
Subgraph Federated Learning with Missing Neighbor Generation

Ke Zhang 1 2 Carl Yang 1 † Xiaoxiao Li 3 Lichao Sun 4 Siu Ming Yiu 2

Abstract

Graphs have been widely used in data mining and
machine learning due to their unique representa-
tion of real-world objects and their interactions.
As graphs are getting larger nowadays, it is com-
mon to see their subgraphs separately collected
and stored in multiple local systems. Therefore,
it is natural to consider the subgraph federated
learning setting, where each local system holding
a small subgraph that may be biased from the dis-
tribution of the whole graph. Hence, the subgraph
federated learning aims to collaboratively train a
powerful and generalizable graph mining model
without directly sharing their graph data. In this
work, towards the novel yet realistic setting of sub-
graph federated learning, we propose two major
techniques: (1) FedSage, which trains a Graph-
Sage model based on FedAvg to integrate node
features, link structures, and task labels on multi-
ple local subgraphs; (2) FedSage+, which trains a
missing neighbor generator along FedSage to deal
with missing links across local subgraphs. Empir-
ical results on four real-world graph datasets with
synthesized subgraph federated learning settings
demonstrate the effectiveness and efficiency of
our proposed techniques.

1. Introduction
Graph mining leverages links among connected nodes in
graphs to conduct inference. Recently, graph neural net-
works (GNNs) gain applause with impressing performance
and generalizability in many graph mining tasks (Wu et al.,

1Department of Computer Science, Emory University, Atlanta,
United States 2Department of Computer Science, The University of
Hong Kong, Hong Kong, China 3Department of Computer Science,
Princeton University, Princeton, United States 4Department of
Computer Science, Leigh University, Bethlehem, United States.
Correspondence to: Carl Yang <j.carlyang@emory.edu>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

2020b; Hamilton et al., 2017; Kipf & Welling, 2017; Luo
et al., 2021; Yang et al., 2020a). Similar to machine learning
tasks in other domains, attaining a well-performed GNN
model requires its training data to not only be sufficient,
but also follows the similar distribution as general queries.
While in reality, data owners often collect limited and biased
graphs and cannot observe the global distribution. Therefore,
with heterogeneous subgraphs separately stored in local data
owners, accomplishing a globally applicable GNN requires
collaboration.

Federated learning (FL) (Li et al., 2020; Yang et al., 2019b),
targeting at training machine learning models with data dis-
tributed in multiple local systems to resolve the data-silo
problem, has shown its advantage in enhancing the perfor-
mance and generalizability of the collaboratively trained
models without the need of sharing any actual data. For
example, FL has been devised in computer vision (CV) and
natural language processing (NLP) to allow the joint train-
ing of powerful and generalizable deep convolutional neural
networks and language models on separately stored datasets
of images and texts (Liu et al., 2021; Dou et al., 2021; Liang
et al., 2019; Zhu et al., 2020b; He et al., 2021b).

Motivating Scenario. Taking the healthcare system as an
example, as shown in Fig. 1, residents of a city may go
to different hospitals due to various reasons. As a result,
their healthcare data, such as demographics and living con-
ditions, as well as patient interactions, such as co-staying in
a sickroom and co-diagnosis of a disease, are stored only
within the hospitals they visit. When any healthcare prob-
lem is to be studied in the whole city, e.g., the prediction
of infections when a pandemic occurs, a single powerful
graph mining model is needed to conduct effective inference
over the whole global patient network, which contains all
subgraphs from different hospitals. However, it is difficult
to let all hospitals share their patient networks with others to
train the graph mining model, due to conflicts of interests.
In such scenarios, it is desirable to train a powerful and
generalizable graph mining model over multiple distributed
subgraphs without actual data sharing. However, this novel
yet realistic setting brings two unique technical challenges,
which have never been explored so far.

