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Abstract

The increasing size of data generated by smart-
phones and IoT devices motivated the develop-
ment of Federated Learning (FL), a framework
for on-device collaborative training of machine
learning models. First efforts in FL focused on
learning a single global model with good average
performance across clients, but the global model
may be arbitrarily bad for a given client, due to the
inherent heterogeneity of local data distributions.
Federated multi-task learning (MTL) approaches
can learn personalized models by formulating an
opportune penalized optimization problem. The
penalization term can capture complex relations
among these models, but eschews clear statistical
assumptions about local data distributions.

In this work, we propose to study federated MTL
under the flexible assumption that each local data
distribution is a mixture of unknown underlying
distributions. This assumption encompasses most
of the existing personalized FL approaches and
leads to federated EM (expectation maximization)
like algorithms for both client-server and fully
decentralized settings. Moreover, it provides a
principled way to serve personalized models to
clients not seen at training time. The algorithms’
convergence is analyzed through a novel feder-
ated surrogate optimization framework, which
can be of general interest. Experimental results
on FL benchmarks show that our approach pro-
vides models with higher accuracy and fairness
than state-of-the-art methods.
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1. Introduction
Federated Learning (FL) (Kairouz et al., 2019) allows a set
of clients to collaboratively train models without sharing
their local data. Standard FL approaches train a unique
model for all clients (McMahan et al., 2017; Konečny et al.,
2016; Sahu et al., 2018; Karimireddy et al., 2020; Mohri
et al., 2019). However, as discussed in (Sattler et al., 2020),
the existence of such a global model suited for all clients
is at odds with the statistical heterogeneity observed across
different clients (Li et al., 2020; Kairouz et al., 2019). In-
deed, clients can have non-iid data and varying preferences.
Consider for example a language modeling task: given the
sequence of tokens “I love eating,” the next word can be
arbitrarily different from one client to another. Thus, having
personalized models for each client is a necessity in many
FL applications.

Previous work on personalized FL. A naive approach for
FL personalization is learning first a global model and then
fine-tuning its parameters at each client via a few iterations
of stochastic gradient descent (Sim et al., 2019). In this
case, the global model plays the role of a meta-model to
be used as initialization for few-shot adaptation at each
client. In particular, the connection between FL and Model
Agnostic Meta Learning (MAML) (Jiang et al., 2019) has
been studied in (Fallah et al., 2020) and (Khodak et al.,
2019) in order to build a more suitable meta-model for local
personalization. Unfortunately, these methods can fail to
build a model with low generalization error (as exemplified
by LEAF synthetic dataset (Caldas et al., 2018, App. 1)).
An alternative approach is to jointly train a global model
and one local model per client and then let each client build
a personalized model by interpolating them (Deng et al.,
2020; Corinzia & Buhmann, 2019; Mansour et al., 2020).
However, if local distributions are far from the average
distribution, a relevant global model does not exist and
this approach boils down to every client learning only on
its own local data. This issue is formally captured by the
generalization bound in (Deng et al., 2020, Theorem 1).

Clustered FL (Sattler et al., 2020; Ghosh et al., 2020b; Man-
sour et al., 2020) addresses the potential lack of a global
model by assuming that clients can be partitioned into sev-
eral clusters. Clients belonging to the same cluster share
the same optimal model, but those models can be arbitrarily
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different across clusters (see (Sattler et al., 2020, Assump-
tion 2) for a rigorous formulation). During training, clients
learn the cluster to which they belong as well as the cluster
model. The clustered FL assumption is also quite limiting,
as no knowledge transfer is possible across clusters. In the
extreme case where each client has its own optimal local
model (recall the example on language modeling), the num-
ber of clusters coincides with the number of clients and no
federated learning is possible.

Multi-Task Learning (MTL) has recently emerged as an
alternative approach to learn personalized models in the fed-
erated setting and allows for more nuanced relations among
clients’ models (Smith et al., 2017; Vanhaesebrouck et al.,
2017; Zantedeschi et al., 2020; Hanzely & Richtárik, 2020;
Dinh et al., 2020). Smith et al. (2017) and Vanhaesebrouck
et al. (2017) were the first to frame FL personalization as a
MTL problem. In particular, they defined federated MTL
as a penalized optimization problem, where the penaliza-
tion term models relationships among tasks (clients). Smith
et al. (2017) proposed the MOCHA algorithm for the client-
server scenario, while Vanhaesebrouck et al. (2017) and
Zantedeschi et al. (2020) presented decentralized algorithms
for the same problem. Unfortunately, these algorithms can
only learn simple models (linear models or linear combi-
nation of pre-trained models), because of the complex pe-
nalization term. Other MTL-based approaches (Hanzely &
Richtárik, 2020; Hanzely et al., 2020; Dinh et al., 2020) are
able to train more general models at the cost of considering
simpler penalization terms (e.g., the distance to the average
model), thereby losing the capability to capture complex
relations among tasks. Moreover, a general limitation of this
line of work is that the penalization term is justified qualita-
tively and not on the basis of clear statistical assumptions
on local data distributions.

Overall, although current personalization approaches can
lead to superior empirical performance in comparison to a
shared global model or individually trained local models, it
is still not well understood whether and under which condi-
tions clients are guaranteed to benefit from collaboration.

Our contributions. In this work, we first show that feder-
ated learning is impossible without assumptions on local
data distributions. Motivated by this negative result, we
formulate a general and flexible assumption: the data distri-
bution of each client is a mixture of M underlying distribu-
tions. The proposed formulation has the advantage that each
client can benefit from knowledge distilled from all other
clients’ datasets (even if any two clients can be arbitrarily
different from each other). We also show that this assump-
tion encompasses most of the personalized FL approaches
proposed in the literature.

In our framework, a personalized model is a linear combi-
nation of M shared component models. All clients jointly

learn the M components, while each client learns its person-
alized mixture weights. We show that federated EM-like al-
gorithms can be used for training. In particular, we propose
FedEM and D-FedEM for the client-server and the fully de-
centralized settings, respectively, and we prove convergence
guarantees. Our approach also provides a principled and
efficient way to infer personalized models for clients unseen
at training time. Our algorithms can easily be adapted to
solve more general problems in a novel framework, which
can be seen as a federated extension of the centralized sur-
rogate optimization approach in (Mairal, 2013). To the best
of our knowledge, our paper is the first work to propose fed-
erated surrogate optimization algorithms with convergence
guarantees.

Through extensive experiments on FL benchmark datasets,
we show that our approach generally yields models that
1) are on average more accurate, 2) are fairer across clients,
and 3) generalize better to unseen clients than state-of-the-
art personalized and non-personalized FL approaches.

Paper outline. In Sec. 2 we provide our impossibility re-
sult, introduce our main assumptions, and show that several
popular personalization approaches can be obtained as spe-
cial cases of our framework. Section 3 describes FedEM
and states its convergence results. Finally, we provide ex-
perimental results in Sec. 4 before concluding in Sec. 5.

2. Problem Formulation
We consider a (countable) set T of classification (or regres-
sion) tasks which represent the set of possible clients. We
will use the terms task and client interchangeably. Data at
client t ∈ T is generated according to a local distributionDt
overX×Y . Local data distributions {Dt}t∈T are in general
different, thus it is natural to fit a separate model (hypothe-
sis) ht ∈ H to each data distribution Dt. The goal is thus to
solve (in parallel) the following optimization problems

∀t ∈ T , minimize
ht∈H

LDt(ht), (1)

where ht : X 7→ ∆|Y| (∆D denoting the unitary simplex
of dimension D), l : ∆|Y| × Y 7→ R+ is a loss function,1

and LDt(ht) = E(x,y)∼Dt [l(ht(x), y)] is the true risk of a
model ht under data distribution Dt. For (x, y) ∈ X × Y ,
we will denote the joint distribution density associated toDt
by pt(x, y), and the marginal densities by pt(x) and pt(y).

A set of T clients [T ] , {1, 2, . . . , T} ⊆ T participate to
the initial training phase; other clients may join the system
in a later stage. We denote by St = {s(i)

t , (x
(i)
t , y

(i)
t )}nti=1

the dataset at client t ∈ [T ] drawn i.i.d. from Dt, and by
n =

∑T
t=1 nt the total dataset size.

1In the case of (multi-output) regression, we have ht : X 7→
Rd for some d ≥ 1 and l : Rd × Rd 7→ R+.
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The idea of federated learning is to enable each client to
benefit from data samples available at other clients in order
to get a better estimation of LDt , and therefore get a model
with a better generalization ability to unseen examples.

2.1. Learning under a Mixture Model

As shown in Appendix A, without any assumptions on the
local data distributions pt (x, y), a client cannot provably
benefit from larger amounts of data available at other clients.
Motivated by this impossibility result, in this work we pro-
pose to consider that each local data distribution Dt is a
mixture of M underlying distributions D̃m, 1 ≤ m ≤ M ,
as formalized below.
Assumption 1. There exist M underlying (independent)
distributions D̃m, 1 ≤ m ≤ M , such that for t ∈ T ,
Dt is mixture of the distributions {D̃m}Mm=1 with weights
π∗t = [π∗t1, . . . , π

∗
tM ] ∈ ∆M , i.e.

zt ∼M(π∗t ), ((xt, yt) |zt = m) ∼ D̃m, ∀t ∈ T , (2)

where M(π) is a multinomial (categorical) distribution
with parameters π.

Similarly to what was done above, we use pm(x, y), pm(x),
and pm(y) to denote the probability distribution densities
associated to D̃m. We further assume that marginals over
X are identical.
Assumption 2. For all m ∈ [M ], we have pm(x) = p(x).

Assumption 2 is not strictly required for our analysis to hold,
but, in the most general case, solving Problem (1) requires
to learn generative models. Instead, under Assumption 2
we can restrict our attention to discriminative models (e.g.,
neural networks). More specifically, we consider a parame-
terized set of models H̃ with the following properties.
Assumption 3. H̃ = {hθ}θ∈Rd is a set of hypotheses pa-
rameterized by θ ∈ Rd, whose convex hull is inH. For each
distribution D̃m with m ∈ [M ], there exists a hypothesis
hθ∗m , such that

l
(
hθ∗m(x) , y

)
= − log pm(y|x) + c, (3)

where c ∈ R is a normalization constant. l(·, ·) is then the
log loss associated to pm(y|x).

We refer to the hypotheses in H̃ as component models or
simply components. We denote by Θ∗ ∈ RM×d the matrix
whose m-th row is θ∗m, and by Π∗ ∈ ∆T×M the matrix
whose t-th row is π∗t ∈ ∆M . Similarly, we will use Θ and
Π to denote arbitrary parameters.
Remark 1. Assumptions 2–3 are mainly technical and are
not required for our approach to work in practice. Experi-
ments in Sec. 4 show that our algorithms perform well on
standard FL benchmark datasets, for which these assump-
tions do not hold in general.

Note that, under the above assumptions, pt(x, y) depends
on Θ∗ and π∗t . Moreover, we can prove (see App. B) that
the optimal local model h∗t ∈ H for client t is a weighted
average of models in H̃.

Proposition 2.1. Let l(·, ·) be the mean squared error loss,
the logistic loss or the cross-entropy loss, and Θ̆ and Π̆ be
a solution of the following optimization problem:

minimize
Θ,Π

E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ, πt)] , (4)

where DT is any distribution with support T . Under As-
sumptions 1, 2, and 3, the predictors

h∗t =

M∑
m=1

π̆tmhθ̆m (x) , ∀t ∈ T (5)

solve Problem (1).

Proposition 2.1 suggests the following approach to solve
Problem (1). First, we estimate the parameters Θ̆ and
π̆t, 1 ≤ t ≤ T , by minimizing the empirical version of
Problem (4) on the training data:

f(Θ,Π) , − 1

n

T∑
t=1

nt∑
i=1

log p(s
(i)
t |Θ, πt), (6)

which is the (negative) likelihood of the probabilistic
model (2).2 Second, we use (5) to get the client predic-
tor for the T clients present at training time. Finally, to deal
with a client tnew /∈ [T ] not seen during training, we keep
the mixture component models fixed and simply choose the
weights πtnew that maximize the likelihood of the client data
and build the client predictor via (5).

2.2. Generalizing Existing Frameworks

Before presenting our FL algorithms in Sec. 3, we show that
the generative model in Assumption 1 extends some popular
multi-task/personalized FL formulations in the literature.

Clustered Federated Learning (Sattler et al., 2020; Ghosh
et al., 2020a) assumes that each client belongs to one among
C clusters and proposes that all clients in the same cluster
learn the same model. Our framework recovers this scenario
considering M = C and π∗tc = 1 if task (client) t is in
cluster c and π∗tc = 0 otherwise.

Personalization via model interpolation (Mansour et al.,
2020; Deng et al., 2020) relies on learning a global model
hglob and T local models hloc,t, and then using at each client
the linear interpolation ht = αthloc,t + (1− αt)hglob. Each
client model can thus be seen as a linear combination of
M = T + 1 models hm = hloc,m for m ∈ [T ] and h0 =

2As the distribution DT in Prop. 2.1 is arbitrary, any positively
weighted sum of clients’ empirical losses could be considered.



Federated Multi-Task Learning under a Mixture of Distributions

hglob with specific weights π∗tt = αt, π∗t0 = 1 − αt, and
π∗tt′ = 0 for t′ ∈ [T ] \ {t}.

Federated MTL via task relationships. The authors
of (Smith et al., 2017) proposed to learn personalized client
models by solving the following optimization problem in-
spired from classic MTL formulations:

min
W,Ω

T∑
t=1

nt∑
i=1

l(hwt(x
(i)
t ), y

(i)
t ) + λ tr (WΩW ᵀ) , (7)

where hwt are linear predictors parameterized by the rows
of matrix W and the matrix Ω captures task relationships
(similarity). This formulation is motivated by the alternating
structure optimization method (ASO) (Ando & Zhang, 2005;
Zhou et al., 2011). In App. C, we show that, when predic-
tors hθ∗m are linear and have bounded norm, our framework
leads to the same ASO formulation that motivated Prob-
lem (7). Problem (7) can also be justified by probabilistic
priors (Zhang & Yeung, 2010) or graphical models (Lau-
ritzen, 1996) (see (Smith et al., 2017, App. B.1)). Similar
considerations hold for our framework (see again App. C).
Reference (Zantedeschi et al., 2020) extends the approach
in (Smith et al., 2017) by letting each client learn a personal-
ized model as a weighted combination ofM known hypothe-
ses. Our approach is more general and flexible as clients
learn both the weights and the hypotheses. Finally, other per-
sonalized FL algorithms, like pFedMe (Dinh et al., 2020),
FedU (Dinh et al., 2021), and those studied in (Hanzely &
Richtárik, 2020) and in (Hanzely et al., 2020), can be framed
as special cases of formulation (7). Their assumptions can
thus also be seen as a particular case of our framework.

3. Federated Expectation-Maximization
3.1. Centralized Expectation-Maximization

Our goal is to estimate the optimal components’ parameters
Θ∗ = (θ∗m)1≤m≤M and mixture weights Π∗ = (π∗t )1≤t≤T
by minimizing the negative log-likelihood f(Θ,Π) in (6).
A natural approach to solve such non-convex problems is
via the Expectation-Maximization algorithm (EM), which
alternates between two steps. Expectation steps update the
distribution (denoted by qt) over the latent variables z(i)

t for
every instance s(i)

t , given the current estimates of the param-
eters {Θ,Π}. Maximization steps update the parameters
{Θ,Π} by maximizing the expected log-likelihood, where
the expectation is computed according to the current latent
variables’ distributions. The following proposition provides
the EM updates for our problem (proof in App. D).
Proposition 3.1. Under Assumptions 1 and 2, at the k-th
iteration the EM algorithm updates parameter estimates
through the following steps:

E-step: qk+1
t (z

(i)
t = m) ∝ πktme

−l(h
θkm

(x
(i)
t ),y

(i)
t )
, (8)

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z

(i)
t = m)

nt
, (9)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z

(i)
t = m)

× l
(
hθ(x

(i)
t ), y

(i)
t

)
, (10)

The EM updates in Proposition 3.1 have a natural interpre-
tation. In the E-step, given current component models Θk

and mixture weights Πk, (8) updates the a-posteriori proba-
bility qk+1

t (z
(i)
t = m) that point s(i)

t of client t was drawn
from the m-th distribution based on the current mixture
weight πktm and on how well the corresponding compo-
nent θkm classifies s(i)

t . The M-step consists of two updates
under fixed probabilities qk+1

t . First, (9) updates the mix-
ture weights πk+1

t to reflect the prominence of each distri-
bution D̃m in St as given by qk+1

t . Finally, (10) updates
the components’ parameters Θk+1 by solving M indepen-
dent, weighted empirical risk minimization problems with
weights given by qk+1

t . These weights aim to construct
an unbiased estimate of the true risk over each underlying
distribution D̃m using only points sampled from the client
mixtures, similarly to importance sampling strategies used
to learn from data with sample selection bias (Sugiyama
et al., 2008; Cortes et al., 2008; 2010; Vogel et al., 2020).

3.2. Federated Expectation-Maximization

Federated learning aims to train machine learning models
directly on the clients, without exchanging raw data, and
thus we should run EM while assuming that only client t
has access to dataset St. The E-step (8) and the Π update (9)
in the M-step operate separately on each local dataset St
and can thus be performed locally at each client t. On the
contrary, the Θ update (10) requires interaction with other
clients, since the computation spans all data samples S1:T .

In this section, we consider a client-server setting, in which
each client t can communicate only with a centralized server
(the orchestrator) and wants to learn components’ parame-
ters Θ∗ = (θ∗m)1≤m≤M and its own mixture weights π∗t .

We propose the algorithm FedEM for Federated
Expectation-Maximization (Alg. 1). FedEM proceeds
through communication rounds similarly to most FL
algorithms including FedAvg (McMahan et al., 2017),
FedProx (Sahu et al., 2018), SCAFFOLD (Karimireddy
et al., 2020), and pFedMe (Dinh et al., 2020). At each
round, 1) the central server broadcasts the (shared)
component models to the clients, 2) each client locally
updates components and its personalized mixture weights,
and 3) sends the updated components back to the server,
4) the server aggregates the updates. The local update
performed at client t consists in performing the steps in (8)
and (9) and updating the local estimates of θm through a
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Algorithm 1 FedEM (see also the more detailed Alg. 7 in
App. I.1)

1: Input: data S1:T ; number of mixture distributions M ;
number of communication rounds K

2: for iterations k = 1, . . . ,K do
3: server broadcast θk−1

m , 1 ≤ m ≤M to the T clients
4: for tasks t = 1, . . . , T in parallel over T clients do
5: for component m = 1, . . . ,M do
6: update qkt (z

(i)
t = m) as in (8), ∀i ∈

{1, . . . , nt}
7: update πktm as in (9)
8: θkm,t ← LocalSolver(m, θk−1

m , qkt , St)
9: end for

10: end for
11: client t sends θkm,t, 1 ≤ m ≤M , to the server
12: for component m = 1, . . . ,M do
13: θkm ←

∑T
t=1

nt
n × θ

k
m,t

14: end for
15: end for

solver which approximates the exact minimization in (10)
using only the local dataset St (see line 8). FedEM can
operate with different local solvers—even different across
clients—as far as they satisfy some local improvement
guarantees (see the discussion in App. K). In what follows,
we restrict our focus on the practically important case
where the local solver performs multiple stochastic gradient
descent updates (local SGD (Stich, 2018)).

Under standard mild assumptions (detailed in Appendix E),
FedEM converges to a stationary point of f .

