
Multistage stepsize schedule in Federated Learning:
Bridging Theory and Practice

Charlie Hou 1 Kiran K. Thekumparampil 2 Giulia Fanti 1 Sewoong Oh 3

Abstract

Stepsize scheduling schemes can improve the con-
vergence speed of Federated Learning (FL) al-
gorithms in practice (Reddi et al., 2020). Sim-
ilar schemes have also been used in traditional
non-federated optimization to obtain algorithms
which are oblivious to problem parameters and to
improve their convergence speeds (Aybat et al.,
2019). However their benefits in the federated
setting are not fully characterized. To resolve this,
we study a common but general multistage step-
size scheduling scheme which can augment any
FL algorithm. We show that for convex problems,
this scheme allows us to achieve, for the first-
time, a nearly-optimal communication complex-
ity when clients have moderately heterogeneous
data, as is observed often in practice. Our re-
sults match algorithm-independent lower bounds
(Woodworth et al., 2020a), and thus we resolve a
recently posed open question (Woodworth et al.,
2020a). Additionally, we show that scheduling al-
lows these algorithms to be oblivious to problem
parameters. This allows easier tuning of standard
FL algorithms, which are often challenging to
tune. Finally, we verify our results empirically.

1Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign, Urbana-Champaign, Illi-
nois, USA 3Allen School of Computer Science and Engineer-
ing, University of Washington, Seattle, Washington, USA. Cor-
respondence to: Charlie Hou <charlieh@andrew.cmu.edu>,
Kiran K. Thekumparampil <thekump2@illinois.edu>, Giu-
lia Fanti <gfanti@andrew.cmu.edu>, Sewoong Oh <se-
woong@cs.washington.edu>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

1. Introduction
In federated learning (FL) (McMahan et al., 2017; Kairouz
et al., 2019; Li et al., 2020), distributed clients interact with
a central server to learn a model without directly sharing
their data with the server. In federated minimization, clients
are trying to solve the following optimization:

F (x) = min
x

1

N

N∑
i=1

Fi(x) (1)

where i indexes the devices, N is the number of devices (or
clients), and Fi(x) is a (strongly convex) objective. Typical
FL deployments have two properties that make optimizing
Eq. (1) challenging: (i) Data heterogeneity. Different clients
may have different data distributions, so the Fi’s are of the
form Fi(x) = Ezi [f(x; zi)] for some function f , where zi
is the random variable representing client i’s data. More
formally, we define client heterogeneity ζ as

ζ2 := sup
x

1

N

N∑
i=1

‖∇F (x)−∇Fi(x)‖2, (2)

which captures how different the local client gradients are
from the overall global gradient (in the worst-case) (Wood-
worth et al., 2020a). As in (Koloskova et al., 2020; Karim-
ireddy et al., 2020b; Woodworth et al., 2020a), we define
ζ2
∗ := 1

N

∑N
i=1 ‖∇Fi(x∗)‖2 as the heterogeneity at the op-

timum x∗. (ii) Communication cost. In many deployments
of FL, clients may have limited bandwidth (e.g., mobile
devices). Due to these two challenges, most federated opti-
mization algorithms alternate between local rounds of com-
putation, where clients process only their own data to save
communication, and global rounds, where clients synchro-
nize with the central server to resolve heterogeneity.

Many federated optimization algorithms navigate this trade-
off. A simple baseline is called Minibatch SGD (Woodworth
et al., 2020a). In each global round, the central server sends
each device the current model, on which each device cal-
culates K stochastic gradients and sends their average to
the server. The server averages these to make a minibatch
gradient of size NK, and performs a model update. Fur-
ther, this approach can be accelerated in the Nesterov sense
(Ghadimi & Lan, 2012). Woodworth et al. (2020a) recently

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

showed that Accelerated Minibatch SGD is optimal in the
highly-heterogeneous setting where ζ∗ > βD, where D
is the initial distance to the optimum, and the objective
functions Fi are β-smooth.

A popular approach to this problem is called Federated Aver-
aging (FedAvg) (McMahan et al., 2017)1. Here each client
i independently runs SGD on its own objective Fi for K it-
erations (local updates), and periodically communicates the
most recent iterate to the server, which averages the updates.
Compared to Accelerated Minibatch SGD, this approach al-
lows clients to learn from local data in between communica-
tion rounds. Several algorithms have built on the intuition of
FedAvg, including SCAFFOLD (Karimireddy et al., 2020b),
MIME (Karimireddy et al., 2020a), FedAdam (Reddi et al.,
2020), FedAdagrad (Reddi et al., 2020), FedYogi (Reddi
et al., 2020), and S-Local-SGD (Gorbunov et al., 2020). Em-
pirically, these local update algorithms outperform baselines
like (Accelerated) Minibatch SGD.

However, there is a gap between these algorithms’ empir-
ical gains and their theoretical worst-case guarantees. In
theory, none of these methods are known to outperform
Minibatch SGD in communication cost in any regime, and
it was proven that FedAvg can possibly outperform accel-
erated Minibatch SGD on convex objectives only in the
low-heterogeneity setting: ζ2

∗ <
β2D2

R , where R is the num-
ber of communication rounds (Woodworth et al., 2020a).
Additionally, in all but the highly-heterogeneous setting,
there is a gap between known convergence rates (includ-
ing Accelerated Minibatch SGD) and the lower bound of
(Woodworth et al., 2020a) for first-order methods (Tab. 1).

We hypothesize that the main reason for this discrepancy
is that, in practice (but not in theory) multistage hyper-
parameter schedules are used with federated optimization
algorithms. That is, learning rates decay during train-
ing, whereas theoretical analysis does not account for this
multistage optimization. For instance, the experiments of
FedAdam, FedAdagrad, and FedYogi use an exponential
learning rate decay schedule (Reddi et al., 2020) to achieve
their best performance, which is reminiscent of multistage
algorithms of (Aybat et al., 2019; Fallah et al., 2020). Later
work of (Charles & Konečnỳ, 2020) in FL also relies on
adaptive learning rate decay schedules to outperform previ-
ous work on a variety of FL tasks. Unfortunately, analysis
of multistaged federated algorithms is still immature.