Challenge 1: How to jointly learn from multiple local
subgraphs? In our considered scenario, the global graph is

Subgraph Federated Learning with Missing Neighbor Generation

Figure 1. A toy example of the distributed subgraph storage system: In this example, there are four hospitals and a medical adminis-
tration center. The global graph records, for a certain period, the city’s patients (nodes), their information (attributes), and interactions
(links). Specifically, the left part of the figure shows how the global graph is stored in each hospital, where the grey solid lines are the links
explicitly stored in each hospital, and the red dashed lines are the cross-hospital links that may exist but are not stored in any hospital. The
right part of the figure indicates our goal that without sharing actual data, the system obtains a globally powerful graph mining model.

distributed into a set of small subgraphs with heterogeneous
feature and structure distributions. Training a separate graph
mining model on each of them may not capture the global
data distribution and is also prone to overfitting. Moreover,
it is unclear how multiple graph mining models can be
integrated into a universally applicable one that can handle
any queries from the underlying global graph.

Solution 1: FedSage: Training GraphSage with FedAvg.
To attain a powerful and generalizable graph mining model
from small and biased subgraphs distributed in multiple
local owners, we develop a framework of subgraph feder-
ated learning, specifically, with the vanilla mechanism of
FedAvg (McMahan et al., 2017). As for the graph mining
model, we resort to GraphSage (Hamilton et al., 2017), due
to its advantages of inductiveness and scalability. We term
this framework as FedSage.

Challenge 2: How to deal with missing links across local
subgraphs? Unlike distributed systems in other domains
such CV and NLP, whose data samples of images and texts
are isolated and independent, data samples in graphs are
connected and correlated. Most importantly, in a subgraph
federated learning system, data samples in each subgraph
can potentially have connections to those in other subgraphs,
which carries important information of node neighborhoods
and serves as bridges among the data owners, but they are
never directly captured by any data owner.

Solution 2: FedSage+: Generating missing neighbors
along FedSage. To deal with cross-subgraph missing links,
we propose a novel FedSage+ model on top of FedSage, by
adding a missing neighbor generator into the FL framework.
Specifically, for each data owner, instead of training the
GraphSage model on the entire subgraph, we first impair
the subgraph by randomly holding out some nodes and
their links; then we jointly train a neighbor generator based
on the held-out neighbors to mend the graph and train the
GraphSage classifier on the mended graph. This neighbor

generator trained on individual local subgraphs can generate
potential missing links within the subgraphs, and training it
in our subgraph FL setting allows multiple local owners to
generate missing neighbors across distributed subgraphs.
We conduct experiments on four real-world datasets with
different numbers of data owners to better simulate the ap-
plication scenarios. Experimental results show both of our
models outperform locally trained classifiers in all scenar-
ios. Compared to FedSage, FedSage+ further promotes
the outcome classifier. In-depth model analysis shows the
convergence and generalization ability of our frameworks.

2. Related works
Graph mining. Graph mining emerges its significance
in analyzing the informative graph data, which range
from social networks to gene interaction networks (Yang
et al., 2021; 2020b; 2019a). One of the most frequently
applied tasks on graph data is node classification. Re-
cently, graph neural networks (GNNs), e.g., graph convolu-
tional networks (GCN) (Kipf & Welling, 2017) and Graph-
Sage (Hamilton et al., 2017), improve the state-of-the-art in
node classification with their elegant yet powerful designs.
However, as GNNs leverage the homophily of nodes in both
node features and link structures to conduct the inference,
they are vulnerable to the perturbation on graphs (Zügner
& Günnemann, 2019). Robust GNNs, aiming at reducing
the degeneration in GNNs caused by graph perturbation, are
gaining attention these days. Current robust GNNs focus on
the sensitivity towards modifications on node features (Chen
et al., 2021) or adding/removing edges on the graph (Zhu
et al., 2019). However, neither of these two types recapitu-
lates the missing neighbor problem, which affects both the
feature distribution and structure distribution.