Theorem 3.2. Under Assumptions 1–7, when clients use
SGD as local solver with learning rate η = a0√

K
, af-

ter a large enough number of communication rounds K,
FedEM’s iterates satisfy:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θk,Πk

)∥∥2

F
≤ O

(
1√
K

)
, (11)

1

K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(

1

K3/4

)
, (12)

where the expectation is over the random batches samples,
and ∆Πf(Θk,Πk) , f

(
Θk,Πk

)
− f

(
Θk,Πk+1

)
≥ 0.

Theorem 3.2 (proof in App. J.1) expresses the convergence
of both sets of parameters (Θ and Π) to a stationary point of
f . Indeed, the gradient of f with respect to Θ becomes arbi-
trarily small (inequality (11)) and the update in Eq. (9) leads
to arbitrarily small improvements of f (inequality (12)).

FedEM allows an unseen client, i.e., a client tnew /∈ [T ]
arriving after the distributed training procedure, to learn its
personalized model. The client simply retrieves the learned

components’ parameters ΘK and computes its personalized
weights πtnew through one E-step (8) (e.g., starting from a
uniform initialization) and the first update in the M-step (9).

In some cases, clients may want to communicate directly in a
peer-to-peer fashion instead of relying on the central server
mediation (Kairouz et al., 2019, Sec. 2.1). In fact, fully
decentralized schemes may provide stronger privacy guaran-
tees (Cyffers & Bellet, 2021) and speed-up training as they
better use communication resources (Lian et al., 2017; Mar-
foq et al., 2020) and reduce the effect of stragglers (Neglia
et al., 2019). In App. I.2 we propose D-FedEM (Alg. 3), a
fully decentralized version of our federated EM algorithm
with similar convergence guarantees.

Both FedEM and D-FedEM can be seen as particular in-
stances of a more general framework—of potential interest
for other applications—that we call federated surrogate
optimization and we describe in App. H.

4. Experiments
Datasets and models. We evaluated our method on five
federated benchmark datasets spanning a wide range of
machine learning tasks: image classification (CIFAR10
and CIFAR100 (Krizhevsky, 2009)), handwritten character
recognition (EMNIST (Cohen et al., 2017) and FEMNIST
(Caldas et al., 2018)), and language modeling (Shakespeare
(Caldas et al., 2018; McMahan et al., 2017)). Shakespeare
dataset (resp. FEMNIST) was naturally partitioned by as-
signing all lines from the same characters (resp. all images
from the same writer) to the same client. We created fed-
erated versions of CIFAR10 and EMNIST by distributing
samples with the same label across the clients according to
a symmetric Dirichlet distribution with parameter 0.4, as
in (Wang et al., 2020a). For CIFAR100, we exploited the
availability of “coarse” and “fine” labels, using a two-stage
Pachinko allocation method (Li & McCallum, 2006) to as-
sign 600 sample to each of the 100 clients, as in (Reddi et al.,
2021). We also evaluated our method on a synthetic dataset
verifying Assumptions 1–3. For all tasks, we randomly split
each local dataset into training (80%) and test (20%) sets.
Details on datasets and models can be found in App. L.1,
and additional experimental results are in App. M.

Other FL approaches. We compared our algorithms with
global models trained with FedAvg (McMahan et al., 2017)
and FedProx (Sahu et al., 2018) and different personaliza-
tion approaches: a personalized model trained only on the
local dataset, FedAvg with local tuning (FedAvg+) (Jiang
et al., 2019), clustered FL (Sattler et al., 2020) and
pFedMe (Dinh et al., 2020). For each method and each
task, the learning rate and the other hyper-parameters were
tuned via grid search (details in App. L.2). FedAvg+ up-
dated the local model through a single pass on the local
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Table 1. Test accuracy: average across clients / bottom decile.

DATASET LOCAL FEDAVG FEDPROX FEDAVG+ CLUSTERED FL PFEDME FEDEM (OURS)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 /64.8
EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 /76.6
CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 /78.1
CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 /35.0
SHAKESPEARE 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 /43.0
SYNTHETIC 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 /66.7

dataset. Unless otherwise stated, the number of components
considered by FedEM was M = 3, 3 training occurred over
80 communication rounds for Shakespeare and 200 rounds
for all other datasets. At each round, clients train for one
epoch. Results for D-FedEM are in Appendix M.1.

Average performance of personalized models. The per-
formance of each personalized model (which is the same for
all clients in the case of FedAvg and FedProx) is evalu-
ated on the local test dataset (unseen at training). Table 1
shows the average weighted accuracy with weights propor-
tional to local dataset sizes. We observe that FedEM obtains
the best performance across all datasets.

Fairness across clients. FedEM’s improvement in terms of
average accuracy could be the result of learning particularly
good models for some clients at the expense of bad models
for other clients. Table 1 shows the bottom decile of the
accuracy of local models, i.e., the (T/10)-th worst accuracy
(the minimum accuracy is particularly noisy, notably be-
cause some local test datasets are very small). Even clients
with the worst personalized models are still better off when
FedEM is used for training.

Clients sampling. In cross-device federated learning, only
a subset of clients may be available at each round. We ran
CIFAR10 experiments with different levels of participation:
at each round a given fraction of all clients were sampled
uniformly without replacement. We restrict the comparison
to FedEM and FedAvg+, as 1) FedAvg+ performed bet-
ter than FedProx and FedAvg in the previous CIFAR10
experiments, 2) it is not clear how to extend pFedMe and
clustered FL to handle client sampling. Results in
Fig. 1 (App. M) show that FedEM is more robust to low
clients’ participation levels.

Generalization to unseen clients. As discussed in Sec. 3.2,
FedEM allows new clients arriving after the distributed train-
ing to easily learn their personalized models. With the ex-
ception of FedAvg+, it is not clear if and how the other
personalized FL algorithms can tackle the same goal. In
order to evaluate the quality of new clients’ personalized

3The effect of the number of components M on the test accu-
racy is explored in Appendix M.3 and Appendix M.4

Table 2. Average test accuracy across clients unseen at training
(train accuracy in parenthesis).

DATASET FEDAVG FEDAVG+ FEDEM

FEMNIST 78.3 (80.9) 74.2 (84.2) 79.1 (81.5)
EMNIST 83.4 (82.7) 83.7 (92.9) 84.0 (83.3)
CIFAR10 77.3 (77.5) 80.4 (80.5) 85.9 (90.7)
CIFAR100 41.1 (42.1) 36.5 (55.3) 47.5 (46.6)
SHAKESPEARE 46.7 (47.1) 40.2 (93.0) 46.7 (46.6)
SYNTHETIC 68.6 (70.0) 69.1 (72.1) 73.0 (74.1)

models, we performed an experiment where only 80% of
the clients (“old” clients) participate to the training. The re-
maining 20% join the system in a second phase and use their
local training datasets to learn their personalized weights.
Table 4 shows that FedEM allows new clients to learn a
personalized model at least as good as FedAvg’s global
one and always better than FedAvg+’s one. Unexpectedly,
new clients achieve sometimes a significantly higher test
accuracy than old clients (e.g., 47.5% against 44.1% on
CIFAR100). Our investigation (App. M.2) suggests that, by
selecting their mixture weights on local datasets that were
not used to train the components, new clients can compen-
sate for potential overfitting in the initial training phase.

5. Conclusion
In this paper, we proposed a novel federated MTL approach
based on the flexible assumption that local data distributions
are mixtures of underlying distributions. Our EM-like al-
gorithms allow clients to jointly learn shared component
models and personalized mixture weights in client-server
and fully decentralized settings. We proved convergence
guarantees for our algorithms through a federated surrogate
optimization framework which can be used to analyze other
FL formulations. In practice, our approach learns models
with higher accuracy and fairness than state-of-the-art FL
algorithms, even for clients not present at training time.

In future work, we aim to reduce local computation and
communication of our algorithms. Aside from standard
compression schemes (Haddadpour et al., 2021), a promis-
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ing direction is to limit the number of component models
that a client updates/transmits at each step. This could be
done in an adaptive manner based on the client’s current
mixture weights. A second interesting direction is to study
personalized FL approaches under privacy constraints (quite
unexplored until now with the notable exception of Bellet
et al. (2018)). Some features of our algorithms may be bene-
ficial for privacy (e.g., the fact that personalized weights are
kept locally and that all users contribute to all shared mod-
els). We hope to design differentially private versions of our
algorithms and characterize their privacy-utility trade-offs.
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A. An Impossibility Result
We start by showing that some assumptions on the local distributions pt(x, y), t ∈ T are needed for federated learning to
be possible, i.e., for each client to be able to take advantage of the data at other clients. This holds even if all clients are
observed during the initial training phase (i.e., T = [T ]).

Our argument relies on a reduction to an impossibility result for semi-supervised learning (SSL). If clients have arbitrarily
different label distributions, the information carried by pt′(y|x), t′ ∈ [T ] \ {t} is not relevant for client t, and client t
can only use the information carried by the marginals pt′(x). Assuming that these marginals are identical for all clients,
federated learning with T clients is then equivalent to T SSL problems, where the SSL problem associated with client t
relies on labeled samples in St and unlabeled samples in Ut = ∪t′∈[T ]\{t} {x : (x, y) ∈ St′}. 4

The authors of (Ben-David et al., 2008) conjectured that even when the quantity of unlabeled data goes to infinity, the
worst-case sample complexity of SSL improves over supervised learning at most by a constant factor that only depends on
the hypothesis class (Ben-David et al., 2008, Conjecture 4). Later work has shown the conjecture to hold for the realizable
case and hypothesis classes of finite VC dimension (Darnstädt et al., 2013, Theorem 1), even when the marginal distribution
is known (Göpfert et al., 2019, Theorem 2) (whether the conjecture in (Ben-David et al., 2008) holds in the agnostic case is
still an open problem). The main consequence for FL is that, without further assumptions, a client cannot provably benefit
from larger amounts of data available at other clients.

B. Proof of Proposition 2.1
Proposition 2.1. Let l(·, ·) be the mean squared error loss, the logistic loss or the cross-entropy loss, and Θ̆ and Π̆ be a
solution of the following optimization problem:

minimize
Θ,Π

E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ, πt)] , (4)

where DT is any distribution with support T . Under Assumptions 1, 2, and 3, the predictors

h∗t =

M∑
m=1

π̆tmhθ̆m , ∀t ∈ T (5)

minimize E(x,y)∼Dt [l(ht(x), y)] and thus solve Problem (1).

First, Lemma B.1 shows that the parameters Θ̆ and Π̆, solving Problem (4), generate the same probability distribution as the
parameters Θ∗ and Π∗ defined in Assumptions 1 and 3. Then, Lemmas B.2–B.4 exploit the particular form of the mean
squared error loss, the logistic loss, and the cross entropy loss to prove that predictors h∗t , ∀t ∈ T , defined in (5), minimize
E(x,y)∼Dt [l(ht(x), y)].

Lemma B.1. Suppose that Assumptions 1 and 3 hold, and consider Θ̆ and Π̆ to be a solution of Problem (4). Then

pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗t ), ∀t ∈ T . (13)

Proof. For t ∈ T ,

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
= −

∫
x,y∈X×Y

pt(x, y|Θ∗, π∗t ) · log pt(x, y|Θ̆, π̆t)dxdy (14)

= −
∫
x,y∈X×Y

pt(x, y|Θ∗, π∗t ) · log
pt(x, y|Θ̆, π̆t)
pt(x, y|Θ∗, π∗t )

dxdy

−
∫
x,y∈X×Y

pt(x, y|Θ∗, π∗t ) · log pt(x, y|Θ∗, π∗t )dxdy (15)

= KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
·|Θ̆, π̆t

))
+H [pt (·|Θ∗, π∗t )] , (16)

4Note that in FL settings, we have the extra difficulty that client t cannot have direct access to samples Ut, since local data cannot be
moved across clients.
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where
H [pt (·|Θ∗, π∗t )] = −

∫
x,y∈X×Y

pt(x, y|Θ∗, π∗t ) · log pt(x, y|Θ∗, π∗t )dxdy, (17)

is the entropy of pt (·|Θ∗, π∗t ), and

KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
·|Θ̆, π̆t

))
=

∫
x,y∈X×Y

pt(x, y|Θ∗, π∗t ) · log
pt(x, y|Θ∗, π∗t )

pt(x, y|Θ̆, π̆t)
dxdy, (18)

is the Kullback-Leibler divergence between pt (·|Θ∗, π∗t ) and pt
(
·|Θ̆, π̆t

)
. Since the KL divergence is non-negative, we

have
E

(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ H [pt (·|Θ∗, π∗t )] = E

(x,y)∼Dt
[− log pt(x, y|Θ∗, π∗t )] (19)

Taking the expectation over t ∼ DT , we write

E
t∼DT

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≥ E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗t )] . (20)

Since Θ̆ and Π̆ is a solution of Problem (4), we also have

E
t∼DT

E
(x,y)∼Dt

[
− log pt(x, y|Θ̆, π̆t)

]
≤ E
t∼DT

E
(x,y)∼Dt

[− log pt(x, y|Θ∗, π∗t )] . (21)

Combining (20), (21), and (16), we have

E
t∼DT

KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
·|Θ̆, π̆t

))
= 0. (22)

Since KL divergence is non-negative, and the support of DT is the countable set T , it follows that

∀t ∈ T , KL
(
pt (·|Θ∗, π∗t ) ‖pt

(
·|Θ̆, π̆t

))
= 0. (23)

Thus,
pt(x, y|Θ̆, π̆t) = pt(x, y|Θ∗, π∗t ), ∀t ∈ T . (24)

In the following, we prove Prop. 2.1 in each of the three possible cases for the loss function.

B.1. Case of Mean Squared Error Loss

Lemma B.2. Suppose that Assumption 2 holds, Y = Rd for some d > 0, and for t ∈ T and m ∈ [M ],

zt ∼M(π̆t); pt(y|x, z = m) = N
(
y|hθ̆m(x), Id

)
,

where N
(
y|hθ̆m(x), Id

)
is the d-dimensional Gaussian distribution with mean hθ̆m(x) and co-variance Id. Then, h∗t

defined as

∀x ∈ X ; h∗t (x) =

M∑
m=1

π̆tmhθ̆m (x) ,

minimizes the mean squared error
LDt (h) = E

(x,y)∼Dt
‖h(x)− y‖2 .

Proof.

LDt (h) = E
(x,y)∼Dt

‖h(x)− y‖2

2
(25)
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=

M∑
m=1

π̆tm
2
· E

(x,y)∼Dm
‖h(x)− y‖2 (26)

=

M∑
m=1

π̆tm

∫
x,y∈X×Rd

‖h (x)− y‖2√
(2π)

d
exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

pm(x)dxdy (27)

We compute the gradient of E(x,y)∼Dt ‖h(x)− y‖2 with respect to h as,

∇h E
(x,y)∼Dt

‖h(x)− y‖2

2
=

M∑
m=1

π̆tm

∫
x,y

h(x)− y√
(2π)

d
exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

pm(x)dxdy (28)

We write first-order optimality condition at h∗t ,

∇h E
(x,y)∼Dt

‖h∗t (x)− y‖2 = 0, (29)

thus,
M∑
m=1

π̆tm

∫
x,y

h∗t (x)− y√
(2π)

d
exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

pm(x)dxdy = 0, (30)

rearranging the terms leads to,

M∑
m=1

π̆tm

∫
x,y

h∗t (x)· exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

pm(x)dxdy =

M∑
m=1

π̆tm

∫
x,y

y · exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

pm(x)dxdy, (31)

then,

M∑
m=1

π̆tm

∫
x∈X

h∗t (x)·


∫
y∈Rd

exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

dy
 pm(x)dx = (32)

M∑
m=1

π̆tm

∫
x∈X


∫
y∈Rd

y exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

dy
 pm(x)dx, (33)

using the fact that

∀x ∈ X ;
1√

(2π)
d

∫
y∈R

exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

dy = 1, (34)

and that

1√
(2π)

d

∫
y∈R

y exp

−
∥∥∥hθ̆m(x)− y

∥∥∥2

2

dy = hθ̆m(x), (35)

it follows that,
M∑
m=1

π̆tm

∫
x∈X

h∗t (x)pm(x)dx =

M∑
m=1

π̆tm

∫
x∈X

hθ̆m(x)pm(x)dx. (36)
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Using Assumption 2 and the fact that
∑M
m=1 π̆tm = 1; t ∈ [T ], we have∫

x∈X

(
h∗t (x)−

M∑
m=1

π̆tmhθ̆m(x)

)
p(x)dx = 0. (37)

Eq. 37 suggest the following optimality conditions,

∀x ∈ X ; h∗t (x) =

M∑
m=1

π̆tmhθ̆m (x) . (38)

Finally, since h 7→ E(x,y)∼Dt ‖h(x)− y‖2 is convex, it follows that h∗t , defined in (5) minimizes E(x,y)∼Dt ‖h(x)− y‖2.

B.2. Case of logistic loss

Lemma B.3. Suppose that Assumption 2 holds, Y = {0, 1} and for t ∈ T and m ∈ [M ],

zt ∼M(πt); pt(y|x, z = m) = B
(
y|hθ̆m(x)

)
,

where B
(
y|hθ̆m(x)

)
is Bernoulli distribution with parameter hθ̆m(x). Then, h∗t defined as

∀x ∈ X ; h∗t (x) =

M∑
m=1

π̆tmhθ̆m (x) ,

minimizes the logistic loss

LDt (h) = E
(x,y)∼Dt

{−y log [h(x)]− (1− y) log [1− h(x)]} .

Proof.

LDt (h) = E
(x,y)∼Dt

(−y log [h(x)]− (1− y) log [1− h(x)]) (39)

=

M∑
m=1

π̆tm E
(x,y)∼Dm

(−y log [h(x)]− (1− y) log [1− h(x)]) (40)

=

M∑
m=1

π̆tm

∫
x∈X
{− log [1− h(x)] · pm(x, y = 1)− log [h(x)] · pm(x, y = 0)} dx (41)

=

M∑
m=1

π̆tm

∫
x∈X
{− log [1− h(x)] · pm(y = 1|x)− log [h(x)] · pm(y = 0|x)} pm(x)dx (42)

=

M∑
m=1

π̆tm

∫
x∈X

{
− log [1− h(x)] ·

(
1− hθ̆m(x)

)
− log [h(x)] · hθ̆m(x)

}
pm(x)dx (43)

Using Assumption 2, we have

LDt (h) =

M∑
m=1

π̆tm

∫
x∈X

{
− log [1− h(x)] ·

(
1− hθ̆m(x)

)
− log [h(x)] · hθ̆m(x)

}
p(x)dx (44)

We compute the gradient of LDt (h) with respect to h,

∇hLDt (h) =

M∑
m=1

π̆tm

∫
x∈X

{
1− hθ̆m (x)

1− h (x)
−
hθ̆m (x)

h (x)

}
p(x)dx (45)



Federated Multi-Task Learning under a Mixture of Distributions

=

M∑
m=1

π̆tm ·
∫
x∈X

{
h (x)− hθ̆m (x)

(1− h (x)) · h (x)

}
p(x)dx (46)

=

∫
x∈X

M∑
m=1

π̆tm ·
{

h (x)− hθ̆m (x)

(1− h (x)) · h (x)

}
p(x)dx (47)

=

∫
x∈X

{
h (x)−

∑M
m=1 π̆tm · hθ̆m (x)

(1− h (x)) · h (x)

}
p(x)dx (48)

First-order optimality condition at h∗t is,

∫
x∈X

{
h∗t (x)−

∑M
m=1 π̆tm · hθ̆m (x)

(1− h∗t (x)) · h∗t (x)

}
p(x)dx = 0 (49)

Suggesting that the following candidate optimality condition,

∀x ∈ X ; h∗t (x) =

M∑
m=1

π̆tmhθ̆m (x) . (50)

Finally, exploiting the convexity of the logistic loss, h∗t minimizes it.