Today, most analysis of federated optimization algorithms
considers constant stepsizes and only in limited stepsize
regimes (details in § 2). To date, these analyses have not

1This approach and its variants has also been referred to as Lo-
cal Stochastic Gradient Descent (Stich, 2018; Khaled et al., 2020;
Woodworth et al., 2020b) and LocalUpdate (Charles & Konečnỳ,
2020) in literature, and it has its origin in Parallelized Stochastic
Gradient Descent (Zinkevich et al., 2010).

yielded theoretical communication gains over the simple
baselines of both (Accelerated) Minibatch SGD and FedAvg
in any regime. Put another way, local update algorithms
have not yet been theoretically shown to perform better than
minibatch algorithms unless heterogeneity is very low.

Contributions. In this paper, we first show that multistage
optimization, when applied to baseline federated minimiza-
tion algorithms, achieves comparable or better worst-case
convergence rates than known baselines (including mini-
batch SGD and FedAvg) in all heterogeneity regimes. In
doing so, multistage algorithms resolve an open problem
from (Woodworth et al., 2020a), which asked if one can
design an optimal algorithm that combines the advantages
of both local SGD and minibatch SGD and enjoys guaran-
tees that dominate both. We propose multistage algorithms
that match the lower bound of (Woodworth et al., 2020a) on
convergence rates for first-order federated algorithms up to
logarithmic or condition numbers factors, explaining why
multistaging has been so successful in practice.

We show these theoretical gains by first analyzing an al-
gorithm that (nearly) achieves the lower bound: a simple
two-stage combination of Accelerated Minibatch SGD and
FedAvg. Loosely, we first run FedAvg up to an error floor
that depends on client heterogeneity; then, we use Acceler-
ated Minibatch SGD to complete the optimization. Further,
we show that similar gains can be obtained by a more general
multistage algorithm which gradually moves from the Fe-
dAvg update to Minibatch SGD udpate. This multistage has
the added benefit of not requiring the knowledge of the noise
bound σ2, ζ2, D, or initial suboptimality ∆. This intuition
is not specific to the combination of Accelerated Minibatch
SGD and FedAvg. We demonstrate the generality of mul-
tistaging by applying it to other pairs of FL optimization
algorithms to obtain the same nearly-optimal worst-case
convergence rate (but possibly much better average-case
convergence rate as shown in § 4).

Finally, we demonstrate the practical value of these theoreti-
cal insights through experiments involving logistic regres-
sion on the MNIST dataset (LeCun et al., 2010).

2. Model and Related Work
As stated in § 1, N is the number of clients, heterogeneity
ζ (resp. heterogeneity at optimum ζ∗) is defined in (resp.
below) Eq. (2). We assume that each Fi is β-smooth and
µ-strongly convex; we let κ = β/µ denote the condition
number. We assume bounded variance of stochastic gradi-
ents on each machine:

Ezi‖∇f(x; zi)−∇Fi(x)‖2 ≤ σ2. (3)

We bound the initial suboptimality gap as ∆ ≥ EF (x0)−
F (x∗), where x0 is the initial point, and x∗ is the optimal

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

point. Optimization proceeds in rounds; K is the number of
client iterations per round, and R is the number of rounds.
In some theorems, clients take minibatches of sizeB in their
local steps; unless specified otherwise, B is 1. Our goal is
to minimize the optimization error after R rounds (or round
complexity, the number of rounds R to a given error ε). We
use the notation Õ to hide polylogarithmic factors.

2.1. Related Work

To date, the best worst-case convergence rates are achieved
(in different heterogeneity regimes) by FedAvg (McMahan
et al., 2017) and Minibatch SGD.

FedAvg. Convergence properties of Federated Averag-
ing for convex minimization was first studied in the homo-
geneous client setting (Stich, 2018; Wang & Joshi, 2018;
Woodworth et al., 2020b). These rates were later extended to
the heterogeneous client setting (Khaled et al., 2020; Karim-
ireddy et al., 2020b; Woodworth et al., 2020a), including an
accompanying lower bound (Woodworth et al., 2020a).

The fastest known rate for the worst-case optimization error
of Local SGD is due to (Gorbunov et al., 2020) (Table 1):

Õ(κ∆ exp(−KR
κ

) +
σ2

µNKR
+

κσ2

µKR2
+
κζ2

µR2
). (4)

If we take enough local steps K, this error is dominated by
the last term, βζ2

µ2R2 . If heterogeneity is low (e.g., ζ2 = 0),
then for K large enough, only one round of communication
is needed. This suggests why FedAvg outperforms Acceler-
ated Minibatch SGD in the low-heterogeneity regime.

Accelerated Minibatch SGD. In the other extreme of
highly heterogeneous clients Accelerated Minibatch SGD is
optimal. It has a convergence rate (Ghadimi & Lan, 2012;
Woodworth et al., 2020a) of

O(∆ exp(− R√
κ

) +
σ2

µNKR
) (5)

Therefore, FedAvg’s communication R complexity cannot
be less than that of the basic minibatch algorithms unless
ζ2
∗ ≤ µε, i.e., heterogeneity must scale with ε.

Lower Bound. The lower bound for first-order distributed
algorithms in the heterogeneous setting, from (Woodworth
et al., 2020a), is (also shown in Table 1):

Ω(min{ ∆√
κ
,
µζ2
∗

β2
} exp(− R√

κ
) +

σ2

µNKR
) (6)

Note the exponential difference between the lower bound
in Eq. (6) and the tightest-known ζ-dependent upper bound
(i.e., LSGD, Eq. (4)) with respect to their dependency on
heterogeneity and rounds R. In the upper bound for LSGD
(Eq. (4)), ζ2 is scaled by 1/R2, whereas in the lower bound

(Eq. (6)), it is scaled by a term decaying exponentially fast
in R. A natural question is whether this gap can be closed.

Closing the gap. Today, no algorithm is known to close
this gap, or even achieve comparable or faster rates than
both Accelerated Minibatch SGD and Local SGD across
all heterogeneity regimes. This may be partially because
prior theoretical analysis for FL algorithms focused mainly
on three hyperparameter regimes: (i) local update stepsizes
scale as 1/K (e.g., S-Local-SVRG or FedAdam) (ii) lo-
cal update stepsizes are small or zero (e.g., SCAFFOLD)
(iii) local update stepsizes do not depend on K (e.g., Local
SGD). Intuitively, regimes (i) and (ii) do not take sufficient
advantage of local steps to excel in the moderate- to low-
heterogeneity regime, whereas regime (iii) may converge
too quickly to local optima, leading to a severe dependency
on heterogeneity. The only work outside these regimes
(to our knowledge) applies only to quadratics (Charles &
Konečnỳ, 2020) and does not achieve the FedAvg rate, pos-
sibly due to insufficiently aggressive stepsize decay.