Moreover, to obtain a node classifier with good generaliz-
ability, the development of domain adaptive GNN sheds
light on adapting a GNN model trained on the source do-

Subgraph Federated Learning with Missing Neighbor Generation

main to the target domain by leveraging underlying struc-
tural consistency (Wu et al., 2020a; Zhu et al., 2020a). In
our considered distributed system, however, each data owner
has subgraphs with heterogeneous feature and structure dis-
tributions, and direct information exchanges, such as mes-
sage passing among subgraphs, are fully blocked due to
the missing cross-subgraph links. The violation to the do-
main adaptive GNNs’ assumptions on alignable nodes and
cross-domain structural consistency denies their usage in
the distributed subgraph system.

Federated learning. FL is proposed for cross-institutional
collaborative learning without sharing raw data (Li et al.,
2020; Yang et al., 2019b). FedAvg (McMahan et al., 2017)
is an efficient and well-studied FL method. Similar to most
FL methods, it is originally proposed for traditional machine
learning problems (Yang et al., 2019b) to allow collabora-
tive training on silo data through local updating and global
aggregation. Many FL methods are not directly applicable
to graph data due to the complex and flexible link structures.

Federated graph learning. Recent researchers have made
some progress in federated graph learning. There are ex-
isting FL frameworks designed for the graph data learning
task (He et al., 2021a; Wu et al., 2021). (He et al., 2021a;
Xie et al., 2021) design graph level FL schemes with graph
datasets dispersed over multiple data owners, which are in-
applicable to our distributed subgraph system construction.
(Wu et al., 2021) proposes an FL method for the recom-
mendation problem with each data owner learning on a
subgraph of the whole recommendation user-item graph.
It considers a different scenario assuming subgraphs have
overlapped items (nodes), and the user-item interactions
(edges) are distributed but completely stored in the system,
which ignores the possible cross-subgraph information lost
in real-world scenarios. However, we study a more chal-
lenging yet realistic case in the distributed subgraph system,
where cross-subgraph edges are totally missing.

In this work, we consider the commonly existing, yet not
studied scenario, i.e., distributed subgraph system with miss-
ing cross-subgraph edges. Under this scenario, we focus on
obtaining a globally applicable node classifier through FL
on distributed subgraphs.

3. FedSage
In this section, we first define the distributed subgraph sys-
tem derived from real-world application scenarios. Based
on it, we then formulate our novel subgraph FL framework
and a vanilla solution called FedSage.

3.1. Subgraphs Distributed in Local Systems

Notation. We denote a global graph as G = {V,E},
where V is the node set and E is the edge set. In the FL
system, we have a central server S and M data owners

with distributed subgraphs. Gi = {Vi, Ei} is the subgraph
owned by data owner Di, for i ∈ [M].

Problem setup. For the whole system, we assume V =
V1∪· · ·∪VM . For simplicity, we also assume no overlapping
nodes shared across data owners, namely Vi ∩ Vj = ∅ for
∀i, j ∈ [M]. Note that the central server S only maintains a
graph mining model with no actual graph data stored. Any
data owner Di cannot directly retrieve u ∈ Vj from another
data owner Dj . Therefore, for an edge ev,u ∈ E, where
v ∈ Vi and u ∈ Vj , ev,u /∈ Ei ∪Ej , that is, ev,u might exist
in reality but is not stored anywhere in the whole system.

For the global graph G = {V,E}, every node v ∈ V has
its features x ∈ X and one label y ∈ Y for the downstream
task, e.g., node classification. For i ∈ [M], data owner
Di possessing the node set Vi has access to the features
and label of each node v ∈ Vi. In a typical GNN, pre-
dicting a node’s label requires not only the queried node’s
features, but also its structural information on the graph it
belongs to. For a node from graph G with features X , we
denote the query made to a node classifier as qG,X (·) and
the query follows the distribution QG,X . Thus, a query for
node v on G with its ground-truth label y is qG,X (v) and
(qG,X (v), y) ∼ (QG,X ,Y).

With subgraphs distributed in the system constructed above,
we formulate our goal as follows.