B.3. Case of Cross-Entropy loss

Lemma B.4. Suppose that Assumption 2 holds and Y = {0, . . . , L} for some L > 2, and for t ∈ T and m ∈ [M ],

zt ∼M(πt); pt(y|x, z = m) =M
(
y|hθ̆m(x)

)
,

whereM
(
y|hθ̆m(x)

)
is the multinomial distribution with parameter hθ̆m(x) ∈ ∆L. Then, h∗t defined as

∀x ∈ X ; h∗t (x) =

M∑
m=1

π̆tmhθ̆m (x) ,

minimizes the cross-entropy loss

LDt (h) = − E
(x,y)∼Dt

L∑
l=1

1{y=l} log (hwt(x))l ,

on ∆L.

Proof. We express the fact that h ∈ ∆L, as

∀x ∈ X ,
L∑
l=1

(h (x))l = 1,

obtaining the following problem

minimize
h

− E
(x,y)∼Dt

L∑
l=1

1{y=l} log (h(x))l

subject to ∀x ∈ X ,
L∑
l=1

(h (x))l = 1
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which is equivalent to

minimize
h

− E
(x,y)∼Dt

L∑
l=1

1{y=l} log (h(x))l

subject to

∫
x∈X

{
L∑
l=1

(h (x))l

}
p (x) dx = 1

The Lagrangian of this problem is

L (h, λ) = − E
(x,y)∼Dt

L∑
l=1

1{y=l} log (h(x))l + λ

[∫
x∈X

{
L∑
l=1

(h (x))l

}
p (x) dx− 1

]
. (51)

Using assumption 2, we can simplify the Lagrangian as

L (h, λ) =

∫
x∈X

{
−

M∑
m=1

π̆tm

L∑
l=1

(
hθ̆m (x)

)
l
· log (h (x))l + λ

(
L∑
l=1

(h (x))l − 1

)}
p(x)dx. (52)

KKT first order optimality conditions at h∗t are written{
∇hL (h∗t , λ) = 0∫
x∈X

{∑L
l=1 (h∗t (x))l − 1

}
p (x) dx = 0,

(53)

then, 
∫
x∈X

∑L
l=1

{
−
∑M
m=1 π̆tm

(hθ̆m (x))
l

(h∗t (x))
l

+ λ

}
· p(x)dx = 0∫

x∈X

{∑L
l=1 (h∗t (x))l − 1

}
p (x) dx = 0

(54)

Leading to the following first-order optimality condition for any x ∈ X{
λ · ht (x) =

∑M
m=1 π̆tmhθ̆m (x)∑L

l=1 (ht (x))l = 1
(55)

Since hθ̆m (x) ∈ ∆L and πt ∈ ∆M , it follows that λ = 1. Thus

hwt (x) =

M∑
m=1

π̆tmhθ̆m (x) (56)

Finally, since the cross-entropy loss is convex in h, h∗t is a minimizer.
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C. Relation with Other Multi-Task Learning Frameworks
In this appendix, we give more details about the relation of our formulation with existing frameworks for (federated) MTL
sketched in Sec. 2.2. We suppose that Assumptions 1–3 hold and that each client learns a predictor of the form (5). Note
that this is more general than (Zantedeschi et al., 2020), where each client learns a personal hypothesis as a weighted
combination of a set of M base known hypothesis, since the base hypothesis and not only the weights are learned in our case.

Alternating Structure Optimization (Zhou et al., 2011). Alternating structure optimization (ASO) is a popular MTL
approach that learns a shared low-dimensional predictive structure on hypothesis spaces from multiple related tasks, i.e., all
tasks are assumed to share a common feature space P ∈ Rd′×d, where d′ ≤ min(T, d) is the dimensionality of the shared
feature space and P has orthonormal columns (PP ᵀ = Id′ ), i.e., P is semi-orthogonal matrix. ASO leads to the following
formulation:

minimize
W,P :PPᵀ=Id′

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ α (tr (WW ᵀ)− tr (WP ᵀPW ᵀ)) + β tr (WW ᵀ) , (57)

where α ≥ 0 is the regularization parameter for task relatedness and β ≥ 0 is an additional L2 regularization parameter.

When the hypothesis (hθ)θ are assumed to be linear, Eq. (5) can be written as W = ΠΘ. Writing the LQ decomposition5

of matrix Θ, i.e., Θ = LQ, where L ∈ RM×M is a lower triangular matrix and Q ∈ RM×d is a semi-orthogonal matrix
(QQᵀ = IM ), (5) becomes W = ΠLQ ∈ RT×d, thus, W = WQᵀQ, leading to the constraint ‖W −WQᵀQ‖2F =

tr (WW ᵀ)− tr (WQᵀQW ᵀ) = 0. If we assume ‖θm‖22 to be bounded by a constant B > 0 for all m ∈ [M ], we get the

constraint tr (WW ᵀ) ≤ TB. It means that minimizing
∑T
t=1

∑nt
i=1 l

(
hwt

(
x

(i)
t

)
, y

(i)
t

)
under our Assumption 1 can be

formulated as the following constrained optimization problem

minimize
W,Q:QQᵀ=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
,

subject to tr {WW ᵀ} − tr {WQᵀQW ᵀ} = 0,

tr (WW ᵀ) ≤ TB.

(58)

Thus, there exists Lagrange multipliers α ∈ R and β > 0, for which Problem (58) is equivalent to the following regularized
optimization problem

minimize
W,Q:QQᵀ=IM

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ α (tr {WW ᵀ} − tr {WQᵀQW ᵀ}) + β tr {WW ᵀ} , (59)

which is exactly Problem (57).

Federated MTL via task relationships. The ASO formulation above motivated the authors of (Smith et al., 2017) to
learn personalized models by solving the following problem

min
W,Ω

T∑
t=1

nt∑
i=1

l
(
hwt

(
x

(i)
t

)
, y

(i)
t

)
+ λ tr (WΩW ᵀ) , (60)

Two alternative MTL formulations are presented in (Smith et al., 2017) to justify Problem (60): MTL with probabilistic
priors (Zhang & Yeung, 2010) and MTL with graphical models (Lauritzen, 1996). Both of them can be covered using our
Assumption 1 as follows:

• Considering T = M and Π = IM in Assumption 1 and introducing a prior on Θ of the form

Θ ∼
(∏

N
(
0, σ2Id

))
MN (Id ⊗ Ω) (61)

lead to a formulation similar to MTL with probabilistic priors (Zhang & Yeung, 2010).

5Note that when Θ is a full rank matrix, this decomposition is unique.
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• Two tasks t and t′ are independent if 〈πt, πt′〉 = 0, thus using Ωt,t′ = 〈πt, πt′〉 leads to the same graphical model as in
(Lauritzen, 1996)

Several personalized FL formulations, e.g., pFedMe(Dinh et al., 2020), FedU (Dinh et al., 2021) and the formulation
studied in (Hanzely & Richtárik, 2020) and in (Hanzely et al., 2020), are special cases of formulation (61).
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D. Centralized Expectation Maximization
Proposition 3.1. Under Assumptions 1 and 2, at the k-th iteration the EM algorithm updates parameter estimates through
the following steps:

E-step: qk+1
t (z

(i)
t = m) ∝ πktm · exp

(
−l(hθkm(x

(i)
t ), y

(i)
t )
)
, t ∈ [T ], m ∈ [M ], i ∈ [nt] (8)

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z

(i)
t = m)

nt
, t ∈ [T ], m ∈ [M ] (9)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z

(i)
t = m) · l

(
hθ(x

(i)
t ), y

(i)
t

)
, m ∈ [M ] (10)

Proof. The objective is to learn parameters {Θ̆, Π̆} from the data S1:T by maximizing the likelihood p (S1:T |Θ,Π). We
introduce functions qt(z), t ∈ [T ] such that qt ≥ 0 and

∑M
z=1 qt(z) = 1 in the expression of the likelihood. For Θ ∈ RM×d

and Π ∈ ∆T×M , we have

log p(S1:T |Θ,Π) =

T∑
t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(62)

=

T∑
t=1

nt∑
i=1

log

 M∑
m=1

pt
(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 qt

(
z

(i)
t = m

) (63)

≥
T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

) (64)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
−

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log qt

(
z

(i)
t = m

)
(65)

, L(Θ,Π, Q1:T ), (66)

where we used Jensen’s inequality because log is concave. L(Θ,Π, Q1:T ) is an evidence lower bound. The centralized
EM-algorithm corresponds to iteratively maximizing this bound with respect to Q1:T (E-step) and with respect to {Θ,Π}
(M-step).

E-step. The difference between the log-likelihood and the evidence lower bound L(Θ,Π, Q1:T ) can be expressed in terms
of a sum of KL divergences:

log p(S1:T |Θ,Π)− L(Θ,Π, Q1:T ) = (67)

=

T∑
t=1

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
−

M∑
m=1

qt

(
z

(i)
t = m

)
· log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 (68)

=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)log pt

(
s

(i)
t |Θ, πt

)
− log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qt

(
z

(i)
t = m

)
 (69)

=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qt
(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (70)
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=

T∑
t=1

nt∑
t=1

M∑
m=1

qt

(
z

(i)
t = m

)
log

qt

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) (71)

=

T∑
t=1

nt∑
i=1

KL
(
qt

(
z

(i)
t

)
||pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
≥ 0. (72)

For fixed parameters {Θ,Π}, the maximum of L(Θ,Π, Q1:T ) is reached when

T∑
t=1

nt∑
i=1

KL
(
qt

(
z

(i)
t

)
||pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
= 0.

Thus for t ∈ [T ] and i ∈ [nt], we have:

qt(z
(i)
t = m) = pt(z

(i)
t = m|s(i)

t ,Θ, πt) (73)

=
pt(s

(i)
t |z

(i)
t = m,Θ, πt)× pt(z(i)

t = m,Θ, πt)

pt

(
s

(i)
t |Θ, πt

) (74)

=
pm(s

(i)
t |θm)× πtm∑M

m′=1 pm′(s
(i)
t )× πtm′

(75)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× pm

(
x

(i)
t

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× pm′

(
x

(i)
t

)
× πtm′

(76)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× p

(
x

(i)
t

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , , θm′

)
× p

(
x

(i)
t

)
× πtm′

(77)

=
pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

, (78)

where (77) relies on Assumption 2. It follows that

qt(z
(i)
t = m) = pt(z

(i)
t = m|s(i)

t ,Θ, πt) =
pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

. (79)

M-step. We maximize now L(Θ,Π, Q1:T ) with respect to {Θ,Π}. By dropping the terms not depending on {Θ,Π} in
the expression of L(Θ,Π, Q1:T ) we write:

L(Θ,Π, Q1:T ) =

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

)
log pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
+ c (80)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pt

(
s

(i)
t |z

(i)
t = m,Θ, πt

)
+ log pt

(
z

(i)
t = m|Θ, πt

) ]
+ c (81)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
s

(i)
t

)
+ log πtm

]
+ c (82)

=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log pm

(
x

(i)
t

)
+ log πtm

]
+ c (83)
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=

T∑
t=1

nt∑
i=1

M∑
m=1

qt

(
z

(i)
t = m

) [
log pθm

(
y

(i)
t |x

(i)
t

)
+ log πtm

]
+ c′, (84)

(85)

where c and c′ are constant not depending on {Θ,Π}.

Thus, for t ∈ [T ] and m ∈ [M ], by solving a simple optimization problem we update πtm as follows:

πtm =

∑nt
i=1 qt(z

(i)
t = m)

nt
. (86)

On the other hand, for m ∈ [M ], we update θm by solving:

θm ∈ arg min
θ∈Rd

T∑
t=1

nt∑
i=1

qt(z
(i)
t = m)× l

(
hθ(x

(i)
t ), y

(i)
t

)
. (87)
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E. Details on Federated Expectation-Maximization
As mentioned in Section 3.2, under the following standard assumptions (see e.g., (Wang et al., 2020b)), FedEM (see Alg. 7)
converges to a stationary point of f . Below, we use the more compact notation l(θ; s(i)

t ) , l(hθ(x
(i)
t ), y

(i)
t ).

Assumption 4. The negative log-likelihood f is bounded below by f∗ ∈ R.

Assumption 5. (Smoothness) For all t ∈ [T ] and i ∈ [nt], the function θ 7→ l(θ; s
(i)
t ) is L-smooth and twice continuously

differentiable.

Assumption 6. (Unbiased gradients and bounded variance) Each client t ∈ [T ] can sample a random batch ξ from
St and compute an unbiased estimator gt(θ, ξ) of the local gradient with bounded variance, i.e., Eξ[gt(θ, ξ)] =
1
nt

∑nt
i=1∇θl(θ; s

(i)
t ) and Eξ‖gt(θ, ξ)− 1

nt

∑nt
i=1∇θl(θ; s

(i)
t )‖2 ≤ σ2.

Assumption 7. (Bounded dissimilarity) There exist β and G such that for any set of weights α ∈ ∆M :

T∑
t=1

nt
n

∥∥∥ 1

nt

nt∑
i=1

M∑
m=1

αm · l(θ; s(i)
t )
∥∥∥2

≤ G2 + β2
∥∥∥ 1

n

T∑
t=1

nt∑
i=1

M∑
m=1

αm · l(θ; s(i)
t )
∥∥∥2

. (88)

Assumption 7 limits the level of dissimilarity of the different tasks, similarly to what is done in (Wang et al., 2020b).
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F. Fully Decentralized Federated Expectation-Maximization
F.1. Fully Decentralized Algorithm

In some cases, clients may want to communicate directly in a peer-to-peer fashion instead of relying on the central server
mediation (see Kairouz et al., 2019, Section 2.1). In fact, fully decentralized schemes may provide stronger privacy
guarantees (Cyffers & Bellet, 2021) and speed-up training as they better use communication resources (Lian et al., 2017;
Marfoq et al., 2020) and reduce the effect of stragglers (Neglia et al., 2019). For these reasons, they have attracted significant
interest recently in the machine learning community (Lian et al., 2017; Vanhaesebrouck et al., 2017; Lian et al., 2018; Tang
et al., 2018; Bellet et al., 2018; Neglia et al., 2020; Marfoq et al., 2020; Koloskova et al., 2020). We refer to (Nedić et al.,
2018) for a comprehensive survey of fully decentralized optimization (also known as consensus-based optimization), and to
(Koloskova et al., 2020) for a unified theoretical analysis of decentralized SGD.

We propose D-FedEM (Alg. 3 in App. I.2), a fully decentralized version of our federated expectation maximization algorithm.
As in FedEM, the M-step for Θ update is replaced by an approximate maximization step consisting of local updates. The
global aggregation step in FedEM (Alg. 1, line 13) is replaced by a partial aggregation step, where each client computes
a weighted average of its current components and those of a subset of clients (its neighborhood), which may vary over
time. The convergence of decentralized optimization schemes requires certain assumptions to guarantee that each client can
influence the estimates of other clients over time. In our paper, we consider the general assumption in (Koloskova et al.,
2020, Assumption 4)

Assumption 8 (Koloskova et al. (2020, Assumption 4)). Symmetric doubly stochastic mixing matrices are drawn at each
round k from (potentially different) distributions W k ∼ Wk and there exists two constants p ∈ (0, 1], and integer τ ≥ 1
such that for all Ξ ∈ RM×d×T and all integers l ∈ {0, . . . ,K/τ}:

E
∥∥ΞWl,τ − Ξ̄

∥∥2

F ≤ (1− p)
∥∥Ξ− Ξ̄

∥∥2

F , (89)

where Wl,τ ,W (l+1)τ−1 . . .W lτ , Ξ̄ , Ξ11ᵀ

T , and the expectation is taken over the random distributions W k ∼ Wk.

Assumption 8 expresses the fact that the sequence of mixing matrices, on average and every τ communication rounds, brings
the values in the columns of Ξ closer to their row-wise average (thereby mixing the clients’ updates over time). For instance,
the assumption is satisfied if the communication graph is strongly connected every τ rounds, i.e., the graph ([T ], E), where
the edge (i, j) belongs to the graph if whi,j > 0 for some h ∈ {k + 1, . . . , k + τ} is connected.

Under Assumption 8 and some other standard mild assumptions, D-FedEM converges to a stationary point of f .

Theorem F.1. Under Assumptions 1–8, when clients use SGD as local solver with learning rate η = a0√
K

, D-FedEM’s
iterates satisfy the following inequalities after a large enough number of communication rounds K:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θ̄k,Πk

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
≤ O

(
1

K

)
, (90)

where Θ̄k = Θk 11ᵀ

T . Moreover, individual estimates
(
Θk
t

)
1≤t≤T converge to consensus, i.e., to Θ̄k:

min
k∈[K]

E
T∑
t=1

∥∥Θk
t − Θ̄k

∥∥2

F
≤ O

(
1√
K

)
.
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G. Reminder on Basic (Centralized) Surrogate Optimization
In this appendix, we recall the (centralized) first-order surrogate optimization framework introduced in (Mairal, 2013). In
this framework, given a continuous function f : Rd 7→ R, we are interested in solving

min
θ∈Rd

f(θ)

using the majoration-minimization scheme presented in Alg. 2.

Algorithm 2 Basic Surrogate Optimization
Input: θ0 ∈ Rd; number of iteration K
for iterations k = 1, . . . ,K do

compute gk, a surrogate function of f near θk−1

update solution: θk ∈ arg min gk (θ)
end for

This procedure relies on surrogate functions, that approximate well the objective function in a neighborhood of a point.
Reference (Mairal, 2013) focuses on first-order surrogate functions defined below.

Definition G.1 (First-Order Surrogate (Mairal, 2013)). A function g : Rd 7→ R is a first order surrogate of f near θk ∈ Rd
when the following is satisfied:

• Majorization: we have g(θ′) ≥ f(θ′) for all θ′ ∈ arg minθ∈Rd g(θ). When the more general condition g ≥ f holds,
we say that g is a majorant function.

• Smoothness: the approximation error r , g − f is differentiable, and its gradient is L-Lipschitz. Moreover, we have
r(θk) = 0 and∇r(θk) = 0.
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H. Federated Surrogate Optimization
In this appendix, we give more details on the federated surrogate optimization framework mentioned in Sec. 3.2.

Our novel federated surrogate optimization framework minimizes an objective function (u,v1:T ) 7→ f (u,v1:T ) that can
be written as a weighted sum f (u,v1:T ) =

∑T
t=1 ωtft (u,vt) of T functions. We suppose that each client t ∈ [T ] can

compute a partial first order surrogate of ft, defined as follows.

Definition 1. [Partial first-order surrogate] A function g(u,v) : Rdu × V → R is a partial first-order surrogate of f(u,v)
wrt u near (u0,v0) ∈ Rdu × V when the following conditions are satisfied:

1. g(u,v) ≥ f(u,v) for all u ∈ Rdu and v ∈ V;
2. r(u,v) , g(u,v)− f(u,v) is differentiable and L-smooth with respect to u. Moreover, we have r(u0,v0) = 0 and
∇ur(u0,v0) = 0.

3. g(u,v0) − g(u,v) = dV (v0,v) for all u ∈ Rdu and v ∈ arg minv′∈V g(u,v′), where dV is non-negative and
dV(v,v′) = 0 ⇐⇒ v = v′.