In this paper, we show that this theoretical gap can be
closed by carefully combining existing methods (in stepsize
regimes where analysis is known) in stages. In the next
section, we explain how to achieve these gains through a
simple multistage federated minimization framework.

Multistage Algorithms. Multistage algorithms have been
employed in the classical convex optimization setting to
obtain optimal rates (Aybat et al., 2019; Fallah et al., 2020;
Ghadimi & Lan, 2012; Woodworth et al., 2020a). The gen-
eral idea is to exponentially decrease the learning rate of
some algorithm (for example, Accelerated SGD) in stages
to optimally balance the optimizer’s error due to bias and
variance. Our federated setting differs from the prior multi-
stage optimization in the following ways: (1) There is the
optimization error due to client drift (Reddi et al., 2020;
Karimireddy et al., 2020b)in addition to the error due to
bias and variance; this additional type of error cannot be
accounted for by existing multistage algorithms (2) Our ob-
jective is to minimize communication rounds rather than
iteration complexity (3) We ”multistage” or schedule more
hyperparameters than just a learning rate.

3. Multistage Federated Minimization
In this section, we introduce a framework for multistage
federated minimization algorithms in the strongly convex
setting. The framework (specified in Algorithm 1) proceeds
over S stages; between stages, we can change both the
optimization algorithm and the associated hyperparameters
(e.g., stepsizes). Each stage s ≤ S requires us to choose
a local (client) optimization algorithm (e.g., FedAvg), a
set of inner (client) and outer (server) stepsizes, a duration
in number of rounds R, a number of local client steps K,

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Table 1. Rates under the strongly convex conditions. Here we hide constants and log terms. ASG denotes the constant stepsize variant of
Accelerated Minibatch SGD that we specify in Theorem 4. M-LSGD is the multistage variant of Local SGD we introduce in Theorem 5.
M-ASG is a previously known multistage accelerated stochastic gradient method (Aybat et al., 2019). When applicable, K and B are
taken large enough to match the dominating terms in R, and B is folded into σ2 everywhere to simplify notation. “X → Y” denotes first
running “X” and using the output as input to “Y”. All upper bounds require knowledge of at least two of σ2,∆, ζ2, except for Minibatch
SGD and the LSGD → M-ASG rate. All rates achieved by LSGD→X for some algorithm X are also achived by SCAFFOLD→X. The
two SCAFFOLD rates are achieved by different stepsize choices. min in the LSGD→SGD and LSGD→ASG rates comes from using a
meta-algorithm that runs SGD and ASG repsectively if the first part of the min is smaller. min in the M-LSGD→M-ASG rate comes
from running M-ASG and M-LSGD→M-ASG in parallel and then evaluating objective values of both solutions and choosing the best one
(requires one extra round of communication). M-LSGD→M-ASG is also R > Ω(

√
κ).

Method/Analysis EF (x̂)− F (z∗) ≤ Õ(·)

Minibatch Methods

Minibatch SGD (SGD) (Woodworth et al., 2020a)

Minibatch AC-SA (AC-SA) (Woodworth et al., 2020a)

β∆
µ exp(−Rκ) + σ2

µNKR

∆ exp(− R√
κ

) + σ2

µNKR [R ≥ Ω(
√
κ)]

Federated Algorithms

SCAFFOLD (Karimireddy et al., 2020b)

Local SGD (LSGD) (Gorbunov et al., 2020)

SCAFFOLD (Theorem 7)

LSGD→ SGD (Theorem 1)

LSGD→ ASG (Theorem 2)

M-LSGD→M-ASG (Theorem 3)

Lower bound (Woodworth et al., 2020a)

(β∆ +
µζ2

∗
β2) exp(−Rκ) + σ2

µNKR

κ∆ exp(−KRκ) + σ2

µNKR + βσ2

µ2KR2 + βζ2

µ2R2

κ∆ exp(−KRκ) + σ2

µNKR + βσ2

µ2KR2 + βζ2

µ2R2

min{κ∆, β
2ζ2

µ3R2 } exp(−Rκ) + σ2

µNKR

min{∆, βζ2

µ2R2 } exp(− R√
κ

) + σ2

µNKR + βσ2

µ2NKR3

min{∆, β
2ζ2

µ3R2 + κ∆ exp(−R)} exp(− R√
κ

) + σ2

µNKR

min{ ∆√
κ
,
µζ2

∗
β2 } exp(− R√

κ
) + σ2

µNKR

and other hyperparameters (e.g., momentum, weights for
averaging client updates).

Step 1: Local updates: For a given stage s ≤ S, we iterate
over rounds r ∈ {1, . . . , R}. In a round r, each client first
runs K local steps of its local optimizer (e.g., FedAvg):

xr,si,k ← xr,si,k−1 − η
(s)
l ∇̃Fi(x

r,s
i,k−1)

where η(s)
l denotes the local stepsize and ∇̃Fi(xr,si,k−1) is

the possibly random (pseudo-)gradient evaluated on the
previous local iterate. The nature of this pseudo-gradient
depends on the local optimizer.

Step 2: Global round update: Clients then perform a
server update, through which the server averages the out-
put of the N clients’ local optimizations through a function
ClientOPT(η

(r,s)
l , xr,s), which is stored in a variable Gr,s.

Again, the nature of ClientOPT depends on the local opti-
mizer being used. For example, for FedAvg, we have

ClientOPT(η
(r,s)
l , xr,s) =

1

N

N∑
i=1

K∑
k=1

∇̃Fi(xr,si,k−1).

Other ways to instantiate ClientOPT include collect-
ing the gradients from client variance-reduced methods

like SS-Local-SGD (Gorbunov et al., 2020) (which is
a stateless variant of SCAFFOLD), or a simple mini-
batch update of size NK where ClientOPT(η

(r,s)
l , xr,s) =

1
N

∑N
i=1

∑K
k=1 ∇̃Fi(xr,s) from the clients, which is a sim-

ple minibatch gradient taken at xr,s of size NK, scaled up
by K.

Finally, the server takes a step of (accelerated) stochastic
gradient descent based on its global iterate history, and the
computed Gr,s with global stepsize η(r,s)

g .

Step 3: Stage update: Once R rounds are complete, the
server completes the stage by taking a weighted average of
its global iterates with weights {{{wr,si,k}i≤N}k≤K}r≤R:

StageWgtAverage({{wr,sk }k≤K}r≤R) =

1

W (s)

R∑
r=1

K∑
k=1

wr,sk (
1

N

N∑
i=1

xr,si,k),

where W (s) =
∑R
r=1

∑K
k=1 w

r,s
k . This is commonly done

to facilitate theoretical analysis (Karimireddy et al., 2020b),
(Gorbunov et al., 2020), though it is often unnecessary in
practice (i.e., we can just use the last iterate). The weights
are determined by strong convexity µ and stepsizes, and do
not require further tuning.