Goal. The system exploits an FL frameworkHC learning
on the isolated subgraphs to obtain a global node classifier
C, which simulates the distribution of queries drawn from
the global graph G without directly seeing G. Formally, we
have

(qG,X (v), C (qG,X (v)|HC ({Gi,Xi,Yi|i ∈ [M]})))
∼ (QG,X ,Y) ,

(1)

where qG,X (v) is the node classification query generated
for node v in G.

3.2. Collaborative Learning on Isolated Subgraphs

To fulfill the system’s goal illustrated above, we leverage the
simple and efficient FedAvg framework (McMahan et al.,
2017) as HC and fix the node classifier C as a GraphSage
model, whose inductiveness and scalability concert its train-
ing on subgraphs with heterogeneous query distributions
and generalization to the global graph. We term this vanilla
model as FedSage.

A globally shared K-layer GraphSage classifier C models
the K-hop neighborhood for a queried node v ∈ V on
graph G to conduct prediction with learnable parameters θc.
Taking Gi as an example, for v ∈ Vi with features as h0v , at
each layer k ∈ [K], C computes v’s representation hkv as

hkv = σ
(
θk ·

(
hk−1v ||Agg

({
hk−1u ,∀u ∈ NGi

(v)
})))

,
(2)

where NGi(v) is the set of v’s neighbors on graph Gi, || is

Subgraph Federated Learning with Missing Neighbor Generation

the concatenation operation, Agg(·) is the aggregator (e.g.,
mean pooling) and σ is the activation function (e.g., ReLU).

With C outputting the inference label ỹv = Softmax(hKv)
for v ∈ Vi, the supervised loss function l(θ|·) is defined as

Lc = l(θ|qGi,Xi(v)) = CE(ỹv, yv) (3)

where CE(·) is the cross entropy function, θ = {θk}Kk=1

is the set of learnable parameters, qGi,Xi(v) contains v’s K-
hop neighborhood information on Gi, and yv is the ground-
true label of node v.

In FedSage, the distributed subgraph system obtains a shared
global node classifier C parameterized by θc through ec
epochs of training. During each epoch t, every Di first
locally computes θ(i)c ← θc− η∇`(θc|{(qGi,Xi

(v), yv)|v ∈
V t
i }), where V t

i ⊆ Vi, yv is the true label of v, and η is the
learning rate; then the central server S collects the latest
{θ(i)c |i ∈ [M]}; next, through averaging over {θ(i)c |i ∈
[M]}, S sets θc as the averaged value; finally, S broadcasts
θc to data owners and finishes one round of training C. After
ec epochs, the distributed subgraph system retrieves C as the
globally useful classifier, which is not limited to or biased
towards the queries in any specific data owner.

Unlike FL on Euclidean data, nodes in subgraphs distributed
in multiple data owners can potentially interact with each
other in reality, but the cross-subgraph links cannot be cap-
tured by any data owner. Incomplete neighborhoods in
subgraphs prevent the global classifier C from capturing the
true global query distribution.

4. FedSage+
In this section, we propose a novel framework of FedSage+,
i.e., subgraph FL with missing neighbor generation. We first
design a missing neighbor generator (NeighGen) and its
training schema via graph mending. Then, we describe the
joint training of NeighGen and GraphSage to better achieve
the goal in Eq. (1). WLOG, we demonstrate NeighGeni,
i.e., the missing neighbor generator of Di, as an example,
where i ∈ [M].

4.1. Missing Neighbor Generator (NeighGen)

Graph mending simulation. For our system, we assume
that each data owner has missing links only to a particular set
of nodes that belong to other data owners. The assumption
is realistic yet non-trivial for it both seizing the quiddity of
the distributed subgraph system, and allowing us to locally
simulate the missing neighbor situation through a graph
impairing and mending process. Specifically, in each local
graph Gi, we randomly hold out h% of its nodes V h

i ⊂
Vi and all links involving them Eh

i , to form a subgraph,
denoted as Ḡi, with the impaired set of nodes V̄i = Vi \V h

i ,
and edges Ēi = Ei\Eh

i . Then we simulate a graph mending

process to train a missing neighbor generator (NeighGen)
on the impaired graph Ḡi = {V̄i, Ēi}.