Under the assumption that each client t can compute a partial first order surrogate of ft, we propose algorithms for federated
surrogate optimization in both the client-server setting (Alg. 5) and the fully decentralized one (Alg. 9). Both algorithms
are iterative and distributed: at each iteration k > 0, client t ∈ [T ] computes a partial first-order surrogate gkt of ft near{
uk−1,vk−1

t

}
(resp.

{
uk−1
t ,vk−1

t

}
) for federated surrogate optimization in Alg. 5 (resp. for fully decentralized surrogate

optimization in Alg 9).

The convergence of those two algorithms requires the following standard assumptions. Each of them generalizes one of the
Assumptions 4–7 for our EM algorithms.

Assumption 4′. The objective function f is bounded below by f∗ ∈ R.

Assumption 5′. (Smoothness) For all t ∈ [T ] and k > 0, gkt is L-smooth wrt to u.

Assumption 6′. (Unbiased gradients and bounded variance) Each client t ∈ [T ] can sample a random batch ξ from St
and compute an unbiased estimator ∇ug

k
t (u,v; ξ) of the local gradient with bounded variance, i.e., Eξ[∇ug

k
t (u,v; ξ)] =

∇ug
k
t (u,v) and Eξ‖∇ug

k
t (u,v; ξ)−∇ug

k
t (u,v)‖2 ≤ σ2.

Assumption 7′. (Bounded dissimilarity) There exist β and G such that

T∑
t=1

ωt ·
∥∥∥∇ug

k
t (u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇ug
k
t (u,v)

∥∥∥2

.

Under these assumptions a parallel result to Thm. 3.2 holds for the client-server setting.

Theorem 3.2′. Under Assumptions 4′–7′, when clients use SGD as local solver with learning rate η = a0√
K

, after a large
enough number of communication rounds K, the iterates of federated surrogate optimization (Alg. 5) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
uk,vk1:T

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

∆vf(uk,vk1:T ) ≤ O
(

1

K3/4

)
, (91)

where the expectation is over the random batches samples, and ∆vf(uk,vk1:T ) , f
(
uk,vk1:T

)
− f

(
uk,vk+1

1:T

)
≥ 0.

In the fully decentralized setting, if in addition to Assumptions 5′-7′, we suppose that Assumption 8 holds, a parallel result
to Thm. F.1 holds.

Theorem F.1′. Under Assumptions 4′–7′ and Assumption 8, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, the iterates of fully decentralized federated surrogate

optimization (Alg. 9) satisfy:

1

K

K∑
k=1

E
∥∥∇uf

(
ūk, vk1:T

)∥∥2 ≤ O
(

1√
K

)
,

1

K

K∑
k=1

T∑
t=1

ωt · dV
(
vkt ,v

k+1
t

)
≤ O

(
1

K

)
, (92)
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where ūk = 1
T

∑T
t=1 u

k
t . Moreover, local estimates

(
ukt
)

1≤t≤T converge to consensus, i.e., to ūk:

1

K

K∑
k=1

T∑
t=1

∥∥ukt − ūk
∥∥2 ≤ O

(
1√
K

)
.

The proofs of Theorem 3.2′ and Theorem F.1′ are in Sec. J.1 and Sec. J.2, respectively.
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I. Detailed Algorithms
I.1. Client-Server Algorithm

Algorithm 7 is a detailed version of Algorithm 1, with local SGD used as local solver.

Algorithm 5 gives our general algorithm for federated surrogate optimization, from which Algorithm 7 is derived.

Algorithm 3 FedEM: Federated Expectation-Maximization
Input: data S1:T ; number of mixture distributions M ; number of communication rounds K; number of local steps J
{Initialization}
for task t = 1, . . . , T in parallel over T clients do

randomly initialize Θt = (θm,t)1≤m≤M ∈ RM×d
randomly initialize π0

t ∈ ∆M

end for
{Main loop}
for iterations k = 1, . . . ,K do

sample W k−1 ∼ Wk−1

for tasks t = 1, . . . , T in parallel over T clients do
for component m = 1, . . . ,M do
{E-step}
for sample i = 1, . . . nt do

qkt

(
z

(i)
t = m

)
←

πktm·exp
(
−l(h

θkm
(x

(i)
t ),y

(i)
t )
)

∑M
m′=1

πk
tm′ ·exp

(
−l(h

θk
m′

(x
(i)
t ),y

(i)
t )

)
end for
{M-step}
πktm ←

∑nt
i=1 q

k
t (z

(i)
t =m)

nt

θ
k−1/2
m,t ← LocalSolver(J, θk−1

m ,
{
qkt (zti = m)

}
i∈[nt]

, St, ntn )

end for
send θk−1/2

m,t , 1 ≤ m ≤M to neighbors

receive θk−1/2
m,s , 1 ≤ m ≤M from neighbors s ∈ Nt

for component m = 1, . . . ,M do
θkm,t ←

∑T
s=1 w

k−1
s,t · θ

k−1/2
m,s

end for
end for

end for

Algorithm 4 SGD solver used with FedEM
Input: number of iterations J ; θ; samples’ weights q1:|S| ; data S
for task j = 0, . . . , J − 1 do

sample indexes I from 1, . . . , |S|
θ ← θ − ηk−1,j

∑
i∈I qi · ∇θl

(
hθ
(
x(i)
)
, y(i)

)
end for
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Algorithm 5 Federated Surrogate Optimization

Input: u0 ∈ Rdu ; V 0 =
(
v0
t

)
1≤t≤T ∈ V

T ; number of iterations K; number of local steps J
for iterations k = 1, . . . ,K do

server broadcast uk−1, 1 ≤ m ≤M to the T clients
for tasks t = 1, . . . , T in parallel over T clients do

compute partial first-order surrogate function gkt pf ft near {uk−1,vk−1
t }

vkt ← arg min
v∈V

gkt
(
uk−1,v

)
ukt ← LocalSolver(J , uk−1

t , vk−1
t , gkt , St, ωt)

client t sends ukt to the server
end for
client t sends ukt to the server
for component m = 1, . . . ,M do
uk ←

∑T
t=1 ωt · ukt

end for
end for

Algorithm 6 SGD solver used with federated surrogate optimization
Input: number of iterations J ; u; v; g
for task j = 0, . . . , J − 1 do

sample batch ξk−1,j

u← u− ηk−1,j · ∇ug
(
u,v, ξk−1,j

)
end for
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I.2. Fully Decentralized Algorithm

Algorithm 3 shows D-FedEM, the fully decentralization version of our federated expectation maximization algorithm.

Algorithm 9 gives our general fully decentralized algorithm for federated surrogate optimization, from which Algorithm 3 is
derived.

Algorithm 7 D-FedEM: Fully Decentralized Federated Expectation-Maximization
Input: data S1:T ; number of mixture distributions M ; number of communication rounds K; number of local steps J ;
mixing matrix distributionWk for k ∈ [K] {Initialization}
for task t = 1, . . . , T in parallel over T clients do

randomly initialize Θ0
t = (θ0

m,t)1≤m≤M ∈ RM×d

randomly initialize π0
t ∈ ∆M

end for
{Main loop}
for iterations k = 1, . . . ,K do

server broadcast θk−1
m , 1 ≤ m ≤M to the T clients

for tasks t = 1, . . . , T in parallel over T clients do
for component m = 1, . . . ,M do
{E-step}
for sample i = 1, . . . nt do

qkt

(
z

(i)
t = m

)
←

πktm·exp
(
−l(h

θkm
(x

(i)
t ),y

(i)
t )
)

∑M
m′=1

πk
tm′ ·exp

(
−l(h

θk
m′

(x
(i)
t ),y

(i)
t )

)
end for
{M-step}
πktm ←

∑nt
i=1 q

k
t (z

(i)
t =m)

nt

θkm,t ← LocalSolver(J, θk−1
m ,

{
qkt (zti = m)

}
i∈[nt]

, St)
end for

end for
client t sends θkm,t, 1 ≤ m ≤M , to the server
for component m = 1, . . . ,M do
θkm ←

∑T
t=1

nt
n · θ

k
m,t

end for
end for

Algorithm 8 SGD solver used with D-FedEM
Input: number of iterations J ; θ; samples’ weights q1:|S| ; data S; ntn
for task j = 0, . . . , J − 1 do

sample indexes I from 1, . . . , |S|
θ ← θ − nt

n · ηk−1,j

∑
i∈I qi · ∇θl

(
hθ
(
x(i)
)
, y(i)

)
end for
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Algorithm 9 Fully-Decentralized Federated Surrogate Optimization

Input: u0 ∈ Rdu ; V 0 =
(
v0
t

)
1≤t≤T ∈ V

T ; number of iterations K; number of local steps J ; mixing matrix distribution
Wk for k ∈ [K]
for iterations k = 1, . . . ,K do

sample W k−1 ∼ Wk−1

server broadcast uk−1, 1 ≤ m ≤M to the T clients
for tasks t = 1, . . . , T in parallel over T clients do

compute partial first-order surrogate function gkt pf ft near {uk−1,vk−1
t }

vkt ← arg min
v∈V

gkt
(
uk−1,v

)
u
k−1/2
t ← LocalSolver(J , uk−1

t , vk−1
t , gkt , ωt)

send u
k−1/2
t to neighbors

receive u
k−1/2
s , 1 ≤ m ≤M from neighbors s ∈ Nt

ukt ←
∑T
s=1 w

k−1
s,t · u

k−1/2
s

end for
end for

Algorithm 10 SGD solver used with fully decentralized federated surrogate optimization
Input: number of iterations J ; u; v; g; ωt
for task j = 0, . . . , J − 1 do

sample batch ξk−1,j

u← u− ωt · ηk−1,j · ∇ug
(
u,v, ξk−1,j

)
end for
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J. Convergence Proofs
We study the client-server setting and the fully decentralized setting in Sec. J.1 and Sec. J.2, respectively. In both cases, we
first prove the more general result for surrogate optimization and then derive the specific result for FedEM and D-FedEM.

In this section, for conciseness we do not use bold fonts to denote vectors.

J.1. Client-Server Setting

J.1.1. ADDITIONAL NOTATIONS

At iteration k > 0, we use uk−1,j
t to denote the j-th iterate of the local solver at client t ∈ [T ], thus

uk−1,0
t = uk−1, (93)

and

uk =

T∑
t=1

ωt · uk−1,J
t . (94)

At iteration k > 0, the local solver’s updates at client t ∈ [T ] can be written as (for 0 ≤ j ≤ J − 1):

uk−1,j+1
t = uk−1,j

t − ηk−1,j∇ug
k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)
, (95)

where ξk−1,j
t is the batch drawn at the j-th local update of uk−1

t .

We introduce ηk−1 =
∑J−1
j=0 ηk−1,j , and we define the normalized update of the local solver at client t ∈ [T ] as,

δ̂k−1
t , −uk−1,J

t − uk−1,0
t

ηk−1
=

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)
∑J−1
j=0 ηk−1,j

, (96)

and also define

δk−1
t ,

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
ηk−1

. (97)

With this notation,

uk − uk−1 = −ηk−1 ·
T∑
t=1

ωt · δ̂k−1
t . (98)

Finally, we define gk, k > 0 as

gk (u,v1:T ) =

T∑
t=1

ωt · gkt (u,vt) . (99)

Note that gk is a convex combination of functions gkt , t ∈ [T ].

J.1.2. PROOF OF THEOREM 3.2′

Lemma J.1. Suppose that Assumptions 5′–7′ hold. Then, for k > 0, and (ηk,j)0≤j≤J−1 such that ηk ,
∑J−1
j=0 ηk,j ≤

min
{

1
2
√

2L
, 1

4Lβ

}
, the updates of federated surrogate optimization (Alg 5) verify

E

[
f(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤ −1

4
E
∥∥∇uf

(
uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

σ2 + 4η2
k−1L

2G2. (100)
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Proof. This proof uses standard techniques from distributed stochastic optimization. It is inspired by (Wang et al., 2020b,
Theorem 1).

For k > 0, gk is L-smooth wrt u, because it is a convex combination of L-smooth functions gkt , t ∈ [T ]. Thus, we write

gk
(
uk,vk−1

1:T

)
− gk

(
uk−1,vk−1

1:T

)
≤
〈
uk − uk−1,∇ug

k(uk−1,vk−1
1:T )

〉
+
L

2

∥∥uk − uk−1
∥∥2
, (101)

where < u,u′ > denotes the scalar product of vectors u and u′. Using equation (98), and taking the expectation over
random batches

(
ξk−1,j
t

)
0≤j≤J−1

1≤t≤T
, we have

E
[
gk
(
uk,vk−1

1:T

)
− gk

(
uk−1,vk−1

1:T

) ]
≤

− ηk−1 E
〈 T∑
t=1

ωt · δ̂k−1
t ,∇ug

k(uk−1,vk−1
1:T )

〉
︸ ︷︷ ︸

,T1

+
Lη2

k−1

2
· E

∥∥∥∥∥
T∑
t=1

ωt · δ̂k−1
t

∥∥∥∥∥
2

︸ ︷︷ ︸
,T2

. (102)

We bound each of those terms separately, For T1 we have

T1 = E
〈 T∑
t=1

ωt · δ̂k−1
t ,∇ug

k
(
uk−1,vk−1

1:T

)〉
(103)

= E
〈 T∑
t=1

ωt ·
(
δ̂k−1
t − δk−1

t

)
,∇ug

k
(
uk−1,vk−1

1:T

)〉

+ E
〈 T∑
t=1

ωt · δk−1
t ,∇ug

k
(
uk−1,vk−1

1:T

)〉
. (104)

Because stochastic gradients are unbiased (Assumption 6′), we have

E
[
δ̂k−1
t − δk−1

t

]
= 0, (105)

thus,

T1 = E
〈 T∑
t=1

ωt · δk−1
t ,∇ug

k
(
uk−1,vk−1

1:T

)〉
(106)

=
1

2

∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥2
+ E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2
− 1

2
E

∥∥∥∥∥∇ug
k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (107)

For T2 we have for k > 0,

T2 = E

∥∥∥∥∥
T∑
t=1

ωt · δ̂k−1
t

∥∥∥∥∥
2

(108)

= E

∥∥∥∥∥
T∑
t=1

ωt ·
(
δ̂k−1
t − δk−1

t

)
+

T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

(109)

≤ 2E

∥∥∥∥∥
T∑
t=1

ωt ·
(
δ̂k−1
t − δk−1

t

)∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

(110)

= 2

T∑
t=1

ω2
t · E

∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2
∑

1≤s6=t≤T

ωtωs E
〈
δ̂k−1
t − δk−1

t , δ̂k−1
s − δk−1

s

〉
+ 2E

∥∥∥∥∥
T∑
t=1

ωtδ
k−1
t

∥∥∥∥∥
2

. (111)
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Since clients sample batches independently, and stochastic gradients are unbiased (Assumption 6′), we have

E
〈
δ̂k−1
t − δk−1

t , δ̂k−1
s − δk−1

s

〉
= 0, (112)

thus,

T2 ≤ 2

T∑
t=1

ω2
t · E

∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2E

∥∥∥∥∥
T∑
t=1

ωtδ
k−1
t

∥∥∥∥∥
2

(113)

= 2

T∑
t=1

ω2
t E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)]∥∥∥∥∥∥
2

(114)

+ 2E

∥∥∥∥∥
T∑
t=1

ωtδ
k−1
t

∥∥∥∥∥
2

. (115)

Using Jensen inequality, we have∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ugkt

(
uk−1,j
t ,vk−1

t

)
−∇ugkt

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)]∥∥∥∥∥∥
2

≤

J−1∑
j=0

ηk−1,j

ηk−1

∥∥∥∇ug
k
t

(
uk−1,j
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)∥∥∥2

, (116)

and since the variance of stochastic gradients is bounded by σ2 (Assumption 6′), it follows that

E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1

[
∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

)]∥∥∥∥∥∥
2

≤
J−1∑
j=0

ηk−1,j

ηk−1
σ2 = σ2. (117)

Replacing back in the expression of T2, we have

T2 ≤ 2
T∑
t=1

ω2
t σ

2 + 2E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (118)

Finally, since 0 ≤ ωt ≤ 1, t ∈ [T ] and
∑T
t=1 ωt = 1, we have

T2 ≤ 2σ2 + 2E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

. (119)

Having bounded T1 and T2, we can replace Eq. (107) and Eq. (119) in Eq. (102), and we get

E
[
gk(uk,vk−1

1:T )− gk(uk−1,vk−1
1:T )

]
≤ −ηk−1

2

∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥2
+ η2

k−1Lσ
2

− ηk−1

2
(1− 2Lηk−1) · E

∥∥∥∥∥
T∑
t=1

ωt · δk−1
t

∥∥∥∥∥
2

+
ηk−1

2
E
∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωt · δk−1
t

∥∥∥2

. (120)
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As ηk−1 ≤ 1
2
√

2L
≤ 1

2L , we have

E
[
gk(uk,vk−1

1:T )− gk(uk−1,vk−1
1:T )

]
≤ −ηk−1

2

∥∥∇ug
k
(
uk−1,vk−1

1:T

)∥∥2
+ η2

k−1Lσ
2

+
ηk−1

2
E
∥∥∥∇ug

k
(
uk−1,vk−1

1:T

)
−

T∑
t=1

ωtδ
k−1
t

∥∥∥2

. (121)

Replacing∇ug
k
(
uk−1,vk−1

1:T

)
=
∑T
t=1 ωt · ∇ug

k
t

(
uk−1,vk−1

t

)
, and using Jensen inequality to bound the last term in the

RHS of Eq. (121), we have

E
[
gk(uk,vk−1

1:T )− gk(uk−1,vk−1
1:T )

]
≤ −ηk−1

2

∥∥∇ug
k
(
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)∥∥2
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2

+
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2
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ωt · E
∥∥∥∇ug

k
t

(
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t

)
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t

∥∥∥2

︸ ︷︷ ︸
,T3

. (122)

We now bound the term T3:

T3 = E
∥∥∥∇ugkt (uk−1,vk−1

t

)
− δk−1

t

∥∥∥2

(123)

= E
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k
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(
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)
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k
t
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t

)∥∥∥∥∥∥
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(124)

= E

∥∥∥∥∥∥
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t ,vk−1

t

)]∥∥∥∥∥∥
2
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≤
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≤
J−1∑
j=0

ηk−1,j

ηk−1
L2E

∥∥∥uk−1 − uk−1,j
t

∥∥∥2

, (127)

where the first inequality follows from Jensen inequality and the second one follow from the L-smoothness of gkt (Assump-
tion 5′). We bound now the term E

∥∥∥uk−1 − uk−1,j
t

∥∥∥ for j ∈ {0, . . . , J − 1} and t ∈ [T ],

E
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t
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= E
∥∥∥uk−1,j
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∥∥∥∥∥
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= 2

j−1∑
l=0

η2
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(
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+ 2E

∥∥∥∥∥
j−1∑
l=0

ηk−1,l∇ug
k
t

(
uk−1,l
t ,vk−1

t

)∥∥∥∥∥
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≤ 2σ2

j−1∑
l=0

η2
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t

)∥∥∥∥∥
2

, (133)

where, in the last two steps, we used the fact that stochastic gradients are unbiased and have bounded variance (Assumption 6′).
We bound now the last term in the RHS of Eq. (133),

E

∥∥∥∥∥
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≤2
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)
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=2L2
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)∥∥2
, (141)

where the first inequality is obtained using Jensen inequality, and the last one is a result of the L-smoothness of gt
(Assumption 5′). Replacing Eq. (141) in Eq. (133), we have

J−1∑
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ηk−1,j
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+ 4L2
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Since
∑j−1
l=0 ηk−1,l · E
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∥∥∥2

≤
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, we have
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We use Lemma J.11 to simplify the last expression, obtaining
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Rearranging the terms, we have
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(145)

