfy

αk = α ≤ µ

16TL2
· (15)

Then we have

‖x̄k − x̄?H‖2 ≤
(

1− µTα

6

)k
‖x̄0 − x?H‖

2
. (16)

3.2. Stochastic Settings

We next consider the setting where each agent only has
access to the samples of its gradient, i.e., Gi(·) =
∇Qi(·, Xi), where Xi is a sequence of random variables
sampled i.i.d from πi. In the sequel, we denote by

Pk,t = ∪i∈H{x̄0, . . . , x̄k, xik,1, . . . , xik,t}

the filtration containing all the history generated by Algo-
rithm 1 up to time k + t. To study the convergence of Al-
gorithm 1 we consider the following assumption, which is
often assumed in the literature of stochastic federated opti-
mization (Kairouz & McMahan, 2021).
Assumption 3. The random variables Xi

k, for all i and k,
are generated i.i.d. Moreover, there exists a positive con-
stant σ such that

E[∇Qi(x,Xi
k,t) | Pk,t] = ∇qi(x), ∀x ∈ Rd,

E[‖∇Qi(x,Xi
k,t)−∇qi(x)‖2 | Pk,t] ≤ σ2, ∀x ∈ Rd,

‖∇Qi(x,Xi)−∇Qi(y,Xi)‖ ≤ L‖x− y‖, a.s.,

where the constant L is given in Assumption 1.

Note that |Bk|+|Hk| = |Fk| = |H|, for any k ≥ 0. Finally,
for convenience we denote by

∇Qi(x;X) =
1

|H|
∑
i∈H
∇Qi(x;Xi),

where X = (X1, . . . , X |H|)T . Due to space limit, we only
present the result for the case T = 1 in this paper. The
result for the case T > 1 will be discussed in the longer
version of this paper.

3.2.1. THE CASE OF T = 1

Theorem 3. Suppose that Assumption 3 and condition (11)
hold true. Moreover, let αk be chosen as

αk = α ≤ µ

12L2
· (17)

Then we have

E[‖x̄k − x?H‖2]

≤
(

1− µ

6
α
)k

E[‖x̄0 − x?H‖2] +
14σ2α

µ
+

2σ2f

µL|H|
· (18)

Remark 3. Note that in Theorem 3 due to the constant
step size, the mean square error converges linearly only to
a ball centered at the origin. The size of this ball depends
on two terms: 1) one depends on the step size α which often
seen in the convergence of local GD with non-faulty agents
and 2) the other depends on the level of the gradient noise
(or σ). The latter is due to the impact of the Byzantine
agents and the stochastic gradient samples. Indeed, our
comparative filter is designed to remove the potential bad
values sent by the Byzantine agents, but not the variance
of their stochastic samples. One potential solution for this
issue is to let each agent sample a mini-batch of size m of
its gradient. In this case, it is not difficult to see that σ2 in
(18) is replaced by σ2/m. Thus, one can choose m large
enough so that the mean square error can get arbitrarily
close to zero. Finally, when αk ∼ 1/k, one can show that
the convergence rate is sublinear O(1/k).

4. Experiments
To evaluate the efficacy of our proposed scheme, we simu-
late the problem of robust mean estimation in the federated
framework. This problem serves as a test-case to empiri-
cally compare our scheme with others of similar computa-
tional costs, namely multi-KRUM (Blanchard et al., 2017),
CWTM (Su & Shahrampour, 2018; Yin et al., 2018), and
coordinate-wise median (Xie et al., 2018a; Yin et al., 2018).
For our experiments, we considerN = 50 agents and vary-
ing number of Byzantine faulty agents. Each non-faulty
agent i has 100 noisy observations of a 10-dimensional vec-
tor x∗ with all elements of unit value. In particular, the
sample set X i comprises 100 uniformly distributed sam-
ples with each sampleXi = x∗+Zi whereZi ∼ N (0, Id),
and Qi(x;Xi) = (1/2)‖x − Xi‖2. In this case, x∗ is
the unique solution to problem (3) for any set of hon-
est agents H. In our experimental settings, a Byzantine
faulty agent j behaves just like an honest agent with 100
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Figure 1. The plots show the error ‖x̄k−x∗‖2 in iteration k = 1, . . . , 120 of local GD (cf. Algorithm 1) with four different aggregation
schemes; averaging, CE, multi-KRUM, CWTM, and coordinate-wise median. The benchmark corresponds to the fault-free execution of
local GD. Solid lines show the mean performances of the schemes, and the shadows show the variance of their performances, observed
over 100 runs. In the clockwise order, f = 8, 12, 16 and 20. We observe that, expectedly, all schemes obtain improved accuracy in
presence of fewer Byzantine agents. We also observe that the performance of CE filter is consistently better than other schemes.

Figure 2. The leftmost plot is for f = 20 and T = 2, the case with T = 1 is shown in Figure 1. The middle and the rightmost plots are
for (f = 24, T = 1) and (f = 24, T = 2), respectively. We observe that the accuracy of the local GD method with CE filter improves
considerably as the number of local GD steps T is increased from 1 to 2. The same cannot be observed for other schemes.

uniformly distributed samples, however each of its sample
Xj = 2× x∗ + Zj where Zj ∼ N (0, Id). That is, honest
agents send information corresponding to Gaussian noisy
observations of x∗ and Byzantine agents send information
corresponding to Gaussian noisy observations (with identi-
cal variance) of 2× x∗.

We simulate the stochastic setting of local GD (cf. Al-
gorithm 1) with different number of faulty agents f ∈
{8, 12, 16, 20, 24}, different values of T ∈ {1, 2}, and dif-
ferent aggregation schemes in Step 2: CE, mutli-KRUM,
CWTM, coordinate-wise median and simple averaging.
The step-size αk = 0.1 for all k. Each setting is run

100 times, and the observed errors ‖x̄k − x∗‖2 for k =
1, . . . , 120 are shown in Figures 1 and 2.

Inference: As suggested from our theoretical results, the
final error upon using CE aggregation scheme decreases
with the fraction of Byzantine faulty agents. We observe
that CE aggregation scheme performs consistently better
than multi-KRUM, CWTM and median. Moreover, we
also observe that increasing the number of local gradient-
descent steps, i.e., T , improves the fault-tolerance of CE
filter. However, the same cannot be said for other schemes.
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Summary
In this paper, we have considered the problem of Byzan-
tine fault-tolerance in the local gradient-descent method
on a federated model. We have proposed a new aggre-
gation scheme, named comparative elimination (CE) fil-
ter, and studied its fault-tolerance properties in both deter-
ministic and stochastic settings. In the deterministic set-
ting, we have shown the CE filter guarantees exact fault-
tolerance against a bounded fraction of Byzantine agents
f/N , provided the non-faulty agents’ costs satisfy the nec-
essary condition of 2f -redundancy. In the stochastic set-
ting, we have shown that CE filter obtains approximate
fault-tolerance where the approximation error is propor-
tional to the variance of the agents’ stochastic gradients and
the fraction of Byzantine agents.
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