Neural architecture of NeighGen. As shown in Fig. 2,
NeighGen consists of two modules, i.e., an encoder E and a
generator G. We describe their designs in details below.
E : A GNN model, i.e., a K-layer GraphSage encoder, with
parameters θe. For node v ∈ V̄i on the input impaired graph
Ḡi, E computes node embeddings z = hK according to
Eq. (2) by substituting θ, G with θe and Ḡi.

G: A generative model recovering missing neighbors for
the input graph based on the node embedding z. G contains
dGen and fGen, where dGen is a linear regression model
parameterized by θd that predicts the number of missing
neighbors ñi, and fGen is a feature generator parameterized
by θf that generates a set of ñi feature vectors X̃i. Both
dGen and fGen are constructed as fully connected neural
networks (FNNs), while fGen is further equipped with a
Gaussian noise generator N(0, 1) and a random samplerR
that make it variational and able to generate a set of diverse
neighbor features from a single node. Thus, we have

ñi = σ(θd · zi), and X̃i = σ
(
θf · R(zi +N(0, 1), ñi)

)
. (4)

Accordingly, the training of NeighGen boils down to jointly
training dGen and fGen with

Ln = λdLd + λfLf

= λd
1

|V̄ |
∑

v∈V̄ L
S
1 (ñv − nv)

+λf
1

|V̄ |
∑

v∈V̄

∑
p∈[ñv] min

q∈[nv]
(||x̃pv − xqv||22),

(5)

where LS
1 is the smooth L1 distance (Girshick, 2015), nv

and Xv are retrieved based on the hidden nodes V h.

Obtaining a mended graph G′i from Gi requires two steps,
which are also shown in Fig. 2: 1) Training NeighGen on the
impaired graph Ḡi w.r.t. the ground-truth hidden neighbors
V h
i , 2) Referring to the relation between Ḡi and Gi, fur-

ther mending the original graph Gi into G′i by running the
learned NeighGen on Gi. On the local graph Gi alone, this
process can be understood as a data augmentation that fur-
ther generates potential missing neighbors within Gi. How-
ever, the actual goal is to allow NeighGen to generate the
cross-subgraph missing neighbors, which can be achieved
via training NeighGen with FL and will be discussed in
Section 4.3.

4.2. Local Joint Training of GraphSage and NeighGen

While NeighGen is designed to recover missing neighbors,
the final goal of our system is to train a node classifier.
Therefore, we design the joint training of GraphSage and
NeighGen, which leverages neighbors generated by Neigh-
Gen to assist the node classification by GraphSage. We term

Subgraph Federated Learning with Missing Neighbor Generation

Figure 2. Joint training of missing neighbor generation and node classification.

the integration of GraphSage and NeighGen on the local
graphs as LocSage+.

After NeighGen mends the graphGi intoG′i, the GraphSage
classifier C is applied on G′i, accroding to Eq. (2) (with
Gi replaced by G′i). The joint training of NeighGen and
GraphSage is done through optimizing the loss function as

L = Ln + λcLc = λdLd + λfLf + λcLc, (6)

where Ld and Lf are defined in Eq. (5) and Lc is defined in
Eq. (3) (with Gi substituted by G′i).

However, like GraphSage, the information encoded in the
local NeighGen is limited to and biased towards the local
graph. Thus, it is natural to also train NeighGen with FL.

4.3. Federated Learning of GraphSage and NeighGen

We observe that cooperation through directly averaging
weights of NeighGen across the system can negatively ef-
fect its performance. Therefore, instead of training a single
centralized NeighGen in a FedAvg manner, we train a lo-
cal NeighGeni for each data owner Di. To allow each
NeighGeni to generate diverse neighbors similar to those
missed into other subgraphs Gj , j ∈ [M] \ {i}, we add a
cross-subgraph feature reconstruction loss into fGeni as:

Lf,i =
1

|V̄i|
∑
v∈V̄i

∑
p∈[ñv]

min
q∈[nv]

(||x̃pv − xqv||22)

+
α

|V̄i|
∑
v∈V̄i

∑
p∈[ñv]

∑
j∈[M]/i

min
vq∈V h

j

(||x̃pv − xq||22),
(7)

where vq ∈ V h
j , ∀j ∈ [M] \ {i} is picked as the closest

node from the set of hidden nodes in each subgraph Gj to
simulate the neighbor of v ∈ Vi missed into Gj .