Finally, replacing Eq. (145) into Eq. (127), we have

(
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For ηk−1 small enough, in particular if ηk−1 ≤ 1
2
√
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, then 1
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Replacing the bound of T3 from Eq. (147) into Eq. (122), we have obtained
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Using Assumption 7′, we have

E
[
gk(uk,vk−1

1:T )− gk(uk−1,vk−1
1:T )

]
≤ −ηk−1

2
E
∥∥∇ug

k
(
uk−1,vk−1

1:T

)∥∥2

+ 4η3
k−1L

2β2 · E

∥∥∥∥∥
T∑
t=1

ωt · ∇ug
k
t

(
uk−1,vk−1

t

)∥∥∥∥∥
2

+ 2ηk−1L

J−1∑
j=0

η2
k−1,jL+ ηk−1

 · σ2 + 4η3
k−1L

2G2. (149)

Dividing by ηk−1, we get
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For ηk−1 small enough, if ηk−1 ≤ 1
4Lβ , then 8η2
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2β2 − 1 ≤ 1

2 . Thus,
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Since for t ∈ [T ], gkt is a pseudo first-order surrogate of ft near
{
uk−1, vk−1

t

}
, we have (see Def. 1)
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)
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Multiplying by ωt and summing over t ∈ [T ], we have
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uk−1,vk−1

1:T

)
= f

(
uk−1,vk−1

1:T

)
, (155)

∇ugk
(
uk−1,vk−1

1:T

)
= ∇uf

(
uk−1,vk−1

1:T

)
, (156)

gk
(
uk,vk−1

1:T

)
= gk

(
uk,vk1:T

)
+

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
. (157)

Replacing Eq. (155), Eq. (156) and Eq. (157) in Eq. (151), we have

E

[
gk(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤

− 1

4
E
∥∥∇uf (uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
+ 2ηk−1L


J−1∑
j=0

η2
k−1,j

ηk−1

L+ 1

 · σ2 + 4η2
k−1L

2G2. (158)

Using again Def. 1, we have
gk(uk,vk1:T ) ≥ f(uk,vk1:T ), (159)
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thus,

E

[
f(uk,vk1:T )− f(uk−1,vk−1

1:T )

ηk−1

]
≤

− 1

4
E
∥∥∇uf (uk−1,vk−1

1:T

)∥∥2 − 1

ηk−1

T∑
t=1

ωt · dV
(
vk−1
t ,vkt

)
+ 2ηk−1L

J−1∑
j=0

η2
k−1,j

ηk−1
L+ 1

 · σ2 + 4η2
k−1L

2G2. (160)

Lemma J.2. For k ≥ 0 and t ∈ [T ], the iterates of Alg. 5 verify

0 ≤ dV
(
vk+1
t ,vkt

)
≤ ft

(
uk,vkt

)
− ft(uk,vk+1

t ) (161)

Proof. Since vk+1
t ∈ arg minv∈V g

k
t

(
uk−1, v

)
, and gkt is a pseudo first-order surrogate of ft near {uk−1,vk−1

t }, we have

gkt
(
uk−1,vk−1

t

)
− gkt

(
uk−1,vkt

)
= dV

(
vk−1
t ,vkt

)
, (162)

thus,
ft
(
uk−1,vk−1

t

)
− ft

(
uk−1,vkt

)
≥ dV

(
vk−1
t ,vkt

)
, (163)

where we used the fact that
gkt
(
uk−1,vk−1

t

)
= ft

(
uk−1,vk−1

t

)
, (164)

and,
gkt
(
uk−1,vkt

)
≥ ft

(
uk−1,vkt

)
. (165)

Theorem 3.2′. Under Assumptions 4′–7′, when clients use SGD as local solver with learning rate η = a0√
K

, after a large
enough number of communication rounds K, the iterates of federated surrogate optimization (Alg. 5) satisfy:

1

K

K∑
k=1

E
∥∥∇uf (uk,vk1:T

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

E
[
∆vf(uk,vk1:T )

]
≤ O

(
1

K3/4

)
, (91)

where the expectation is over the random batches samples, and ∆vf(uk,vk1:T ) , f
(
uk,vk1:T

)
− f

(
uk,vk+1

1:T

)
≥ 0.

Proof. For K large enough, η = a0√
K
≤ 1

J min
{

1
2
√

2L
, 1

4Lβ

}
, thus the assumptions of Lemma J.1 are satisfied. Lemma J.1

and non-negativity of dV lead to

E
[f(uk,vk1:T )− f(uk−1,vk−1

1:T )

Jη

]
≤ −1

4
E
∥∥∇uf (uk−1,vk−1

1:T

)∥∥2

+ 2ηL (ηL+ 1) · σ2 + 4J2η2L2G2. (166)

Rearranging the terms and summing for k ∈ [K], we have

1

K

K∑
k=1

E
∥∥∇uf (uk−1,vk−1

1:T

)∥∥2

≤ 4E
[f(u0,v0

1:T )− f(uK ,vK1:T )

JηK

]
+ 8

ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
(167)

≤ 4E
[f(u0,v0

1:T )− f∗

JηK

]
+ 8

ηL (ηL+ 1) · σ2 + 2J2η2L2G2

K
(168)



Federated Multi-Task Learning under a Mixture of Distributions

Thus,
1

K

K∑
k=1

E
∥∥∇uf (uk−1,vk−1

1:T

)∥∥2
= O

(
1√
K

)
(169)

To prove the second part of Eq. (91), we first decompose ∆v , f
(
uk,vk1:T

)
− f

(
uk,vk+1

1:T

)
≥ 0as follow,

∆v = f
(
uk,vk1:T

)
− f

(
uk+1,vk+1

1:T

)︸ ︷︷ ︸
,Tk1

+ f
(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)︸ ︷︷ ︸
,Tk2

. (170)

Using Eq. (100), and Eq. (169), it follows that

1

K

K∑
k=1

E
[
T k1
]
≤ O

(
1

K

)
. (171)

We use the fact that f is 2L-smooth (Lemma J.12) w.r.t. u and Cauchy-Schwartz inequality. Thus, for k > 0, we write

T k2 = f
(
uk+1,vk+1

1:T

)
− f

(
uk,vk+1

1:T

)
(172)

≤
∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥ · ∥∥uk+1 − uk
∥∥+ 2L2

∥∥uk+1 − uk
∥∥2
. (173)

Summing over k and taking expectation:

1

K

K∑
k=1

E
[
T k2
]
≤ 1

K

K∑
k=1

E
[∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥ · ∥∥uk+1 − uk
∥∥]

+
1

K

K∑
k=1

2L2 E
[∥∥uk+1 − uk

∥∥2
]

(174)

≤ 1

K

√√√√ K∑
k=1

E
[∥∥∇uf

(
uk+1,vk+1

1:T

)∥∥2
]√√√√ K∑

k=1

E
[
‖uk+1 − uk‖2

]

+
1

K

K∑
k=1

2L2 E
[∥∥uk+1 − uk

∥∥2
]
, (175)

where the second inequality follows from Cauchy-Schwarz inequality. From Eq. (145), with ηk−1 = Jη, we have for
t ∈ [T ]

E
∥∥∥uk − uk−1,J

t

∥∥∥2

≤ 4σ2Jη2 + 8J3η2 · E
∥∥∇ugkt (uk−1,vk−1

t

)∥∥2
. (176)

Multiplying the previous by ωt and summing for t ∈ [T ], we have

T∑
t=1

ωt · E
∥∥∥uk−1 − uk−1,J

t

∥∥∥2

≤ 4J2σ2η2 + 8J3η2 ·
T∑
t=1

ωtE
∥∥∇ugkt (uk−1,vk−1

t

)∥∥2
. (177)

Using Assumption 7′, it follows that

T∑
t=1

ωtE
∥∥∥uk−1 − uk−1,J

t

∥∥∥2

≤ 4J2η2
(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∥∥∥
T∑
t=1

ωt∇ugkt
(
uk−1,vk−1

t

)∥∥∥∥∥
2

. (178)

Finally using Jensen inequality and the fact that gkt is a pseudo-first order of ft near
{
uk−1, vk−1

t

}
, we have

E
∥∥∥uk−1 − uk

∥∥∥2

≤ 4J2η2
(
2JG2 + σ2

)
+ 8J3η2β2E

∥∥∇uf (uk−1,vk−1
1:T

)∥∥2
. (179)
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From Eq. (169) and η ≤ O(1/
√
K), we obtain

1

K

K∑
k=1

E
∥∥uk−1 − uk

∥∥2 ≤ O (1) , (180)

Replacing the last inequality in Eq. (175) and using again Eq. (169), we obtain

1

K

K∑
k=1

E
[
T k2
]
≤ O

(
1

K3/4

)
. (181)

Combining Eq. (171) and Eq. (181), it follows that

1

K

K∑
k=1

E
[
∆vf(uk,vk1:T )

]
≤ O

(
1

K3/4

)
. (182)

J.1.3. PROOF OF THEOREM 3.2

In this section f denotes the negative log-likelihood function defined in Eq. (6). Moreover, we introduce the negative
log-likelihood at client t as follows

ft(Θ,Π) , − log p(St|Θ,Π)

n
, − 1

nt

nt∑
i=1

log p(s
(i)
t |Θ, πt). (183)

Theorem 3.2. Under Assumptions 1–7, when clients use SGD as local solver with learning rate η = a0√
K

, after a large
enough number of communication rounds K, FedEM’s iterates satisfy:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θk,Πk

)∥∥2

F
≤ O

(
1√
K

)
, (11)

1

K

K∑
k=1

∆Πf(Θk,Πk) ≤ O
(

1

K3/4

)
, (12)

where the expectation is over the random batches samples, and ∆Πf(Θk,Πk) , f
(
Θk,Πk

)
− f

(
Θk,Πk+1

)
≥ 0.

Proof. We prove this result as a particular case of Theorem 3.2′. To this purpose, in this section, we consider that V , ∆M ,
u = Θ ∈ RdM , vt = πt, and ωt = nt/n for t ∈ [T ]. For k > 0, we define gkt as follow,

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (184)

where c is the same constant appearing in Assumption 3, Eq. (3). With this definition, it is easy to check that the federated
surrogate optimization algorithm (Alg. 5) reduces to FedEM (Alg. 7). Theorem 3.2 follows immediately from Theorem 3.2′,
once we verify that

(
gkt
)

1≤t≤T verify the assumptions of Theorem 3.2′.

Assumption 4′, Assumption 6′, and Assumption 7′ follow directly from Assumption 4, Assumption 6, and Assumption 7,
respectively. Lemma J.3 shows that for k > 0, gk is smooth w.r.t. Θ and then Assumption 5′ is satisfied. Finally, Lemmas J.4–
J.6 show that for t ∈ [T ] gkt is a partial first-order surrogate of ft w.r.t. Θ near

{
Θk−1, πt

}
with dV(·, ·) = KL(·‖·).

Lemma J.3. Under Assumption 5, for t ∈ [T ] and k > 0, gkt is L-smooth w.r.t Θ.



Federated Multi-Task Learning under a Mixture of Distributions

Proof. gkt is a convex combination of L-smooth function θ 7→ l(θ; s
(i)
t ), i ∈ [nt]. Thus it is also L-smooth.

Lemma J.4. Suppose that Assumptions 1–3, hold. Then, for t ∈ [T ], Θ ∈ RM×d and πt ∈ ∆M

rkt (Θ, πt) , gkt (Θ, πt)− ft (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt

(
z

(t)
i

)
‖pt
(
z

(t)
i |s

(t)
i ,Θ, πt

))
,

where KL is Kullback–Leibler divergence

Proof. Let k > 0 and t ∈ [T ], and consider Θ ∈ RM×d and πt ∈ ∆M , then

gkt

(
Θ, πt

)
=

1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
l
(
hθm(x

(i)
t ), y

(i)
t

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

)
− c
)
, (185)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
− log pm(x

(i)
t )− log πt

+ log qkt

(
z

(i)
t = m

))
(186)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(
− log pm

(
y

(i)
t |x

(i)
t , θm

)
· pm(x

(i)
t ) · pt

(
z

(i)
t = m

)
+ log qkt

(
z

(i)
t = m

))
(187)

=
1

nt

nt∑
i=1

M∑
m=1

qkt

(
z

(i)
t = m

)
·
(

log qkt

(
z

(i)
t = m

)
− log pt

(
s

(i)
t , z

(i)
t = m

∣∣∣Θ, πt)) (188)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
log

qkt

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) . (189)

Thus,

rkt

(
Θ, πt

)
, gkt (Θ, πt)− ft (Θ, πt) (190)

= − 1

nt

nt∑
t=1

M∑
m=1

qkt (z(i)
t = m

)
· log

pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qkt

(
z

(i)
t = m

)


+
1

nt

nt∑
i=1

log pt

(
s

(i)
t |Θ, πt

)
(191)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)(
log pt

(
s

(i)
t |Θ, πt

)

− log
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

)
qkt

(
z

(i)
t = m

) )
(192)

=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
log

pt

(
s

(i)
t |Θ, πt

)
· qkt

(
z

(i)
t = m

)
pt

(
s

(i)
t , z

(i)
t = m|Θ, πt

) (193)
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=
1

nt

nt∑
t=1

M∑
m=1

qkt

(
z

(i)
t = m

)
· log

qkt

(
z

(i)
t = m

)
pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

) . (194)

Thus,

rkt (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt (·)‖pt(·|s(t)

i ,Θ, πt)
)
≥ 0 (195)

The following lemma shows that gkt and gk (as defined in Eq. 99) satisfy the first two properties in Definition 1.

Lemma J.5. Suppose that Assumptions 1–3 and Assumption 5 hold. For all k ≥ 0 and t ∈ [T ], gkt is a majorant of ft and
rkt , gkt − ft is L-smooth in Θ. Moreover rkt

(
Θk−1, πk−1

t

)
= 0 and ∇Θr

k
t

(
Θk−1, πk−1

t

)
= 0.

The same holds for gk, i.e., gk is a majorant of f , rk , gk − f is L-smooth in Θ, rk
(
Θk−1,Πk−1

)
= 0 and

∇Θr
k
(
Θk−1,Πk−1

)
= 0

Proof. For t ∈ [T ], consider Θ ∈ RM×d and πt ∈ ∆M , we have (Lemma J.4)

rkt (Θ, πt) , gkt (Θ, πt)− ft (Θ, πt) =
1

nt

nt∑
i=1

KL
(
qkt

(
z

(t)
i

)
‖pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
(196)

Since KL divergence is non-negative, it follows that gkt is a majorant of ft, i.e.,

∀ Θ ∈ RM×d, πt ∈ ∆M ; gkt (Θ, π) ≥ ft (Θ, πt) (197)

Moreover since, qkt
(
z

(i)
t

)
= pt

(
z

(i)
t |s

(i)
t ,Θk−1, πk−1

t

)
for k > 0, it follows that

rkt
(
Θk−1, πk−1

t

)
= 0 (198)

For i ∈ [nt] and m ∈ [M ], from Eq. 79, we have

pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
=

pm

(
y

(i)
t |x

(i)
t , θm

)
× πtm∑M

m′=1 pm′
(
y

(i)
t |x

(i)
t , θm′

)
× πtm′

(199)

=
exp

[
−l
(
hθm(x

(i)
t ), y

(i)
t

)]
× πtm∑M

m′=1 exp
[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)]
× πtm′

(200)

=
exp

[
−l
(
hθm(x

(i)
t ), y

(i)
t

)
+ log πtm

]
∑M
m′=1 exp

[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)
+ log πtm′

] , (201)

Thus,

KL
(
qkt

(
z

(t)
i

)
‖pt
(
z

(i)
t |s

(i)
t ,Θ, πt

))
=

M∑
m=1

qkt

(
z

(t)
i

)
·

(
log qkt

(
z

(t)
i

)
+ l
(
hθm(x

(i)
t ), y

(i)
t

)
− log πtm

)
︸ ︷︷ ︸

L-smooth, because convex combination of L-smooth functions

+ log

(
M∑

m′=1

exp
[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)
+ log πtm′

])
. (202)

For ease of notation, we introduce

li(θ) , l
(
hθ(x

(i)
t ), y

(i)
t

)
, θ ∈ Rd, m ∈ [M ], i ∈ [nt], (203)
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γm (Θ) , pt

(
z

(i)
t = m|s(i)

t ,Θ, πt

)
, m ∈ [M ], (204)

and,

ϕi (Θ) , log

(
M∑

m′=1

− exp
[
−l
(
hθm′ (x

(i)
t ), y

(i)
t

)
+ log πtm′

])
, i ∈ [nt]. (205)

To prove the L-smoothness of rkt , it is enough to prove that ϕi, i ∈ [nt] is L-smooth. For i ∈ [nt], function li is differentiable
because smooth (Assum. 5), thus, ϕi is differentiable and its gradient is given by

∇θmϕi (Θ) = γm (Θ) · ∇li (θm) , m ∈ [M ] (206)

We also know that γm, m ∈ [M ] is differentiable as the composition of the softmax function and the function
{Θ 7→ −li (Θ) + log πtm}. Its gradient is given by{

∇θmγm (Θ) = −γm (Θ) (1− γm (Θ)) · ∇li (θm)

∇θm′γm (Θ) = γm (Θ) γm′ (Θ) · ∇li (θm) ; m′ 6= m
(207)

We use H (ϕi (Θ)) ∈ RdM×dM (resp. H (li (θ))) to denote the hessian of ϕ (resp. li) at Θ (resp. θ). The hessian of ϕi is a
block matrix given by

(
H (ϕi (Θ))

)
m,m

= −γm (Θ) · (1− γm (Θ)) · (∇li(θm)) · (∇li(θm))
ᵀ

+ γm(Θ) ·H (li (θm))(
H (ϕi (Θ))

)
m,m′

= γm (Θ) · γm′ (Θ) · (∇li(θm′)) · (∇li(θm))
ᵀ

; m′ 6= m.

(208)

We introduce the block matrix H̃ ∈ RdM×dM , defined by{
H̃m,m = −γm (Θ) · (1− γm (Θ)) · (∇li(θm)) · (∇li(θm))

ᵀ

H̃m,m′ = γm (Θ) · γm (Θ) · (∇θli(θm)) · (∇li(θm′))ᵀ ; m′ 6= m,
(209)

Eq. (208) can be written, 
(
H (ϕi (Θ))

)
m,m
− H̃m,m = γm(Θ) ·H (li (θm))(

H (ϕi (Θ))
)
m,m′

− H̃m,m′ = 0; m′ 6= m.
(210)

We recall that a twice differentiable function is L smooth if and only if the eigenvalues of its Hessian are smaller then L, see
e.g., (Nesterov, 2003, Lemma 1.2.2) or (Bubeck, 2015, Section 3.2). Since li is L-smooth (Assumption 5), we have for
θ ∈ Rd,

H (li (θ)) 4 L · Id. (211)

Using Lemma J.15, we can conclude that matrix H̃ is semi-definite negative, thus

H (ϕi (Θ)) 4 L · IdM . (212)

The last equation proves that ϕi is L-smooth. Thus rkt is L-smooth with respect to Θ as the average of L-smooth function,
i.e.,

rkt (Θ) =
1

nt

nt∑
i=1

ϕi (Θ)

Moreover, since rkt (Θk−1, πk−1
t ) = 0 and ∀Θ,Π; rkt (Θ, πt) ≥ 0, it follows that Θk−1 is a minimizer of{

Θ 7→ rkt
(
Θ, πk−1

t

)}
. Thus, ∇Θr

k
t (Θk−1, πk−1

t ) = 0.
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For Θ ∈ RM×d and Π ∈ ∆T×M , we have

rk (Θ,Π) , gk (Θ,Π)− f (Θ,Π) (213)

,
T∑
t=1

nt
n
·
[
gkt (Θ, πt)− ft (Θ, πt)

]
(214)

=

T∑
t=1

nt
n
rkt (Θ, πt) . (215)

We see that rk is a weighted average of
(
rkt
)

1≤t≤T . Thus, rkt is L-smooth in Θ, rk (Θ,Π) ≥ 0, moreover
rkt
(
Θk−1,Πk−1

)
= 0 and∇Θr

k
t

(
Θk−1,Πk−1

)
= 0.