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Algorithm 1 Multistage federated minimization framework

Input: inner stepsizes {{η(r,s)
l }r≤R}s≤S , outer stepsizes

{{η(r,s)
g }r≤R}s≤S

momentums {γ(s)}s≤S , round lengths {R(s)}s≤S , initial
point x̂0

weights for calculating weighted average solution from
iterates {{{wr,sk }k≤K}}r≤R}s≤S
for s = 1, . . . , S do
x0,s, x1,s ← x̂s−1

for r = 1, . . . , R(s) do
. Obtain pseudo-gradient from clients
Gr,s ← ClientOPT(η

(r,s)
l , xr,s)

. Perform server update
xr+1/2,s ← (1 + γ(s))xr,s − γ(s)xr−1,s

xr+1,s ← xr+1/2,s − η(r,s)
g Gr,s

end for
x̂s ← StageWgtAverage({{wr,sk }k≤K}r≤R)

end for
return x̂RS ,S

3.1. Two stage algorithms

We begin with a two-stage instantiation of Algorithm 1.
The main idea is to first run Local SGD for a constant
fraction of the round budget R, which reduces error to the
“heterogeneity floor”. Then we use a minibatch algorithm to
complete convergence. This technique parallels multistage
algorithms for obtaining optimal dependence on noise in
convex optimization (Aybat et al., 2019). There, the idea is
to start with a large stepsize to reduce the bias term (i.e. the
exponential decay term) in the convergence rate, then decay
the stepsize to reduce the noise term until convergence.

In this subsection, we find that two stages suffice to achieve
low round complexities if ∆, ζ2, σ2 are known. In the next
subsection, we show how to achieve low round complexities
when ∆, ζ2, σ2 are unknown, by using more than two stages.
We first show how to combine FedAvg with Minibatch SGD
to obtain exponential gains in round complexity (as a func-
tion of heterogeneity ζ) compared to either baseline.
Theorem 1. Run Algorithm 1 over S = 2 stages. In
the first stage, use Local SGD as for R/2 rounds under
the following parameter settings: η = η

(r,1)
g = η

(r,1)
l =

O(min{ 1
β ,

1
µKR}), S = 1, γ(1) = 0, and wr,1k = (1 −

µη)rK+k+1. In the second stage, run Minibatch SGD (so
γ(2) = 0) for R/2 rounds under the following settings:

1. If R > 4β
µ and r < dR2 e:

η
(r,2)
l = 0, η(r,2)

g = ηg = 1
4β , wr,2k = 0

2. If R > 4β
µ and r ≥ dR/2e:

η
(r,2)
g = ηg = 2

µ(κ−R−dR2 e)
,

wr,2k = (1− µηg)−(rK+k+1) = (κ+ r − dR2 e)
2

3. If R ≤ 4β
µ :

η
(r,2)
g = 1

4β , wr,2k = (1− µηg)−(rK+k+1).

Denote the output of this second stage by x̂. For large
enough number of local rounds K, the convergence rate of
this two-stage algorithm is

EF (x̂)− F (x∗) ≤ Õ((
β2ζ2

µ3R2
) exp(−R

κ
) +

σ2

µNKR
)

(7)

Proof: See Section A

This algorithm already exponentially improves the depen-
dence of the round complexity on heterogeneity from the
previous state of the art of βζ2

µ2R2 to (β
2ζ2

µ3R2) exp(−Rκ).

Next, we obtain our main result, which tightens the de-
pendency on κ to match the lower bound in Eq. (6) up
to logarithmic factors by replacing Minibatch SGD with
Accelerated Minibatch SGD.
Theorem 2. Run Algorithm 1 over S = 2 stages. In the
first stage, use Local SGD for for R/2 rounds under the
parameter settings of Stage 1 from Theorem 1.

In the second stage, run Accelerated Minibatch SGD for
R/2 rounds with the following parameter settings:
η

(r,2)
l = 0, η

(r,2)
g = ηg = O(min{ 1

Kβ ,
1

µKR2 })

γ(2) =
1−
√
µηgK

1+
√
µηgK

wr,2k = 0 for all k, r except for wR/2,21 = 1 (i.e. return the
last iterate).

Denote the output of this second stage by x̂. For large
enough number of local roundsK, the expected convergence
rate of this two-stage algorithm is

Õ(
βζ2

µ2R2
exp(− R√

κ
) +

σ2

µNKR
+

βσ2

µ2NKR3
) (8)

Proof: See Section B

Observe that this rate is strictly better than the Local SGD
rate (4) and is also strictly better than the Minibatch Accel-
erated SGD rate (5) when βζ2

µ2R2 ≤ ∆ (since the Minibatch
Accelerated SGD rate requires that R ≥

√
κ). In practice,

the initialization can be far from the optimum, leading to
large ∆. The same rates can be achieved when using one
round of SS-Local-SGD as the local optimization algorithm
for both of the above two-stage algorithms.

3.2. Multistage algorithms

The previous algorithms require knowledge of several data-
and problem-dependent parameters, such as β, µ, σ2, ζ2,

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

and ∆. Although the FL literature commonly assumes
knowledge of such parameters (Woodworth et al., 2020a;
Karimireddy et al., 2020b; Gorbunov et al., 2020), this may
be unrealistic in practice. In this section, we explore how
to use multistage algorithms to remove dependencies on all
such parameters except β, which can be estimated from line
search techniques (Beck & Teboulle, 2009; Schmidt et al.,
2015), and µ, which can be estimated from regularization
(which is often used in machine learning problems). The
key idea is to divide our total stages S into two superstages:
the first superstage uses one optimization algorithm (e.g.,
FedAvg) with one hyperparameter schedule, and the second
super-stage uses another (e.g., Minibatch SGD).

Theorem 3. Run Algorithm 1 over two superstages for a
total of R rounds, with R ≥ 4

√
κ. In the first superstage,

run FedAvg in the setting of Theorem 5 for R/2 rounds.