Through Eq. (7), NeighGeni is expected to perceive diverse
neighborhood information from all data owners, so as to
generate more realistic cross-subgraph missing neighbors.

5. Experiments
We conduct experiments on four datasets to verify the effec-
tiveness of FedSage and FedSage+, under different testing
scenarios. We further provide case studies visualizing how
they assist the learning process.

5.1. Datasets and experimental settings

We synthesize the distributed subgraph system with four
widely used real-world graph datasets, i.e., Cora, Cite-
seer (Sen et al., 2008), PubMed (Namata et al., 2012), and
MSAcademic (Shchur et al., 2018). To synthesize the dis-
tributed subgraph system, we find hierarchical graph clusters
on each dataset with the Louvain algorithm (Blondel et al.,
2008) and use the clustering results with 3, 5, and 10 clusters
of similar sizes to obtain subgraphs for data owners.

We implement GraphSage with two layers and mean aggre-
gator. We set the batch size as 64, and the number of nodes
sampled in each layer as 5. The training-validation-testing
ratio is 60%-20%-20%. The graph impairing ratio varies for
different scenarios (h% ∈ [5%, 15%]). All λs are simply
set to 1. Optimization is done with Adam with learning rate
0.001. Local training epoch is 1 for each communication
round of both FedSage and FedSage+. We implement Fed-
Sage and FedSage+ in Python, and execute all experiments
on a serve with 8 NVIDIA GeForce GTX 1080 Ti GPUs.

Since we are the first to study the novel yet important set-
ting of subgraph FL, there are no existing baselines. We
conduct comprehensive ablation evaluation by comparing
FedSage and FedSage+ with three models, i.e., 1) GlobSage:
the GraphSage model trained on the original global graph
without missing links (as an upper bound), 2) LocSage: one
GraphSage model trained solely on each subgraph, 3) Loc-
Sage+: the GraphSage plus NeighGen model jointly trained
solely on each subgraph.

The metric used in our experiments is the node classification
accuracy on the queries sampled from the testing nodes on
the global graph. For globally shared models of GlobSage,
FedSage, and FedSage+, we report the average accuracy
over five random repetitions, while for locally possessed
models of LocSage and LocSage+, the scores are further
averaged across local models.

5.2. Experimental results

Overall performance. We conduct comprehensive abla-
tion experiments to verify the significant promotion brought
by FedSage and FedSage+ for local owners in global node
classification, and the results are listed in Table 1. The most
striking observation emerging from the results is that Fed-
Sage+ remarkably outperforms LocSage by at most 46.68%

Subgraph Federated Learning with Missing Neighbor Generation

Table 1. Node classification results on four datasets with M = 3, 5, and 10. Corresponding std values are provided.

Cora Citesser PubMed MSAcademic

Model M=3 M=5 M=10 M=3 M=5 M=10 M=3 M=5 M=10 M=3 M=5 M=10

LocSage 0.5762 0.4431 0.2798 0.6789 0.5612 0.4240 0.8447 0.8039 0.7148 0.8188 0.7426 0.5918
±0.0302 ±0.0847 ±0.0080 ±0.054 ±0.086 ±0.0859 ±0.0047 ±0.0337 ±0.0951 ±0.0331 ±0.0790 ±0.1005

LocSage+ 0.5644 0.4533 0.2851 0.6848 0.5676 0.4323 0.8481 0.8046 0.7039 0.8393 0.7480 0.5927
±0.0219 ±0.047 ±0.0080 ±0.0517 ±0.0714 ±0.0715 ±0.0041 ±0.0318 ±0.0925 ±0.0330 ±0.0810 ±0.1094