The following lemma shows that gkt and gk satisfy the third property in Definition 1.

Lemma J.6. Suppose that Assumption 1 holds and consider Θ ∈ RM×d and Π ∈ ∆T×M , for k > 0, the iterates of Alg. 5
verify

gk (Θ,Π) = gk
(
Θ,Πk

)
+

T∑
t=1

nt
n
KL

(
πkt , πt

)
.

Proof. For t ∈ [T ] and k > 0, consider Θ ∈ RM×d and πt ∈ ∆M such that ∀m ∈ [M ];πtm 6= 0, we have

gkt (Θ, πt)− gkt
(
Θ, πkt

)
=

M∑
m=1

{
1

nt

nt∑
i=1

qkt

(
z

(i)
t = m

)}
︸ ︷︷ ︸

=πktm (Prop. 3.1)

×
(
log πktm − log πtm

)
(216)

=

M∑
m=1

πktm log
πktm
πtm

(217)

= KL
(
πkt , πt

)
. (218)

We multiply by nt
n and some for t ∈ [T ]. It follows that

gk
(
Θ,Πk

)
+

T∑
t=1

nt
n
KL

(
πkt , πt

)
= gk (Θ,Π) . (219)
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J.2. Fully Decentralized Setting

J.2.1. ADDITIONAL NOTATIONS

Remark 2. For convenience and without loss of generality, we suppose in this section that ωt = 1
T .

We introduce the following matrix notation:

Uk ,
[
uk1 , . . . ,u

k
T

]
∈ Rdu×T (220)

Ūk ,
[
ūk, . . . , ūk

]
∈ Rdu×T (221)

∂gk
(
Uk,vk1:T ; ξk

)
,
[
∇ug

k
1

(
uk1 ,v

k
1 ; ξk1

)
, . . . ,∇ug

k
T

(
ukT ,v

k
T ; ξkT

)]
∈ Rdu×T (222)

where ūk = 1
T

∑T
t=1 u

k
t and vk1:T =

(
vkt
)

1≤t≤T ∈ V
T

We denote by uk−1,j
t the j-th iterate of the local solver at global iteration k at client t ∈ [T ], and by Uk−1,j the matrix

whose column t is uk−1,j
t , thus,

uk−1,0
t = uk−1

t ; Uk−1,0 = Uk−1 (223)

and,

ukt =

T∑
s=1

wk−1
ts uk−1,J

s ; Uk = Uk−1,JW k−1 (224)

Using this notation, the updates of Alg. 9 can be summarized as

Uk =

Uk−1 −
J−1∑
j=0

ηk−1,j∂g
k
(
Uk−1,j ,v1:T ; ξk−1,j

)W k−1 (225)

We also define, the normalized update of local solver at client t ∈ [T ]as,

δ̂k−1
t , −uk−1,J

t − uk−1,0
t

ηk−1
=

∑J−1
j=0 ηk−1,j∇ug

k
t

(
uk−1,j
t ,vkt ; ξk−1,j

t

)
∑J−1
j=0 ηk−1,j

(226)

and,

δk−1
t ,

∑J−1
j=0 ηk−1,j∇ug

k
t

(
uk−1,j
t ,vkt

)
ηk−1

(227)

Because clients updates are independent, and stochastic gradient are unbiased, it is clear that

E
[
δk−1
t − δ̂k−1

t

]
= 0 (228)

and that
∀ t, s ∈ [T ] s.t. s 6= t, E〈δk−1

t − δ̂k−1
t , δk−1

s − δ̂k−1
s 〉 = 0 (229)

We introduce the matrix notation,

Υ̂k−1 ,
[
δ̂k−1
1 , . . . , δ̂k−1

T

]
∈ Rdu×T ; Υk−1 ,

[
δk−1
1 , . . . , δk−1

T

]
∈ Rdu×T (230)

Using this notation, Eq. (225) becomes

Uk =
[
Uk−1 − ηk−1Υ̂k−1

]
W k−1 (231)
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J.2.2. PROOF OF THEOREM F.1′

In fully decentralized optimization, proving the convergence usually consists in deriving a recurrence on a term measuring
the optimality of the average iterate (in our case this term is E

∥∥∇uf
(
ūk,vk1:T

)∥∥2
) and a term measuring the distance to

consensus, i.e., E
∑T
t=1

∥∥ukt − ūk
∥∥2

. In what follows we obtain those two recurrences, and then prove the convergence.
Lemma J.7 (Average iterate term recursion). Suppose that Assumptions 5′–7′ and Assumption 8 hold. Then, for k > 0,
and (ηk,j)1≤j≤J−1 such that ηk ,

∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

8Lβ

}
, the updates of fully decentralized federated surrogate

optimization (Alg. 9) verify

E

[
f(ūk,vk1:T )− f(ūk−1,vk−1

1:T )

]
≤ − 1

T

T∑
t=1

dV
(
vkt ,v

k−1
t

)
− ηk−1

8
E
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (232)

Proof. We multiply both sides of Eq. (231) by 11ᵀ

T , thus for k > 0 we have,

Uk · 11
ᵀ

T
=
[
Uk−1 − ηk−1Υ̂k−1

]
W k−111

ᵀ

T
, (233)

since W k−1 is doubly stochastic (Assumption 8), i.e., W k−1 11ᵀ

T = 11ᵀ

T , is follows that,

Ūk = Ūk−1 − ηk−1Υ̂k−1 · 11
ᵀ

T
, (234)

thus,

ūk = ūk−1 − ηk−1

T
·
T∑
t=1

δ̂k−1
t . (235)

Using the fact that gk is L-smooth (Assumption 5′), we write

E

[
gk
(
ūk,vk−1

1:T

)]
= E

[
gk

(
ūk−1 − ηk−1

T

T∑
t=1

δ̂k−1
t ,vk−1

1:T

)]
(236)

≤ gk(ūk−1,vk−1
1:T )− E

〈
∇ug

k(ūk−1,vk−1
1:T ),

ηk−1

T

T∑
t=1

δ̂k−1
t

〉

+
L

2
E

∥∥∥∥∥ηk−1

T

T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(237)

= gk(ūk−1,vk−1
1:T )− ηk−1 E

〈
∇ug

k(ūk−1,vk−1
1:T ),

1

T

T∑
t=1

δ̂k−1
t

〉
︸ ︷︷ ︸

,T1

+
η2
k−1 · L
2T 2

E

∥∥∥∥∥
T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

︸ ︷︷ ︸
,T2

, (238)

where the expectation is taken over local random batches. As in the centralized case, we bound the terms T1 and T2. First,
we bound T1, for k > 0, we have

T1 = E
〈
∇ug

k(ūk−1,vk−1
1:T ),

1

T

T∑
t=1

δ̂k−1
t

〉
(239)
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= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

(
δ̂k−1
t − δk−1

t

)〉
︸ ︷︷ ︸

=0, because E[δk−1
t −δ̂k−1

t ]=0

+ E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

δk−1
t

〉
(240)

= E
〈
∇ug

k
(
ūk−1,vk−1

1:T

)
,

1

T

T∑
t=1

δk−1
t

〉
(241)

=
1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

1

2
E

∥∥∥∥∥ 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)
− 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(242)

We bound now T2. For k > 0, we have,

T2 = E

∥∥∥∥∥
T∑
t=1

δ̂k−1
t

∥∥∥∥∥
2

(243)

= E

∥∥∥∥∥
T∑
t=1

(
δ̂k−1
t − δk−1

t

)
+

T∑
t=1

δk−1
t

∥∥∥∥∥
2

(244)

≤ 2E

∥∥∥∥∥
T∑
t=1

(
δ̂k−1
t − δk−1

t

)∥∥∥∥∥
2

+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(245)

= 2 ·
T∑
t=1

E
∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2
∑

1≤t 6=s≤T

E
〈
δ̂k−1
t − δk−1

t , δ̂k−1
s − δk−1

s

〉
︸ ︷︷ ︸

=0; because of Eq. (229)

+ 2E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(246)

= 2 ·
T∑
t=1

E
∥∥∥δ̂k−1
t − δk−1

t

∥∥∥2

+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(247)

= 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

+ 2 ·
T∑
t=1

(
ω2
t

η2
k−1

E

∥∥∥∥∥
J−1∑
j=0

ηk−1,j ·
[
∇ug

k
t

(
uk−1,j
t ,vk−1

t

)

−∇ug
k
t

(
uk−1,j
t ,vk−1

t ; ξk−1,j
t

) ]∥∥∥∥∥
2)
. (248)

Since batches are sampled independently, stochastic gradients are unbiased and have finite variance (Assumption 6′), the
last term in the RHS of the previous can be bounded using σ2, leading to

T2 ≤ 2 ·
T∑
t=1

[
ω2
t ·
∑J−1
j=0 η

2
k−1,j

η2
k−1

σ2

]
+ 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(249)

= 2 · σ2 ·

(
T∑
t=1

ω2
t ·
∑J−1
j=0 η

2
k−1,j

η2
k−1

)
+ 2E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

(250)
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≤ 2 · σ2 + 2 · E

∥∥∥∥∥
T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (251)

Replacing Eq. (242) and Eq. (251) in Eq. (238), we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2 − ηk−1

2
(1− 2Lηk−1)E

∥∥∥∥∥ 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

+
L

T
η2
k−1σ

2 +
ηk−1

2
E

∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

)
− 1

T

T∑
t=1

δk−1
t

∥∥∥∥∥
2

. (252)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2L , we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+
L

T
η2
k−1σ

2

+
ηk−1

2
E

∥∥∥∥∥ 1

T

T∑
t=1

(
∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

)∥∥∥∥∥
2

. (253)

We use Jensen inequality to bound the lest term in the RHS of the previous equation, leading to

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+
L

T
η2
k−1σ

2

+
ηk−1

2T
·
T∑
t=1

E
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥2︸ ︷︷ ︸
T3

. (254)

We bound now the term T3,

T3 = E
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
− δk−1

t

∥∥2
(255)

= E

∥∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−

∑J−1
j=0 ηk−1,j · ∇ug

k
t

(
uk−1,j
t ,vk−1

t

)
ηk−1

∥∥∥∥∥∥
2

(256)

= E

∥∥∥∥∥∥
J−1∑
j=0

ηk−1,j

ηk−1
·
[
∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)]∥∥∥∥∥∥
2

. (257)

Using Jensen inequality, it follows that

T3 ≤
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥∇ug

k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥2

(258)

=

J−1∑
j=0

ηk−1,j

ηk−1
· E

∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1
t ,vk−1

t

)
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+∇ug
k
t

(
uk−1
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥∥∥
2

(259)

≤ 2 · E

∥∥∥∥∥∇ug
k
t

(
ūk−1,vk−1

t

)
−∇ug

k
t

(
uk−1
t ,vk−1

t

) ∥∥∥∥∥
2

+ 2 ·
J−1∑
j=0

ηk−1,j

ηk−1
· E

∥∥∥∥∥∇ug
k
t

(
uk−1
t ,vk−1

t

)
−∇ug

k
t

(
uk−1,j
t ,vk−1

t

)∥∥∥∥∥
2

(260)

≤ 2L2 · E
∥∥ūk−1 − uk−1

t

∥∥2
+ 2L2 ·

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2

, (261)

where we used the L-smoothness of gkt (Assumption 5′) to obtain the last inequality. As in the centralized case (lemma J.1),

we bound terms
∥∥∥uk−1,j

t − uk−1,0
t

∥∥∥2

, j ∈ {0, . . . , J − 1}. Using exactly the same steps as in the proof of lemma J.1,

Eq. (145) holds with uk−1 with uk−1,0
t , i.e.,

(
1− 4η2

k−1L
2
)
·
J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2

≤ 2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 4η2

k−1 · E
∥∥∥∇ugkt (uk−1,0

t ,vk−1
t

)∥∥∥2

. (262)

For ηk−1 small enough, in particular for ηk−1 ≤ 1
2
√

2L
, we have

J−1∑
j=0

ηk−1,j

ηk−1
· E
∥∥∥uk−1,0

t − uk−1,j
t

∥∥∥2

≤ 8η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (263)

≤ 8η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)
−∇ugkt

(
ūk−1,vk−1

t

)
+∇ugkt

(
ūk−1,vk−1

t

)∥∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (264)

≤ 16η2
k−1 · E

∥∥∥∇ugkt (uk−1,0
t ,vk−1

t

)
−∇ugkt

(
ūk−1,vk−1

t

)∥∥∥2

+ 16η2
k−1 ·

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 (265)

≤ 16η2
k−1L

2 · E
∥∥uk−1

t − ūk−1
∥∥2

+ 16η2
k−1 ·

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2

+ 4σ2 ·


J−1∑
j=0

η2
k−1,j

 , (266)

where the last inequality follows from the L-smoothness of gkt . Replacing Eq. (266) in Eq. (261), we have

T3 ≤ 32η2
k−1L

4 · E
∥∥uk−1

t − ūk−1
∥∥2

+ 8L2σ2 ·


J−1∑
j=0

η2
k−1,j


+ 32η2

k−1L
2 · E

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
+ 2L2 · E

∥∥ūk−1 − uk−1
t

∥∥2
, (267)
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where the last inequality follows from the L-smoothness of gkt . For ηk small enough, in particular if ηk ≤ 1
2
√

2L
we have,

T3 ≤ 6L2E
∥∥uk−1

t − ūk−1
∥∥2

+ 8L2σ2
J−1∑
j=0

η2
k−1,j + 32η2

k−1L
2
∥∥∇ugkt (ūk−1,vk−1

t

)∥∥2
. (268)

Replacing Eq. (268) in Eq. (254), we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

LT · η2
k−1,j

ηk−1
+ 1

σ2

− ηk−1

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

16η3
k−1L

2

T

T∑
t=1

∥∥∇ugkt (ūk−1,vk−1
t

)∥∥2
. (269)

We use now Assumption 7′ to bound the last term in the RHS of the previous equation, leading to

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

LT · η2
k−1,j

ηk−1
+ 1

σ2

−
ηk−1 ·

(
1− 32η2

k−1L
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)

2
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

16η3
k−1L

2

T
G2. (270)

For ηk−1 small enough, in particular, if ηk−1 ≤ 1
8Lβ , we have

E

[
gk(ūk,vk−1

1:T )− gk(ūk−1,vk−1
1:T )

]
≤

− ηk−1

4
E
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2
+

3ηk−1L
2

T
·
T∑
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E
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∥∥2

+
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T

4

J−1∑
j=0

LT · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3
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2

T
G2. (271)

We use Lemma J.14 to get

E

[
gk(ūk,vk−1

1:T )− f(ūk−1,vk−1
1:T )

]
≤

− ηk−1

8
E
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (272)

Finally, since gkt is a pseudo first-order surrogate of ft near
{
uk−1,vk−1

t

}
, we have

E

[
f(ūk,vk1:T )− f(ūk−1,vk−1

1:T )

]
≤ − 1

T

T∑
t=1

E dV
(
vkt ,v

k−1
t

)
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− ηk−1

8
E
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+

3ηk−1L
2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (273)

Lemma J.8 (Recursion for consensus distance, part 1). Suppose that Assumptions 5′–7′ and Assumption 8 hold. Consider
m =

⌊
k
τ

⌋
− 1, then, for k > 0, and (ηk,j)1≤j≤J−1 such that ηk ,

∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

4Lβ

}
, the updates of fully

decentralized federated surrogate optimization (Alg 9) verify

E
T∑
t=1

∥∥ukt − ūk
∥∥2

F
≤

(1− p

2
)β2E

∥∥Umτ − Ūmτ
∥∥2

F
+ 20τ

(
1 +

2

p

)
L2

k−1∑
l=mτ

η2
l E
∥∥Ul − Ūl

∥∥2

F

+

1 + 16L2τ

(
1 +

2

p

)
·


J−1∑
j=0

η2
l,j


 · T · σ2 + 16τ

(
1 +

2

p

)
T 2G2

k−1∑
l=mτ

η2
l

+ 16τ

(
1 +

2

p

)
T 2β2

k−1∑
l=mτ

η2
l E
∥∥∇uf

(
ūl,j ,vl+1

1:T

)∥∥2
. (274)

Proof. For k ≥ τ , and m =
⌊
k
τ

⌋
− 1, we have

E
T∑
t=1

∥∥ukt − ūk
∥∥2

F
= E

∥∥Uk − Ūk
∥∥2

F
(275)

= E
∥∥Uk − Ūmτ + Ūmτ − Ūk

∥∥2

F
(276)

≤ E
∥∥Uk − Ūmτ

∥∥2

F
. (277)

Using Eq. (231) recursively, we have

Uk = Umτ

{
k−1∏
l′=mτ

W l′

}
−

k−1∑
l=mτ

ηlΥ̂
l

{
k−1∏
l′=l

W l′

}
. (278)

Thus,

E
T∑
t=1

∥∥∥ukt − ūk
∥∥∥2

F
≤ E

∥∥∥∥∥Umτ

{
k−1∏
l′=mτ

W l′

}
− Ūmτ −
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l=mτ

ηlΥ̂
l

{
k−1∏
l′=l

W l′

}∥∥∥∥∥
2

F

(279)

= E

∥∥∥∥∥Umτ

{
k−1∏
l′=mτ

W l′

}
− Ūmτ −
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ηlΥ
l
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W l′
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(
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){k−1∏
l′=l

W l′

}∥∥∥∥∥
2

F

(280)

= E

∥∥∥∥∥Umτ

{
k−1∏
l′=mτ

W l′

}
− Ūmτ −
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l=mτ

ηlΥ
l

{
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W l′
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2

F

+ E
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l=mτ

ηl

(
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W l′
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+ 2E
〈
Umτ
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ηlΥ
l

{
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}
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ηl

(
Υl − Υ̂l

){k−1∏
l′=l

W l′

}〉
F

. (281)
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Since stochastic gradients are unbiased, the last term in the RHS of the previous equation is equal to zero. Using the
following standard inequality for euclidean norm with α > 0,

‖a + b‖2 ≤ (1 + α) ‖a‖2 +
(
1 + α−1

)
‖b‖2 , (282)

we have

E
T∑
t=1

∥∥∥ukt − ūk
∥∥∥2

F
≤ (283)

(1 + α)E

∥∥∥∥∥Umτ

{
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l′=mτ

W l′

}
− Ūmτ

∥∥∥∥∥
2
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+
(
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)
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{
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2
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η2
l E

∥∥∥∥∥(Υl − Υ̂l
){k−1∏

l′=l

W l′
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2

F

. (284)

Since k ≥ (m+ 1)τ and matrices
(
W l
)
l≥0

are doubly stochastic, we have

E
T∑
t=1

∥∥ukt − ūk
∥∥2

F
≤ (1 + α)E

∥∥∥∥∥∥Umτ


(m+1)τ−1∏
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∥∥∥∥∥∥
2

F

+
(
1 + α−1

)
E

∥∥∥∥∥
k−1∑
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ηlΥ
l
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2

F

+

k−1∑
l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
(285)

≤ (1 + α)E

∥∥∥∥∥∥Umτ


(m+1)τ−1∏
l′=mτ

W l′

− Ūmτ

∥∥∥∥∥∥
2
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(
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· (k −mτ)
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l E
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∥∥2

F

+
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l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
(286)

Using Assumption 8 to bound the first of the RHS of the previous equation and the fact that that k ≤ (m+ 2)τ , it follows
that

E
T∑
t=1

∥∥ukt − ūk
∥∥2

F
≤ (1 + α)(1− p)E

∥∥Umτ − Ūmτ
∥∥2

F
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l E
∥∥Υl

∥∥2

F
+

k−1∑
l=mτ

η2
l E
∥∥∥Υl − Υ̂l

∥∥∥2

F
.