In the second superstage, run Multistage Accelerated
Stochastic Gradient (M-ASG) (Aybat et al., 2019) with a
minibatch of size BNK for some constant B > 0, using
the following parameters (for legibility, we reset s = 1 for
the second superstage):
η

(r,s)
l = 0, η

(r,1)
g = 1

Kβ with R(1) ≥ 1

η
(r,s)
g = 1

K22kβ
with R(s) = 2sd

√
κ log(2p+2)e for any

p ≥ 1 and s ≥ 2

γ(s) =
1−

√
µη

(r,s)
g K

1+

√
µη

(r,s)
g K

K = dκe R(1) = d(p+ 1)
√
κ log(12(p+ 1)κ)e

For B large enough, this achieves expected convergence
rate

O((κ∆ exp(−R) +
β2ζ2

µ3R2
) exp(− R√

κ
) +

σ2

µBNKR
).

Proof: See Section D

When ∆ ≥ βζ2

µ2 this multistage algorithm has a faster rate
than Accelerated Minibatch SGD (note that now the vari-
ance is σ2

B). This is done without knowledge of ζ2, σ2,
or ∆. This algorithm also has better round complexity
than both Minibatch Accelerated Stochastic Approximation
(AC-SA) (Woodworth et al., 2020a) and Local SGD when
µε < ζ2 < µ2∆

β , thus resolving the open question from
(Woodworth et al., 2020a).

4. Experiments
We empirically evaluate multistaging on federated regular-
ized logistic regression. Let (xi,j , yi,j) be the jth datapoint

of the ith client. We minimize Eq. (1) where

Fi(w) =
1

ni
(

ni∑
j=1

−yi,j log(w>xi,j)

− (1− yi,j) log(1− w>xi,j))) +
µ

2
‖w‖2.

Baselines. We compare the communication round complex-
ities of four single-stage baselines: FedAvg, Minibatch SGD
(SGD), Accelerated Minibatch SGD (ASG), and SCAF-
FOLD (precisely, SS-Local-SGD, which is a stateless vari-
ant of SCAFFOLD). We compare these baselines to our
multistage combinations.

Dataset. We use the MNIST dataset of handwritten digits
from 0-9 (LeCun et al., 2010). We model a federated setting
with five clients by partitioning the data into groups. First,
we take 500 images from each class (digit) for all experi-
ments, totaling 5,000 images. Each client’s local data is a
mixture of data drawn exclusively from two digit classes
(leading to heterogeneity), and data sampled uniformly from
all classes. We call a federated dataset X% homogeneous if
first X% of each class’s 500 images is shuffled and evenly
partitioned to each client. The remaining (100 −X)% of
the dataset is partitioned as follows: client i ∈ {1, . . . , 5}
receives the remaining non-shuffled data from classes 2i−2
and 2i − 1. For example, in a 50% homogeneous setup,
client 3 has 250 samples from digit 4, 250 samples from
digit 5, and 500 samples drawn uniformly from all classes.
Note that 100% homogeneity is not the same thing as set-
ting heterogeneity ζ = 0 due to sampling randomness; we
use this technique for lack of a better control over ζ. In
all experiments we are concerned with variants of binary
classification, so we let all the even classes represent 0’s and
the odd classes represent 1’s. We set K = 20.

Hyperparameters. All experiments are initialized at 0 with
regularization µ = 0.1. We fix the total number of rounds R
(differs across experiments). For algorithms using Nesterov
momentum, we calculate the momentum parameter from
strong convexity µ and the chosen stepsizes. For the two-
stage methods, we tune the stage 1 stepsize η = η

(r,1)
l =

η
(r,1)
g in the range below:

{10−3, 10−2.5, 10−2, 10−1.5, 10−1} (9)

For the second stage we let the stepsizes be η(r,2)
l = 0,

η
(r,2)
g = η/K. We also tune the percentage of rounds before

switching to the second stage in the range as

{10−2, 10−1.625, 10−1.25, 10−0.875, 10−0.5} (10)

For multi-stage methods (S > 2), the number of total stages
is problem-dependent. In superstage 1, we first tune the

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Figure 1. Stochastic gradients are computed with 1% of the data. Each datapoint is the average of 1000 runs. Plot titles denote data
homogeneity (§ 4). “X→Y” denotes a multistage algorithm with X as the first superstage and Y as the second superstage. Across all
heterogeneity levels, the multistage algorithms perform the best. Markers denote when a stage transition occurs.

Stage 1 stepsize η (as well as the fraction of total rounds
allocated to Stage 1) in the range (9). LetR(1) be the number
of rounds in the first stage. For subsequent stages s ≥ 2, we
use step sizes η(r,s)

l = η
(r,s)
g = η

2s−1 and R(s) = 2sR(1).
Once the stepsize decreases to η/K, we enter the second
superstage. Since we evaluate only minibatch algorithms in
superstage 2, we use the same parameters as superstage 1,
except the starting stepsize is η(r,1)

g = η
K while η(r,s)

l = 0.

Results. Figure 1 compares the convergence of multi-
stage algorithms to their single-stage counterparts in the
stochastic gradient setting (minibatches are 1% of a client’s
data), over R = 100 rounds. The curves marked “X→ Y”
indicate a multi-stage algorithm that starts with Algorithm
X in (Super-)Stage 1 and transitions to Algorithm Y in
(Super-)Stage 2. Diamonds indicate stage transitions. Each
such curve represents the better curve between the two-
stage and the multi-stage (S > 2) version. We vary the
homogeneity of the dataset from 0% (left) to 100% (right).
We observe that in all homogeneity settings, the multi-stage
algorithm demonstrates (constant) improvements over either
baseline alone. These improvements grow more pronounced
as data becomes more homogeneous. We also find that
multistage algorithms outperform two-stage algorithms (and
both outperform single-stage algorithms).

5. Conclusion
In this paper, we show that multistage parameter schedules
improve FL communication complexity in theory and in
practice. Future work includes expanding the ideas in this
paper to the convex and non-convex setting.

References
Aybat, N. S., Fallah, A., Gurbuzbalaban, M., and Ozdaglar,

A. A universally optimal multistage accelerated stochastic
gradient method. arXiv preprint arXiv:1901.08022, 2019.

Beck, A. and Teboulle, M. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Charles, Z. and Konečnỳ, J. On the outsized importance
of learning rates in local update methods. arXiv preprint
arXiv:2007.00878, 2020.

Fallah, A., Ozdaglar, A., and Pattathil, S. An optimal multi-
stage stochastic gradient method for minimax problems.
In 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 3573–3579. IEEE, 2020.

Ghadimi, S. and Lan, G. Optimal stochastic approximation
algorithms for strongly convex stochastic composite op-
timization i: A generic algorithmic framework. SIAM
Journal on Optimization, 22(4):1469–1492, 2012.