FedSage 0.9071 0.8968 0.4917 0.8499 0.8192 0.8192 0.8238 0.8046 0.7742 0.9327 0.9391 0.9262
±0.0025 ±0.0012 ±0.0080 ±0.0013 ±0.0012 ±0.0018 ±0.0004 ±0.0003 ±0.0006 ±0.0005 ±0.0007 ±0.0009

FedSage+ 0.9269 0.9099 0.5505 0.8526 0.8272 0.8269 0.8716 0.8279 0.8285 0.9359 0.9414 0.9314
±0.0011 ±0.0013 ±0.0080 ±0.0007 ±0.0010 ±0.0013 ±0.0004 ±0.0004 ±0.0010 ±0.0005 ±0.0006 ±0.0009

GlobSage 0.9213±0.0010 0.8554±0.0010 0.9342±0.0009 0.9681±0.0006

20 40 60 80 100
Training Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

FedSage
FedSage+
GlobSage
LocSage
LocSage+

(a) Accuracy curves

20 40 60 80 100
Training Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

 V
al

ue

FedSage
FedSage+
GlobSage
LocSage
LocSage+

(b) Loss curves

0 20 40 60 80 100
Training Epoch

0

50

100

150

200

250

300

Ti
m

e
(s

)

FedSage
FedSage+
GlobSage
LocSage
LocSage+

(c) Training time

Figure 3. Training curves of different frameworks (GlobSage provides an upper bound).

and the vanilla FedSage by at most 5.88% (absolute accu-
racy gain). Notably, for the Cora dataset, when M is 3,
FedSage+ even exceeds GlobSage by 0.56% .

The large gaps between locally obtained classifier, i.e.,
through LocSage or LocSage+, and the federated trained
classifier, i.e., with FedSage or FedSage+, assay the ben-
efits brought by the collaboration across data owners in
our distributed subgraph system. Compared to FedSage,
the further elevation brought by FedSage+ corroborates the
assumed degeneration brought by missing cross-subgraph
links and the effectiveness of our innovatively designed
NeighGen module. Note that, the gaps between LocSage
and LocSage+ are comparatively smaller, indicating that
our NeighGen serves more than a robust GNN trainer, but
is rather uniquely crucial in the subgraph FL setting.

Case studies. To further understand how FedSage im-
proves the global classifier over LocSage, we provide case
study results on Cora with five data owners in Fig. 3. With
the assistance of NeighGen, FedSage+ reaches a even higher
testing accuracy compared to GlobSage. While FedSage
can consistently achieve convergence with rapidly improved
testing accuracy similar to GlobSage. Regarding runtime,
even though the classifier from FedSage+ learns from dis-
tributed mended subgraphs, FedSage+ does not consume
observable more training time compared to FedSage. Due
to the additional communications and computations in sub-

graph FL, both FedSage and FedSage+ consume slightly
more training time compared to GlobSage.

6. Conclusion
This work aims at obtaining a generalized node classifica-
tion model in a distributed subgraph system without data
sharing. To resolve the limitation in data accessibility, we
interweave GraphSage and FedAvg and propose a federated
graph learning method, FedSage. To tackle the realistic
yet unexplored issue of missing cross-subgraph links, we
design a novel missing neighbor generator NeighGen with
the corresponding local and federated training processes.
Combining NeighGen with FedSage, we present FedSage+.
Experimental results evidence the distinguished elevation
brought by FedSage and FedSage+ by allowing local data
owners to collaboratively learn a global node classifier. No-
tably, FedSage+ exceeds all compared methodologies in all
testing scenarios, which indicates it a practical and universal
solution in real-world applications.

Though FedSage+ is manifested with advantageous per-
formance, similar to existing FL methods, it confronts the
potential adversarial analysis during interactions. As com-
munications are vital for FL, leveraging cryptologic tech-
niques to minimize the privacy leakage risk in the distributed
subgraph system can be a promising future direction.

Subgraph Federated Learning with Missing Neighbor Generation

References
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-

vre, E. Fast unfolding of communities in large networks.
JSTAT, 2008(10):P10008, 2008.