(287)

We use the fact that stochastic gradients have bounded variance (Assumption 6′) to bound E
∥∥∥Υl − Υ̂l

∥∥∥2

F
as follow,

E
∥∥∥Υl − Υ̂l
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F
=

T∑
t=1

E
∥∥∥δlt − δ̂lt∥∥∥2

(288)

=

T∑
t=1

E

∥∥∥∥∥
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ηl
·

(
∇ug

l+1
t

(
ul,jt ,v
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)
−∇ug

l+1
t

(
ul,jt ,v

l
t; ξ

l,j
t

))∥∥∥∥∥ (289)

≤
T∑
t=1

J−1∑
j=0

ηl,j
ηl
· E

∥∥∥∥∥
(
∇ug

l+1
t

(
ul,jt ,v

k−1
t

)
−∇ug

l+1
t

(
ul,jt ,v

l
t; ξ

l,j
t

))∥∥∥∥∥ (290)

≤
T∑
t=1

J−1∑
j=0

ηl,j
ηl
σ2 (291)

= T · σ2, (292)
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where we used Jensen inequality to obtain the first inequality and Assumption 6′ to obtain the second inequality. Replacing
back in Eq. (287), we have

E
T∑
t=1

∥∥ukt − ūk
∥∥2

F
≤

(1 + α)(1− p)E
∥∥Umτ − Ūmτ

∥∥2

F
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(
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l E
∥∥Υl

∥∥2

F
+ T · σ2. (293)

The last step of the proof consists in bounding E
∥∥Υl

∥∥
F

for l ∈ {mτ, . . . k − 1},

E
∥∥Υl

∥∥2

F
=

T∑
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E
∥∥δlt∥∥2

(294)

=
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≤
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≤ 2

T∑
t=1

J−1∑
j=0

ηl,j
ηl
· E
∥∥∥∇ug

l+1
t

(
ul,jt ,v

l
t

)
−∇uft

(
ult,v

l
t

)∥∥∥2

+ 2

T∑
t=1

E
∥∥∇uft

(
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. (298)

Since gl+1
t is a first order surrogate of f near

{
ult, v

l
t

}
, we have
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. (300)

Since f is 2L-smooth w.r.t u (Lemma J.12) and g is L-smooth w.r.t u (Assumption 5′), we have

E
∥∥Υl

∥∥2

F
≤ 2
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(
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. (301)

We use Eq. (266) to bound the first term in the RHS of the previous equation, leading to

E
∥∥Υl

∥∥2

F
≤ 32η2

l L
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E
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+ 4

T∑
t=1

E
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Using Lemma J.14, we have
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For ηl small enough, in particular, for ηl ≤ 1
2
√

2L
, we have

E
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ūl,j , vl+1

t

)∥∥2
+ 10L2 E

∥∥Ul − Ūl
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Replacing Eq. (304) in Eq. (293), we have
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Finally, using Lemma J.13 and considering α = p
2 , we have
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. (306)

Lemma J.9 (Recursion for consensus distance, part 2). Suppose that Assumptions 5′–7′ and Assumption 8 hold. Consider
mτ ≤ k < (m + 1)τ , then, for (ηk,j)1≤j≤J−1 such that ηk ,

∑J−1
j=0 ηk,j ≤ min

{
1

2
√

2L
, 1

4Lβ

}
, the updates of fully

decentralized federated surrogate optimization (Alg 9) verify

E
T∑
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∥∥ukt − ūk
∥∥2

F
≤
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(1 + α)(1 +
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Proof. We use exactly the same proof as in Lemma J.8, with the only difference that Eq. (287) is replaced by

E
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∥∥2
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, (308)

resulting from the fact that
{∏(m+1)τ−1

l′=mτ W l′
}

is a doubly stochastic matrix.

Lemma J.10. Under Assum. 5′-7′ and Assum 8. For ηk,j = η
J with

η ≤ min

{
1

2
√

2L
,

p

256τL
,

1

16

√
p2

24τ2β2

}
, (309)

the iterates of Alg. 9 verifies
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Proof. Using Lemma J.8 and Lemma J.9, we have and using the fact that p ≤ 1, we have for m =
⌊
k
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⌋
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and for mτ ≤ k < (m+ 1) τ ,
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+
24τ

p
β2η2

k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
. (317)

Using the fact that η ≤ p
256τL , it follows that for m =

⌊
k
τ

⌋
− 1

E
∥∥Uk − Ūk

∥∥2

F
≤ (1− p

2
)E
∥∥Umτ − Ūmτ

∥∥2

F
+

p

16τ
L2η2

k−1∑
l=mτ

E
∥∥Ul − Ūl

∥∥2
(318)

+η2A+
24τ

p
β2η2

k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
, (319)

and for mτ ≤ k < (m+ 1) τ ,

E
∥∥Uk − Ūk

∥∥2

F
≤ (1 +

p

2
)E
∥∥Umτ − Ūmτ

∥∥2

F
+

p

64τ
η2

k−1∑
l=mτ

E
∥∥Ul − Ūl

∥∥2

F
(320)

+η2A+
24τ

p
β2η2

k−1∑
l=mτ

E
∥∥∇uf

(
ūl,vl1:T

)∥∥2
. (321)

The rest of the proof follows from (Koloskova et al., 2020, Lemma 14).

Theorem F.1′. Under Assumptions 4′–7′ and Assumption 8, when clients use SGD as local solver with learning rate
η = a0√

K
, after a large enough number of communication rounds K, the iterates of fully decentralized federated surrogate

optimization (Alg. 9) satisfy:
1

K

K∑
k=1

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2 ≤ O
(

1√
K

)
, (322)

and,
1

K

K∑
k=1

T∑
t=1

ωt · E dV
(
vkt ,v

k+1
t

)
≤ O

(
1

K

)
, (323)

where ūk = 1
T

∑T
t=1 u

k
t . Moreover, local estimates

(
ukt
)

1≤t≤T converge to consensus, i.e., to ūk:

1

K

K∑
k=1

T∑
t=1

E
∥∥ukt − ūk

∥∥2 ≤ O
(

1√
K

)
. (324)

Proof. We prove first the convergence to a stationary point in u, i.e. Eq. (322), using (Koloskova et al., 2020, Lemma 17),
then we prove Eq. (323) and Eq. (324).

Proof of Eq. 322. The result follows immediately from Lemma J.7 and Lemma J.10 by using (Koloskova et al., 2020,
Lemma 17).

Proof of Eq. 324. We multiply Eq. (310) (Lemma J.10) by 1
K+1 , and we have

1

K + 1

K∑
k=0

E
∥∥Uk − Ūk

∥∥2

F
≤ 1

2(K + 1)

K∑
k=0

E
∥∥∇uf

(
ūk,vk1:T

)∥∥2

F
+

64Aτ

p(K + 1)
Kη2, (325)

since η ≤ O
(

1√
K

)
, using Eq. (322), it follows that

1

K

K∑
k=1

E
∥∥Uk − Ūk

∥∥2

F
≤ O

(
1√
K

)
(326)

Thus,
1

K

K∑
k=1

T∑
t=1

E
∥∥ukt − ūk

∥∥2

F
≤ O

(
1√
K

)
(327)
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Proof of Eq. 323. Using the result of Lemma J.7 we have

1

T

T∑
t=1

E dV
(
vkt , v

k−1
t

)
≤E

[
f(ūk−1,vk−1

1:T )− f(ūk,vk−1
1:T )

]

+
3ηk−1L

2

T
·
T∑
t=1

E
∥∥uk−1

t − ūk−1
∥∥2

+
η2
k−1L

T

4

J−1∑
j=0

L · η2
k−1,j

ηk−1
+ 1

σ2 +
16η3

k−1L
2

T
G2. (328)

The final result follows from the fact that η = O
(

1√
K

)
and Eq. (324).

J.2.3. PROOF OF THEOREM F.1

We state the formal version of Theorem F.1, for which only an informal version was given in the main text.

Theorem F.1. Under Assumptions 1–8, when clients use SGD as local solver with learning rate η = a0√
K

, D-FedEM’s
iterates satisfy the following inequalities after a large enough number of communication rounds K:

1

K

K∑
k=1

E
∥∥∇Θf

(
Θ̄k,Πk

)∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

T∑
t=1

nt
n
KL

(
πkt , π

k−1
t

)
≤ O

(
1

K

)
, (329)

where Θ̄k = Θk 11ᵀ

T . Moreover, individual estimates
(
Θk
t

)
1≤t≤T converge to consensus, i.e., to Θ̄k:

min
k∈[K]

E
T∑
t=1

∥∥Θk
t − Θ̄k

∥∥2

F
≤ O

(
1√
K

)
.

Proof. We use exactly the same proof as in Appendix J.1.3, showing that D-FedEM can be obtained from fully decentralized
federated surrogate optimization.
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J.3. Auxiliary Lemmas

Lemma J.11. Consider J ≥ 2 and positive real numbers, ηj , j = 0, . . . , J − 1, then:

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

ηl

}
≤
J−2∑
j=0

ηj

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

η2
l

}
≤
J−2∑
j=0

ηj
2

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
(
j−1∑
l=0

ηl

)2
 ≤

J−1∑
j=0

ηj ·
J−2∑
j=0

ηj

Proof. For the first inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

ηl

}
≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

ηl

}
= ·

J−2∑
l=0

ηl. (330)

For the second inequality

1∑J−1
j=0 ηj

·
J−1∑
j=0

{
ηj ·

j−1∑
l=0

η2
l

}
≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

{
ηj ·

J−2∑
l=0

η2
l

}
=

J−2∑
l=0

η2
l . (331)

For the third inequality,

1∑J−1
j=0 ηj

·
J−1∑
j=0

ηj ·
(
j−1∑
l=0

ηl

)2
 ≤ 1∑J−1

j=0 ηj
·
J−1∑
j=0

ηj ·
(
J−2∑
l=0

ηl

)2
 (332)

≤

J−2∑
j=0

ηj

2

(333)

≤
J−1∑
j=0

ηj ·
J−2∑
j=0

ηj (334)

Lemma J.12. Suppose that g is a pseudo first-order surrogate of f , and that g is L-smooth, then f is 2L-smooth.

Proof. The difference between f and g is L-smooth, and g is L-smooth, thus f is L-smooth as the sum of two L-smooth
functions.

Lemma J.13. Consider f =
∑T
t=1 ωt · ft, for weights ω ∈ ∆T . Suppose that for all

{
u0,v0

}
∈ Rdu × V , and

t ∈ [T ], ft admits a pseudo first-order surrogate g{u
0,v0}

t near
{
u0,v0

}
, and that g{u

0,v0} =
∑T
t=1 ωt · g

{u0,v0}
t verifies

Assumption 7′ for t ∈ [T ]. Then f also verifies Assumption 7′.

Proof. Consider arbitrary u,v ∈ Rdu × V , and for t ∈ [T ], consider g{u,v} to be a pseudo first-order surrogate of ft near
{u,v}. We write Assumption 7′ for g{u,v},

T∑
t=1

ωt ·
∥∥∥∇ug

{u,v}
t (u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇ug
{u,v}
t (u,v)

∥∥∥2

. (335)
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Since g{u,v}t is a pseudo first-order surrogate of ft near {u,v}, it follows that

T∑
t=1

ωt ·
∥∥∥∇uft(u,v)

∥∥∥2

≤ G2 + β2
∥∥∥ T∑
t=1

ωt · ∇uft(u,v)
∥∥∥2

. (336)

Lemma J.14. For k > 0, the iterates of Alg. 9, verifies

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+
L

2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
,

and, ∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 ≤ 2
∥∥∇ug

k
(
ūk−1,vk−1

1:T

)∥∥2 − 2L2
T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
,

and, ∥∥∇ug
k
(
ūk−1,vk−1

1:T

)∥∥2 ≤ 2
∥∥∇uf

(
ūk−1,vk−1

1:T

)∥∥2
+ 2L2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
,

Proof. For k > 0 and t ∈ [T ], we have

gkt

(
ūk−1,vk−1

t

)
=

gkt
(
ūk−1,vk−1

t

)
+ ft

(
ūk−1,vk−1

t

)
− ft

(
ūk−1,vk−1

t

)
(337)

= ft
(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
(338)

= ft
(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
− rkt

(
uk−1
t ,vk−1

t

)
+ rkt

(
uk−1
t ,vk−1

t

)
(339)

Since gkt
(
uk−1
t ,vk−1

t

)
= ft

(
uk−1
t ,vk−1

t

)
, it follows that

gkt
(
ūk−1,vk−1

t

)
= ft

(
ūk−1,vk−1

t

)
+ rkt

(
ūk−1,vk−1

t

)
− rkt

(
uk−1
t ,vk−1

t

)
(340)

Because rkt is L-smooth in u (Lemma J.5), we have

rkt
(
ūk−1,vk−1

t

)
−rkt

(
uk−1
t ,vk−1

t

)
≤
〈
∇ur

k
t

(
uk−1
t ,vk−1

t

)
, ūk−1 − uk−1

t

〉
+
L

2

∥∥ūk−1 − uk−1
t

∥∥2
(341)

Because gkt is a first order surrogate of ft near
{
uk−1
t , vk−1

t

}
, we have ∇ur

k
t

(
uk−1
t ,vk−1

t

)
= 0, thus

gkt
(
ūk−1,vk−1

t

)
≤ ft

(
ūk−1,vk−1

t

)
+
L

2

∥∥ūk−1 − uk−1
t

∥∥2
(342)

Multiplying by ωt and summing for t ∈ [T ], we have

gk
(
ūk−1,vk−1

1:T

)
≤ f

(
ūk−1,vk−1

1:T

)
+
L

2

T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
. (343)

Writing the gradient of Eq. (340), we have

∇ug
k
t

(
ūk−1,vk−1

t

)
= ∇uft

(
ūk−1,vk−1

t

)
+∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)
(344)

Multiplying by ωt and summing for t ∈ [T ], we have

∇ug
k
(
ūk−1,vk−1

1:T

)
= ∇uf

(
ūk−1,vk−1

1:T

)
+
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+

T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]
(345)

thus,∥∥∥∥∥∇ug
k
(
ūk−1,vk−1

1:T

) ∥∥∥∥∥
2

=

∥∥∥∥∥∇uf
(
ūk−1,vk−1

1:T

)
+

T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]∥∥∥∥∥
2

(346)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 −

∥∥∥∥∥
T∑
t=1

ωt
[
∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)]∥∥∥∥∥
2

(347)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 −
T∑
t=1

ωt
∥∥∇ur

k
t

(
ūk−1,vk−1

t

)
−∇ur

k
t

(
uk−1
t ,vk−1

t

)∥∥2
(348)

≥1

2

∥∥∇uf
(
ūk−1,vk−1

1:T

)∥∥2 − L2
T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
(349)

Thus, ∥∥∇uft
(
ūk−1,vk−1

t

)∥∥2 ≤ 2
∥∥∇ug

k
t

(
ūk−1,vk−1

t

)∥∥2 − 2L2
T∑
t=1

ωt
∥∥ūk−1 − uk−1

t

∥∥2
(350)

The last equation, follows exactly like the second one.

Lemma J.15. Consider u1, . . . ,uM ∈ Rd and α = (α1, . . . , αM ) ∈ ∆M . Define the block matrix H with{
Hm,m = −αm · (1− αm) · um · uᵀ

m

Hm,m′ = αm · αm′ · um · uᵀ
m′ ; m′ 6= m,

(351)

then H is semi-definite negative matrix.

Proof. Consider X = [x1, . . . ,xM ] ∈ RdM , we want to prove that

Xᵀ ·H ·X ≤ 0. (352)

We have,

Xᵀ ·H ·X =

M∑
m=1

M∑
m′=1

xᵀ
m ·Hm,m′ · xm′ (353)

=

M∑
m=1

xᵀ
m ·Hm,m · xm +

M∑
m′=1
m′ 6=m

xᵀ
m ·Hm,m · xm′

 (354)

=

M∑
m=1

−αm · (1− αm) · xᵀ
m · um · uᵀ

m · xm +

M∑
m′=1
m′ 6=m

(αm · αm′ · xᵀ
m · um · u

ᵀ
m′ · xm′)

 (355)

=

M∑
m=1

−αm · (1− αm) · 〈xm,um〉2 + αm · 〈xm,um〉
M∑

m′=1
m′ 6=m

αm′ · 〈xm′ ,um′〉

 . (356)
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Since α ∈ ∆M , we have
∑M
m=1 αm = 1, thus,

Xᵀ ·H ·X =

M∑
m=1

αm · 〈xm,um〉 ·
M∑

m′=1
m′ 6=m

αm′
(
〈xm′ ,um′〉 − 〈xm,um〉

)
(357)

=

M∑
m=1

αm · 〈xm,um〉 ·
M∑

m′=1

αm′
(
〈xm′ ,um′〉 − 〈xm,um〉

)
(358)

=

(
M∑
m=1

αm · 〈xm,um〉

)2

−
M∑
m=1

αm · 〈xm,um〉2. (359)

Using Jensen inequality, Xᵀ ·H ·X ≤ 0.
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K. Distributed Surrogate Optimization with Black-Box Solver
In this section, we cover the scenario, when the local SGD solver used in our algorithms (Alg. 5 and Alg. 9) is replaced by a
(possibly non-iterative) black-box solver that is guaranteed to provide a local inexact solution. We introduce the following
additional notation.

ψm,t(π, q) ,
1

nt

nt∑
i=1

q(i)
(
z

(i)
t = m

)
×
[
log pm(x

(i)
t ) + log π

]
− 1

nt

nt∑
i=1

q(i)
(
z

(i)
t = m

)
× log q(i)

(
z

(i)
t = m

)
+ c,

(360)

and,

φm,t(θ, q) ,
1

nt

nt∑
i=1

q(i)(z
(i)
t = m)× l

(
hθ(x

(i)
t ), y

(i)
t

)
. (361)

For distributions Q1:T = (qt)1≤t≤T over [M ], Π ∈ ∆T×M and Θ ∈ RM×d, we define

Ψt(πt, qt) ,
M∑
m=1

ψm,t(πtm, qt), Φt (Θ, qt) ,
M∑
m=1

φm,t (θm, qt)

Ψ(Π, Q1:T ) ,
T∑
t=1

nt
n

Ψt(πt, qt); Φ (Θ, Q1:T ) ,
T∑
t=1

nt
n

Φt (Θ, qt)

(362)

It holds:
gt (Θ, πt, qt) = Φt (Θ, qt)−Ψt (πt, qt) ; g (Θ,Π, Q1:T ) = Φ (Θ, Q1:T )−Ψ(Π, Q1:T ) (363)

As we mentioned above, the black-solver provides approximate solutions, as captured by the following assumption¿

Assumption 9 (Local inexact solution). There exists 0 < α < 1 such that for t ∈ [T ] and k > 0,

Φkt (Θk
t )− Φkt (Θk

t,∗) ≤ α×
(
Φkt (Θk−1)− Φkt (Θk

t,∗)
)
,

where Φkt (Θ) = Φt
(
Θ, qkt

)
for Θ ∈ RM×d and Θk

t,∗ ∈ arg minΘ∈RM×d Φkt (Θ).