Gorbunov, E., Hanzely, F., and Richtárik, P. Local sgd:
Unified theory and new efficient methods. arXiv preprint
arXiv:2011.02828, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Karimireddy, S. P., Jaggi, M., Kale, S., Mohri, M., Reddi,
S. J., Stich, S. U., and Suresh, A. T. Mime: Mimicking
centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606, 2020a.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143. PMLR, 2020b.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
theory for local sgd on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020.

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381–5393. PMLR, 2020.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečnỳ, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. arXiv preprint arXiv:2003.00295,
2020.

Schmidt, M., Babanezhad, R., Ahmed, M., Defazio, A.,
Clifton, A., and Sarkar, A. Non-uniform stochastic av-
erage gradient method for training conditional random
fields. In artificial intelligence and statistics, pp. 819–828.
PMLR, 2015.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Wang, J. and Joshi, G. Cooperative sgd: A
unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576, 2018.

Woodworth, B., Patel, K. K., and Srebro, N. Minibatch vs
local sgd for heterogeneous distributed learning. arXiv
preprint arXiv:2006.04735, 2020a.

Woodworth, B., Patel, K. K., Stich, S., Dai, Z., Bullins, B.,
Mcmahan, B., Shamir, O., and Srebro, N. Is local sgd
better than minibatch sgd? In International Conference
on Machine Learning, pp. 10334–10343. PMLR, 2020b.

Zinkevich, M., Weimer, M., Smola, A. J., and Li, L. Paral-
lelized stochastic gradient descent. In NIPS, volume 4,
pp. 4. Citeseer, 2010.

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

A. Proof of Theorem 1
First, let the total budget for the number of rounds be 2R. We run the two stages of the algorithm with R rounds.

In the first stage, we run Algorithm 1 with

η = η(r,s)
g = η

(r,s)
l = min{ 1

4β
,

log(max{2,min{E‖x̂
0−x∗‖2nµ2R2K2

σ2 , E‖x̂
0−x∗‖2µ2R3K3

6βK(σ2+2Kζ2)) }}
µKR

S = 1, β(s) = 0, wr,sk = wrk = (1 − µη)rK+k+1. Note this is just running Local SGD (Gorbunov et al., 2020) with the
above stepsizes. Therefore, from the proof of Gorbunov et al. (2020)(Eq.82), we know that we get the following convergence
rate for the output of the algorithm

EF (x̂1)− F (x∗) ≤ 8β exp(−κKR
8

)E‖x̂0 − x∗‖2 +
2(Φ + 1)σ2

µNKR
+

6β(Φ2 + 1)σ2

µ2KR2
+

12β(Φ2 + 1)ζ2

µ2R2
(11)

where Φ = log(max{2,min{E‖x̂
0−x∗‖2nµ2R2K2

σ2 , E‖x̂
0−x∗‖2µ2R3K3

6βK(σ2+2Kζ2)) }}.

In the second stage, we run Algorithm 1 on x̂1 with β(s) = 0 and

1. If R > 4β
µ and r < dR2 e: η

(r,2)
l = 0, η(r,2)

g = ηg = 1
4β , wr,2k = 0

2. If R > 4β
µ and r ≥ dR/2e: η(r,2)

g = ηg = 2
µ(κ−R−dR2 e)

, wr,2k = (1− µηg)−(rK+k+1) = (κ+ r − dR2 e)
2

3. If R ≤ 4β
µ : η(r,2)

g = 1
4β , wr,2k = (1− µηg)−(rK+k+1).

Note that this is running Minibatch SGD with the above stepsize schedule. From the proof from Woodworth et al. (2020a),
the output of this algorithm is

EF (x̂2)− F (x∗) ≤ 128κ(EF (x̂1)− F (x∗)) exp(− R
8κ

) +
72σ2

µNKR
(12)

Plugging in (11), we get the claim.

B. Proof of Theorem 2
First, let the total budget for the number of rounds be 2R. We run the two stages of the algorithm with R rounds.

In the first stage, we run Algorithm 1 with

η = η(r,s)
g = η

(r,s)
l = min{ 1

4β
,

log(max{2,min{E‖x̂
0−x∗‖2nµ2R2K2

σ2 , E‖x̂
0−x∗‖2µ2R3K3

6βK(σ2+2Kζ2)) }}
µKR

S = 1, β(s) = 0, wr,sk = wrk = (1 − µη)rK+k+1. Note this is just running Local SGD (Gorbunov et al., 2020) with the
above stepsizes. Therefore, from the proof of Gorbunov et al. (2020), we know that we get the following convergence rate
for the output of the algorithm

EF (x̂1)− F (x∗) ≤ 8β exp(−κKR
8

)E‖x̂0 − x∗‖2 +
2(Φ + 1)σ2

µNKR
+

6β(Φ2 + 1)σ2

µ2KR2
+

12β(Φ2 + 1)ζ2

µ2R2
(13)

where Φ = log(max{2,min{E‖x̂
0−x∗‖2nµ2R2K2

σ2 , E‖x̂
0−x∗‖2µ2R3K3

6βK(σ2+2Kζ2)) }}.

Next we run Algorithm 1 on x̂1 with η(r,s)
l = 0 and

η(r,s)
g = ηg = min{ 1

Kβ
,

log(max{2,min{ 2∆1NµKR
σ2 , 2∆1µ

2NKR3

βσ2 })}
µKR2

} (14)

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

β(s) =
1−
√
µηgK

1+
√
µηgK

, S = 1, and wr,sk = 0 for all k, r, s except for wR1,1
1 = 1 and ∆1 ≤ 8β exp(−κR8)E‖x̂0 − x∗‖2 +

2(Φ+1)σ2

µNKR + 6β(Φ2+1)σ2

µ2KR2 + 12β(Φ2+1)ζ2

µ2R2 . From Theorem 4 we know that

EF (x̂2)− F (x∗) ≤ 2∆1 exp(− R√
κ

) +
σ2(Φ

1/2
2 + 1)

µNKR
+
βσ2(Φ

3/2
2 + 1)

µ2NKR3
(15)

where Φ2 = log(max{2,min{ 2∆1µK
σ2 , 2∆µ2K3

βσ2 })}.

Plugging in ∆1 gets us the desired conclusion.