Chen, L., Li, J., Peng, Q., Liu, Y., Zheng, Z., and Yang, C.
Understanding structural vulnerability in graph convolu-
tional networks. In IJCAI, 2021.

Dou, Q., So, T. Y., Jiang, M., Liu, Q., Vardhanabhuti, V.,
Kaissis, G., Li, Z., Si, W., Lee, H. H., Yu, K., et al. Feder-
ated deep learning for detecting covid-19 lung abnormali-
ties in ct: a privacy-preserving multinational validation
study. NPJ digital medicine, 4:1–11, 2021.

Girshick, R. Fast r-cnn. In ICCV, 2015.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

He, C., Balasubramanian, K., Ceyani, E., Rong, Y., Zhao,
P., Huang, J., Annavaram, M., and Avestimehr, S. Fed-
graphnn: A federated learning system and benchmark for
graph neural networks. arXiv preprint arXiv:2104.07145,
2021a.

He, C., Li, S., Soltanolkotabi, M., and Avestimehr,
S. Pipetransformer: Automated elastic pipelining for
distributed training of transformers. arXiv preprint
arXiv:2102.03161, 2021b.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE SPM, 37:50–60, 2020.

Liang, X., Liu, Y., Chen, T., Liu, M., and Yang, Q. Federated
transfer reinforcement learning for autonomous driving.
arXiv preprint arXiv:1910.06001, 2019.

Liu, Q., Chen, C., Qin, J., Dou, Q., and Heng, P.-A. Feddg:
Federated domain generalization on medical image seg-
mentation via episodic learning in continuous frequency
space. arXiv preprint arXiv:2103.06030, 2021.

Luo, G., Li, J., Peng, H., Yang, C., Sun, L., Yu, P., and
He, L. Graph entropy guided node embedding dimension
selection for graph neural networks. In IJCAI, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017.

Namata, G., London, B., Getoor, L., and Huang, B. Query-
driven active surveying for collective classification. In
MLG workshop, 2012.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Wu, C., Wu, F., Cao, Y., Huang, Y., and Xie, X. Fedgnn:
Federated graph neural network for privacy-preserving
recommendation. arXiv preprint arXiv:2102.04925,
2021.

Wu, M., Pan, S., Zhou, C., Chang, X., and Zhu, X. Unsu-
pervised domain adaptive graph convolutional networks.
In WWW, 2020a.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
TNNLS, 2020b.

Xie, H., Ma, J., Xiong, L., and Yang, C. Federated graph
classification over non-iid graphs. In ICML-FL, 2021.

Yang, C., Zhuang, P., Shi, W., Luu, A., and Li, P. Con-
ditional structure generation through graph variational
generative adversarial nets. In NIPS, 2019a.

Yang, C., Xiao, Y., Zhang, Y., Sun, Y., and Han, J. Het-
erogeneous network representation learning: A unified
framework with survey and benchmark. In TKDE, 2020a.

Yang, C., Zhang, J., and Han, J. Co-embedding network
nodes and hierarchical labels with taxonomy based gen-
erative adversarial nets. In ICDM, 2020b.

Yang, C., Wang, H., Zhang, K., Chen, L., and Sun, L. Secure
deep graph generation with link differential privacy. In
IJCAI, 2021.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. TIST, 10(2):1–19,
2019b.

Zhu, D., Zhang, Z., Cui, P., and Zhu, W. Robust graph
convolutional networks against adversarial attacks. In
SIGKDD, 2019.

Zhu, Q., Xu, Y., Wang, H., Zhang, C., Han, J., and Yang,
C. Transfer learning of graph neural networks with
ego-graph information maximization. arXiv preprint
arXiv:2009.05204, 2020a.

Zhu, X., Wang, J., Hong, Z., and Xiao, J. Empirical studies
of institutional federated learning for natural language
processing. In EMNLP, pp. 625–634, 2020b.

Zügner, D. and Günnemann, S. Adversarial attacks on graph
neural networks via meta learning. In ICLR, 2019.