We further assume strong convexity,

Assumption 10. For t ∈ [T ] and i ∈ [nt], we suppose that θ 7→ l
(
hθ

(
x

(i)
t

)
, y

(i)
t

)
is µ-strongly convex.

Assum. 9 is equivalent to the γ-inexact solution used in (Li et al., 2020) (Lemma. K.1), when local functions (Φt)1≤t≤T are
assumed to be convex. In addition to Assum. 9, we need to have G2 = 0 in order to ensure the convergence of Alg. 7 and
Alg. 3 to a stationary point of f , as shown by (Wang et al., 2020b, Thm. 2).

We analyse Alg. 5 if the LocalSolver verifies Assum. 9, and we prove that under Assum. 4-Assum. 10, with G2 = 0,
Alg. 5 converges to a stationary point of f .

First, we prove the following result

Lemma K.1. Under Assum. 9, 5 and 10, the iterates of Alg. 7 verify for k > 0 and t ∈ [T ],∥∥∇Φkt (Θk
t )
∥∥
F
≤
√
ακ
∥∥∇Φkt (Θk−1)

∥∥
F
,

where κ = L/µ.

Proof. Since Φkt is L-smooth, we have∥∥∇Φkt
(
Θk
t

)∥∥2

F
≤ 2L

(
Φkt
(
Θk
t

)
− Φkt

(
Θk
t,∗
))

(364)

≤ 2Lα
(
Φkt
(
Θk−1
t

)
− Φkt

(
Θk
t,∗
))
. (365)
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Since Φkt is µ-strongly convex, we can use Polyak-Lojasiewicz (PL) inequality,

Φkt
(
Θk−1
t

)
− 1

2µ

∥∥∇Φkt
(
Θk−1

)∥∥2

F
≤ Φkt

(
Θk−1
t

)
, (366)

thus,

2µ
(
Φkt
(
Θk−1
t

)
− Φkt

(
Θk
t,∗
))
≤
∥∥∇Φkt

(
Θk−1

)∥∥2

F
. (367)

Combining Eq. (365) and Eq. (367), we have∥∥∇Φkt
(
Θk−1

)∥∥2

F
≤ L

µ
α
∥∥∇Φk−1

t

(
Θk−1

)∥∥2

F
, (368)

thus, ∥∥∇Φkt (Θk
t )
∥∥
F
≤
√
ακ
∥∥∇Φkt (Θk−1)

∥∥
F
. (369)

Lemma K.2. Suppose that Assum. 5, 7, 10 and Assum. 9 hold, and that G2 = 0. Then,

gk
(
Θk,Πk

)
− gk

(
Θk
∗,Π

k
)
≤ α̃×

{
gk
(
Θk−1,Πk−1

)
− gk

(
Θk
∗,Π

k
)}
,

where α̃ = β2κ5α

Proof. For k > 0 and t ∈ [T ], define Θk
∗ = arg minΘ Φk (Θ). Φkt is µ-strongly convex, because it is a convex combination
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where last inequality is a result of lemma K.1. Using Jensen inequality, we have
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Using Assum. 7, it follows that∥∥Θk −Θk
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Since Φk is L-smooth (lemma J.3), we have∥∥∇Φk
(
Θk
)∥∥
F

=
∥∥∇Φk

(
Θk−1

)
−∇Φk

(
Θk
∗
)∥∥
F

(377)

≤ L
∥∥Θk −Θk

∗
∥∥
F

(378)

≤ β
√
ακ2

∥∥∇Φk
(
Θk−1

)∥∥
F

(379)



Federated Multi-Task Learning under a Mixture of Distributions

Since Φk is strongly convex (Because of Assumption 10), we have
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Using the L-smoothness of Φk (lemma J.3) we have∥∥∇Φk
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Moreover, by definition, we have that
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Lemma K.3. Suppose that Assum. 1, 4, 10 and Assum. 5 hold and

gk(Θk,Πk) ≤ gk(Θk−1,Πk−1); k > 0,

then
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0 (385)
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If we moreover suppose that there exists 0 < α̃ < 1 such that for all k > 0,
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where Θk
∗ is the minimizer of Θ 7→ gk

(
Θ,Πk

)
.

Proof. From Prop. J.5 it follows that, for k ≥ 0, gk is a majorant of f and that gk(Θk−1,Πk−1) = f(Θk−1,Πk−1). Thus,
the following holds,

f(Θk,Πk) ≤ gk(Θk,Πk) ≤ gk(Θk−1,Πk−1) = f(Θk−1,Πk−1), (389)

It follows that the sequence
(
f
(
Θk,Πk

))
k≥0

is a non-increasing sequence. Since f is bounded below (Assum. 4), it follows
that

(
f
(
Θk,Πk

))
k≥0

is convergent. Denote by f∞ its limit. The sequence
(
gk(Θk,Πk)

)
k≥0

also converges to f∞.
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Proof of Eq. 385 Using again the result of Prop. J.5 and the fact that gk(Θk,Πk) ≤ gk(Θk−1,Πk), we write for k > 0

f(Θk,Πk) + rk(Θk,Πk) = gk(Θk,Πk) ≤ gk(Θk−1,Πk−1) = f(Θk−1,Πk−1),

Thus,
rk(Θk,Πk) ≤ f(Θk−1,Πk−1)− f(Θk,Πk), (390)

By summing over k then passing to the limit when k → +∞, we have

∞∑
k=1

rk(Θk,Πk) ≤ f(Θ0,Π0)− f∞, (391)

Finally since rk(Θk,Πk) is non negative for k > 0 (Prop. J.5), the sequence
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)
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necessarily converges to zero,
i.e.,

lim
k→∞

rk(Θk,Πk) = 0. (392)

Proof of Eq. 386 Using Lemma. J.6, with Θ = Θk−1 and Π = Πk−1, we write
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Since KL
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)
is non-negative for k > 0 and t ∈ [T ], it follows that
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Proof of Eq.387 Writing the L-smoothness of Θ 7→ rk
(
Θ,Πk

)
(Prop. J.5) we have
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because rk is non-negative function (Prop. J.5). Finally, using Eq. 385, it follows that

lim
k→∞
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Proof of Eq. 388 We suppose now that there exists 0 < α̃ < 1 such that

∀k > 0, gk(Θk,Πk)− gk(Θk
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k) ≤ α̃
(
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)
, (401)

It follows that,
gk(Θk,Πk)− α̃gk(Θk−1,Πk−1) ≤ (1− α̃)gk(Θk

∗,Π
k), (402)
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then,
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k) ≥ 1
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and by using the definition of gk we have,
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is a minimizer of gk, we have,
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From Eq. 404 and Eq. 405, it follows that,
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Since gk is µ-strongly convex in Θ (Assum. 10), we write
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It follows that,
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Finally, we can prove the main result of this section by combining the previous lemmas

Proposition K.4. Suppose that Assum. 1, 4, 5, 7, 10 and Assum. 9 hold, with G2 = 0 and α ≤ 1
β2κ5 . Then the updates of

federated surrogate optimization converges to a stationary point of f , i.e.,
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Proof. For k > 0, we write
f(Θk,Πk) = gk(Θk,Πk)− rk(Θk,Πk) (410)

Computing the gradient norm, we have,∥∥∇f(Θk,Πk)
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Thus by replacing Eq. 414 in Eq. 412, we have∥∥∇f(Θk,Πk)
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Using Lemma K.2, there exists 0 < α̃ < 1, such that[
gk(Θk,Πk)− gk(Θk

∗,Π
k)
]
≤ α̃×

[
gk(Θk−1,Πk−1)− gk(Θk

∗,Π
k)
]

(416)

Thus, the conditions of Lemma K.3 hold in expectation, and we can use Eq. 387 and 388, i.e.∥∥∇rk(Θk,Πk)
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Finally, combining this with Eq. 415, we get the final result
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Table 3. Datasets and models.

DATASET TASK CLIENTS TOTAL SAMPLES MODEL

FEMNIST HANDWRITTEN CHARACTER RECOGNITION 359 98, 761 2-LAYER CNN
EMNIST HANDWRITTEN CHARACTER RECOGNITION 100 81, 425 2-LAYER CNN
CIFAR10 IMAGE CLASSIFICATION 80 60, 000 MOBILENET-V2
CIFAR100 IMAGE CLASSIFICATION 100 60, 000 MOBILENET-V2
SHAKESPEARE NEXT-CHARACTER PREDICTION 778 4, 226, 158 STACKED-LSTM
SYNTHETIC BINARY CLASSIFICATION 300 1, 570, 507 LINEAR MODEL

L. Details on Experimental Setup
L.1. Datasets and Models

In this section we provide detailed description of the datasets and models used in our experiments. We used a synthetic dataset,
verifying assumptions 1-3, and five ”real” datasets (CIFAR-10/CIFAR-100 (Krizhevsky, 2009), sub part of EMNIST (Cohen
et al., 2017), sub part of FEMNIST (Caldas et al., 2018; McMahan et al., 2017) and Shakespeare (Caldas et al., 2018;
McMahan et al., 2017)) from which, two (FEMNIST and Shakespeare) has natural clients partitioning. Below, we give a
detailed description of the datasets and the models / tasks considered for each of them. Table 3 summarizes datasets, models,
and number of clients.

L.1.1. CIFAR-10 / CIFAR-100

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They both share the same 60, 000
input images. CIFAR-100 has a finer labeling, with 100 unique labels, in comparison to CIFAR-10, having 10 unique
label. We used Dirichlet allocation (Wang et al., 2020a), with parameter α = 0.4 to partition CIFAR-10 among 80 clients.
We used Pachinko allocation (Reddi et al., 2021) with parameters α = 0.4 and β = 10 to partition CIFAR-100 on 100
clients. For both of them we train MobileNet-v2 (Sandler et al., 2018) architecture with an additional linear layer. We used
TorchVision (Marcel & Rodriguez, 2010) implementation of MobileNet-v2.

L.1.2. EMNIST

EMNIST (Extended MNIST) is a 62-class image classification dataset, extending the classic MNIST dataset. In our
experiments, we consider 10% of the EMNIST dataset, that we partition using Dirichlet allocation of parameter α = 0.4
over 100 clients. We train the same convolutional network as in (Reddi et al., 2021). The network has two convolutional
layers (with 3× 3 kernels), max pooling, and dropout, followed by a 128 unit dense layer.

L.1.3. FEMNIST

FEMNIST (Federated Extended MNIST) is A 62-class image classification dataset built by partitioning the data of Extended
MNIST based on the writer of the digits/characters. In our experiments, we used a subset with 15% of the total number of
writers in FEMNIST. For each one of them we kept 80% of the data for training and we kept 20% for test. We train the
same convolutional network as in (Reddi et al., 2021). The network has two convolutional layers (with 3× 3 kernels), max
pooling, and dropout, followed by a 128 unit dense layer.

L.1.4. SHAKESPEARE

This dataset is built from The Complete Works of William Shakespeare and is partitioned by the speaking roles (McMahan
et al., 2017). In our experiments, we discarded roles with less then two sentences. We consider character-level based
language modeling on this dataset. The model takes as input a sequence of 200 English characters and predicts the next
character. The model embeds the 80 characters into a learnable 8 dimensional embedding space, and uses two stacked-LSTM
layers with 256 hidden units, followed by a densely-connected layer. We also normalized each character by its frequency of
appearance.
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Table 4. Average computation time and used GPU for each dataset.

DATASET GPU SIMULATION TIME

SHAKESPEARE QUADRO RTX 8000 4H42MIN
FEMNIST QUADRO RTX 8000 1H14MIN
EMNIST GEFORCE GTX 1080 TI 46MIN
CIFAR10 GEFORCE GTX 1080 TI 2H37MIN
CIFAR100 GEFORCE GTX 1080 TI 3H9MIN
SYNTHETIC GEFORCE GTX 1080 TI 20MIN

L.2. Implementation Details

L.2.1. MACHINES

We ran the experiments on a CPU/GPU cluster, with different GPUs available (e.g., Nvidia Tesla V100, GeForce GTX 1080
Ti, Titan X, Quadro RTX 6000, and Quadro RTX 8000). Most experiments with CIFAR10/CIFAR-100 and EMNIST were
run on GeForce GTX 1080 Ti cards, while most experiments with Shakespeare and FEMNIST were run on the Quadro RTX
8000 cards. For each dataset, we ran around 30 experiments (not counting the development/debugging time), Table 4 gives
the average amount of time needed to run one simulation for each dataset. The time needed per simulation was extremely
long for Shakespeare dataset, because we used a batch size of 128. We remarked that increasing the batch size beyond 128
caused the model to converge to poor local minima, where the model keeps predicting a white space as next character.

L.2.2. LIBRARIES

We used PyTorch (Paszke et al., 2019) to build and train our models. We also used Torchvision (Marcel & Rodriguez, 2010)
implementation of MobileNet-v2 (Sandler et al., 2018), and for image datasets preprossessing. We used LEAF (Caldas
et al., 2018) to build FEMNIST dataset and the federated version of Shakespeare dataset.

L.2.3. HYPERPARAMETERS

For each method and each task, the learning rate was set via grid search on the set{
10−0.5, 10−1, 10−1.5, 10−2, 10−2.5, 10−3

}
. FedProx and pFedMe’s penalization parameter µ was tuned via

grid search on
{

101, 100, 10−1, 10−2, 10−3
}

. For clustered FL, we used the same values of tolerance as the ones used in
its official implementation (Sattler et al., 2020). We found tuning tol1 and tol2 particularly hard: no empirical rule is
provided in (Sattler et al., 2020), and the few random setting we tried did not show any improvement in comparison to the
default ones.
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Table 5. Test accuracy: average across clients.

DATASET LOCAL FEDAVG FEDAVG+ CLUSTERED
PFEDME

FEDEM D-FEDEM
FL (OURS) (OURS)

FEMNIST 71.0 78.6 75.3 73.5 74.9 79.9 77.2
EMNIST 71.9 82.6 83.1 82.7 83.3 83.5 83.5
CIFAR10 70.2 78.2 82.3 78.6 81.7 84.3 77.0
CIFAR100 31.5 40.9 39.0 41.5 41.8 44.1 43.9
SHAKESPEARE 32.0 46.7 40.0 46.6 41.2 46.7 45.4
SYNTHETIC 65.7 68.2 68.9 69.1 69.2 74.7 73.8

Figure 1. Effect of client sampling rate (left) and FedEM number of mixture components M (right) on the test accuracy for CI-
FAR10 (Krizhevsky, 2009).

M. Additional Experimental Results
M.1. Fully Decentralized Federated Expectation-Maximization

D-FedEM considers the scenario where clients communicate directly in a peer-to-peer fashion instead of relying on the
central server mediation. In order to simulate D-FedEM, we consider a binomial Erdős-Rényi graph (Erdös & Rényi, 1959)
with parameter p = 0.5, and we set the mixing weight using Fast Mixing Markov Chain (Boyd et al., 2003) rule. We report
the result of this experiment in Table 5, showing the average weighted accuracy with weight proportional to local dataset
sizes. We observe that D-FedEM often performs better than other FL approaches and slightly worst than FedEM, except on
CIFAR-10 where it has low performances.

M.2. Generalization to Unseen Clients

Table 4 shows that FedEM allows new clients to learn a personalized model at least as good as FedAvg’s global one and
always better than FedAvg+’s one. Unexpectedly, new clients achieve sometimes a significantly higher test accuracy than
old clients (e.g., 47.5% against 44.1% on CIFAR100).

In order to better understand this difference, we looked at the distribution of FedEM personalized weights for the old clients
and new ones. The average distribution entropy equals 0.27 and 0.92 for old and new clients, respectively. This difference
shows that old clients tend to have more skewed distribution, suggesting that some components may be overfitting the local
training dataset leading the old clients to give them a high weight.

M.3. Effect of M

A limitation of FedEM is that each client needs to update and transmit M components at each round, requiring roughly M
times more computation and M times larger messages. Nevertheless, the number of components to consider in practice is
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Table 6. Test and train accuracy comparison across different tasks. For each method, the best test accuracy is reported. For FedEM we
run only K

M
rounds, where K is the total number of rounds for other methods–K = 80 for Shakespeare and K = 200 for all other

datasets–and M = 3 is the number of components used in FedEM.

DATASET LOCAL FEDAVG FEDPROX FEDAVG+ CLUSTERED
PFEDME

FEDEM
FL (OURS)

FEMNIST 71.0 (99.2) 78.6 (79.5) 78.6 (79.6) 75.3 (86.0) 73.5 (74.3) 74.9 (91.9) 74.0 (80.9)
EMNIST 71.9 (99.9) 82.6 (86.5) 82.7 (86.6) 83.1 (93.5) 82.7 (86.6) 83.3 (91.1) 82.7 (89.4)
CIFAR10 70.2 (99.9) 78.2 (96.8) 78.0 (96.7) 82.3 (98.9) 78.6 (96.8) 81.7 (99.8) 82.5 (92.2)
CIFAR100 31.5 (99.9) 41.0 (78.5) 40.9 (78.6) 39.0 (76.7) 41.5 (78.9) 41.8 (99.6) 42.0 (72.9)
SHAKESPEARE 32.0 (95.3) 46.7 (48.7) 45.7 (47.3) 40.0 (93.1) 46.6 (48.7) 41.2 (42.1) 43.8 (44.6)
SYNTHETIC 65.7 (91.0) 68.2 (68.7) 68.2 (68.7) 68.9 (71.0) 69.1 (85.1) 69.2 (72.8) 73.2 (74.7)

quite limited. We used M = 3 in our previous experiments, and Fig. 1 (right) shows that larger values do not yield much
improvement and M = 2 already provides a significant level of personalization. In all experiments above, the number of
communication rounds allowed all approaches to converge. As a consequence, even if other methods trained over M = 3
times more rounds—in order to have as much computation and communication as FedEM—the conclusions would not
change. As a final experiment, we considered a time-constrained setting, where FedEM is limited to run one third (= 1/M )
of the rounds (Table 6 in App. M.4). Even if FedEM does not reach its maximum accuracy, it still outperforms the other
methods on 3 datasets.

M.4. Effect of M in Time-Constrained Setting

Recall that in FedEM, each client needs to update and transmit M components at each round, requiring roughly M times
more computation and M times larger messages than the competitors in our study. In this experiment, we considered a
challenging time-constrained setting, where FedEM is limited to run one third (= 1/M ) of the rounds of the other methods.
The results in Table 6 show that even if FedEM does not reach its maximum accuracy, it still outperforms the other methods
on 3 datasets.

M.5. Full Results

Figures 2 to 7 show the evolution of average train loss, train accuracy, test loss, and test accuracy over time for each
experiment.
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Figure 2. Train loss, train accuracy, test loss, and test accuracy for CIFAR10 (Krizhevsky, 2009). .
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Figure 3. Train loss, train accuracy, test loss, and test accuracy for CIFAR100 (Krizhevsky, 2009).
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Figure 4. Train loss, train accuracy, test loss, and test accuracy for EMNIST (Cohen et al., 2017).
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Figure 5. Train loss, train accuracy, test loss, and test accuracy for FEMNIST (Caldas et al., 2018; McMahan et al., 2017).



Federated Multi-Task Learning under a Mixture of Distributions

Figure 6. Train loss, train accuracy, test loss, and test accuracy for Shakespeare (Caldas et al., 2018; McMahan et al., 2017).
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Figure 7. Train loss, train accuracy, test loss, and test accuracy for synthetic dataset.