C. Theorem 4
Theorem 4. Consider Nesterov’s Accelerated Stochastic gradient method with the iteration sequence

xk+1/2 = (1 + β)xk − βxk−1, xk+1 = xk+1/2 − α∇̃F (xk+1/2) (16)

then

EF (xK)− F (x∗) ≤ 2∆ exp(− K√
κ

) +
σ2(Φ1/2 + 1)

µK
+
βσ2(Φ3/2 + 1)

µ2K3
(17)

Proof. From Aybat et al. (2019) (Eq.13), we know that

EVk+1 ≤ (1−√αµ)(EVk) +
σ2α

2
(1 + αβ) (18)

where F (xk)− F (x∗) ≤ Vk ≤ 2(F (xk)− F (x∗)).

If we unroll this, we get

EVK ≤ (1−√αµ)K EV0 +
σ2α1/2

2µ1/2
+
σ2α3/2β

2µ1/2
≤ exp(−√αµK)EV0 +

σ2α1/2

2µ1/2
+
σ2α3/2β

2µ1/2
(19)

Now if

α = min{ 1

β
,

log(max{2,min{ 2∆NµK
σ2 , 2∆µ2NK3

βσ2 })}
µK2

} (20)

observe that if 1
β ≤

log(max{2,min{ 2∆NµK

σ2 , 2∆µ2NK3

βσ2 })}
µK2 we know that letting Φ = log(max{2,min{ 2∆NµK

σ2 , 2∆µ2NK3

βσ2 })}

EVK ≤ EV0 exp(− K√
κ

) +
σ2Φ1/2

2µK
+
βσ2Φ3/2

2µ2K3
(21)

and if 1
β >

log(max{2,min{ 2∆µK

σ2 , 2∆µ2K3

βσ2 })}
µK2

EVK ≤
σ2

µK
+

βσ2

µ2K3
+
σ2Φ1/2

2µK
+
βσ2Φ3/2

2µ2K3
(22)

where we used that EV0 ≤ 2∆.

So altogether, we have that

EF (xK)− F (x∗) ≤ 2∆ exp(− K√
κ

) +
σ2(Φ1/2 + 1)

µK
+
βσ2(Φ3/2 + 1)

µ2K3
(23)

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

D. Proof of Theorem 3
Let x′ be the output of multistage LSGD from the first half of the rounds. Then we know that the output of this has guarantee
(from Thm 5)

EF (x′)− F (x∗) ≤ O(κ∆ exp(−KR
κ

) +
βσ2

µ2BNKR
+

β2σ2

µ3BKR2
+
β2ζ2

µ3R2
) (24)

Next, observe that the second half of the rounds are running M-ASG from (Aybat et al., 2019). That has a guarantee of
(Corollary 3.8)

EF (x̂)− F (x∗) ≤ O(∆1 exp(− R√
κ

) +
σ2

µNKR
) (25)

where

∆1 ≤ O(κ∆ exp(−KR
κ

) +
βσ2

µ2BNKR
+

β2σ2

µ3BKR2
+
β2ζ2

µ3R2
) (26)

Which gives the theorem statement if we let σ = σ2

B and K = dκe.

E. Proof of Theorem 5
Theorem 5.

η(r,1)
g = η

(r,1)
l =

1

4β
,R(1)K ≥ 1

η(r,1)
g = η

(r,1)
l =

1

β2s+2
, R(s)K = dp2s+2κ log(2)e

where p ≥ 3 is some arbitrary positive number. Also set β(s) = 0. Let ClientOPT be one round of either SS-Local-SGD or
Local SGD, except each local step is minibatched with a minibatch of size B, and have ClientWeightedAverage simply
return the last iterate. Furthermore, require that K ≤ dpκ log(2)e, and dpκ log(2)e mod K = 0. Then if R(1)K = R/C
for some constant and KR ≥ 2κ,

EF (x̂)− F (x∗) ≤ O(κ∆ exp(−KR
κ

) +
βσ2

µ2BNKR
+

β2σ2

µ3BKR2
+
β2ζ2

µ3R2
) (27)

Proof. We start by proving that

errs ≤
exp(−(R1K)/(4κ))

2p(s−1)
err0 +

σ2

2sµβN
+

6

22sµβ
(Kσ2 + 2K2ζ2) (28)

Where errs = errs = E ‖xRs,s − x∗‖2. We prove this by induction on s. Recall that from Theorem 6 we have

E ‖xr,s − x∗‖2 ≤ (1− µη)rK E ‖x0,s − x∗‖2 +
ησ2

µN
+ 6κη2(Kσ2 + 2K2ζ2) (29)

Starting with the base case, with η = 1
4β , R1K ≥ 1, we have

err1 ≤ exp(−R1K

4κ
)err0 +

σ2

4βµN
+

3

2βµ
(Kσ2 + 2K2ζ2) (30)

Now let us assume the result holds for s and prove it for s + 1. Using Theorem 6 for stage s + 1 with η = 1
β2s+3 and

Rs+1K = dp2s+3κ log(2)e gets us

errs+1 ≤ exp(−p log(2))errs +
σ2

2s+3µβN
+

6

22(s+3)µβ
(Kσ2 + 2K2ζ2) (31)

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Now using the induction hypothesis, we know

errs ≤
exp(−(R(1)K)/(4κ))

2p(s−1)
err0 +

σ2

2sµβN
+

6

22sµβ
(Kσ2 + 2K2ζ2) (32)

And substituting it back into (28) while having p ≥ 3 gets us

errs+1 ≤
exp(−(R(1)K)/(4κ))

2ps
err0 +

σ2

2s+1µβN
+

6

22s+2µβ
(Kσ2 + 2K2ζ2) (33)

Using the following lemma, we can translate this into a convergence rate:

Lemma 1. Let R(1)K ≥ 1 and R(s)K = dp2s+2κ log(2)e. Then we know that 2k ≥ Θ(1)(RK−R
(1)K

pκ).

Proof. Comes from a simple unrolling of the stage lengths; similar to the proof in (Fallah et al., 2020).

So if we plug in R(1)K = R
C for some constant C ≥ 2 and KR ≥ 2κ, we get the convergence rate in the theorem statement

by applying smoothness.

F. Proof of Theorem 6
Theorem 6. Suppose we ran Algorithm 1 for one stage with stepsizes η(r,s)

l = η
(r,s)
g = η, with B(s) = 0 and return the last

iterate. Furthermore, require that η ≤ 1
β . Then

E ‖xr,s − x∗‖2 ≤ (1− µη)rK E ‖x0,s − x∗‖2 +
ησ2

µN
+ 6κ(Kη2σ2 + 2K2η2ζ2) (34)

From Gorbunov et al. (2020) (Eq.82), we have the following for LSGD:

E ‖xt+1 − x∗‖2 ≤ (1− µη)E ‖xt − x∗‖2 + 2βη EVt + η2σ
2

N
(35)

where Vt = 1
N

∑N
i=1 E ‖xti − xt‖2, where t = Kr + k where r is current round, k is step on current round. xti is client i’s

iterate at the t-th step. xt = 1
N

∑N
i=1 x

t
i, and η is both the inner stepsize and outer stepsize (i.e. η(r,s)

l = η, η(r,s)
g = η).

From Woodworth et al. (2020a) we know that for LSGD

Vt ≤ 3Kη2σ2 + 6K2η2ζ2 (36)

So together,

E ‖xt+1 − x∗‖2 ≤ (1− µη)E ‖xt − x∗‖2 + 6βη(Kη2σ2 + 2K2η2ζ2) +
σ2η2

N
(37)

And unrolling this,

E ‖xT − x∗‖2 ≤ (1− µη)T E ‖x0 − x∗‖2 +
ησ2

µN
+ 6κ(Kη2σ2 + 2K2η2ζ2) (38)

G. Using SS-Local-SGD instead of Local SGD
In this section we show how one can use SS-Local-SGD instead of Local SGD as ClientOPT.

Theorem 7. Let Vt = 1
N

∑N
i=1 E ‖xti − xt‖2, where t = Kr + k where r is current round, k is step on current round, xti is

client i’s iterate at the t-th step. Then SS-Local-SGD has

Vt ≤ 48K2η2ζ2 + 9η2σ2 (39)

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Proof.

Vt ≤
1

N2

N∑
i=1

N∑
j=1

E ‖xti − xtj‖2 (40)

By Jensen’s. Let gi(xti) be the SS-Local-SGD local update for client i at iteration t. Let Et denote expectation conditioned
on everything up to the t− 1’th iteration. Let yt be the last synchronized iterate before iteration t. In the following we use
the fact that the control iterates are computed with minibatches of size K at the clients.

E ‖xti − xtj‖2

≤ E ‖xt−1
i − xt−1

j − η E
t−1

gi(x
t−1
i) + η E

t−1
gj(x

t−1
j)‖2 + η2σ2

= E ‖xt−1
i − xt−1

j − η(∇̃F (yt−1)− ∇̃Fi(yt−1)−∇Fi(xt−1
i)) + η(∇̃F (yt−1)− ∇̃Fj(yt−1) +∇Fj(xt−1

j))‖2 + η2σ2

= E ‖xt−1
i − xt−1

j ± η∇F (xt−1
i)± η∇F (xt−1

j)± η∇F (yt−1)

− η(−∇̃Fi(yt−1)−∇Fi(xt−1
i)) + η(−∇̃Fj(yt−1) +∇Fj(xt−1

j))‖2 + η2σ2

≤ (1 +
1

K − 1
)E ‖xt−1

i − xt−1
j − η∇F (xt−1

i) + η∇F (xt−1
j)‖2

+ η2K E ‖∇F (xt−1
i)−∇Fi(xt−1

j)−∇F (xt−1
j) +∇Fj(xt−1

j)

+∇F (yt−1)−∇Fi(yt−1)−∇F (yt−1) +∇Fj(yt−1)‖2

+ 3η2σ2

≤ (1 +
1

K − 1
)E ‖xt−1

i − xt−1
j ‖

2 + 16Kη2ζ2 + 3η2σ2

So altogether,

1

N2

N∑
i=1

N∑
j=1

E ‖xti − xtj‖2 ≤
1

N2

N∑
i=1

N∑
j=1

(1 +
1

K − 1
)E ‖xt−1

i − xt−1
j ‖

2 + 16Kη2ζ2 + 3η2σ2 (41)

Unrolling this until the last time the iterates were synchronized, we get

1

N2

N∑
i=1

N∑
j=1

E ‖xti − xtj‖2 ≤ 3K(16Kη2ζ2 + 3η2σ2) (42)

Which implies

Vt ≤ 48K2η2ζ2 + 9η2σ2 (43)

This can be substituted into Theorem 6 to get the multistage rate for Theorem 3, or it can be substituted into Theorem G.3 in
(Gorbunov et al., 2020) to get a convergence rate that differs from (11) by only constants in the terms. Thus we can use
SS-Local-SGD instead of Local-SGD in any of the theorems presented in the main paper with only minor constant changes.

H. Additional Experimental Results
Figure 2 compares the convergence of multi-stage algorithms to their single-stage counterparts in the deterministic setting
(full batch gradients), over R = 200 rounds. This is different from Fig. 1, which uses stochastic gradients. The curves
marked “X → Y” indicate a multi-stage algorithm that starts with Algorithm X in (Super-)Stage 1 and transitions to
Algorithm Y in (Super-)Stage 2. Each such curve represents the better (smaller) curve between the two-stage and the
multi-stage (S > 2) version of the listed algorithms. We vary the homogeneity of the dataset from 0% (left) to 100%
(right). We observe that in all homogeneity settings, the multi-stage algorithm demonstrates constant-order improvements

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Figure 2. All gradients are deterministic. A plot’s title denotes how homogeneous the data is across the clients, as described in Section 4.
“X→Y” denotes a multistage algorithm with X as the first stage and Y as the second stage. Across all heterogeneity levels, SS-Local-SGD
(with no scheduling) is the best, followed by LSGD→ASG. Diamonds denote when stage transitions occur.

Figure 3. Stochastic gradients are computed with 1% of the data. Each datapoint is the average of 1000 runs. Plot titles denote data
homogeneity (§ 4). “X→Y” denotes a multistage algorithm with X as the first superstage and Y as the second superstage. Across all
heterogeneity levels, the multistage algorithms perform the best. Markers denote when a stage transition occurs.

in convergence rates over either baseline alone. These improvements are most visible in the early stages of training, and
they grow more pronounced as data becomes more homogeneous. We also find that for the multi-stage curves in this plot,
the two-stage version had better performance than the multi-stage version. This may be because without noise, we can
aggressively set our Minibatch SGD step size without using multi-staging, so only two stages suffice.

Figure 3 compares the convergence of our two super-stage algorithms with multistage variants of SGD, ASG, FedAvg, and
M-SCAFFOLD. For M-FedAvg and M-SCAFFOLD, we simply run the algorithms as we run the multi-stage methods as
described in Section 4, except the first super-stage lasts the entire run. For M-ASG and M-SGD, we run the algorithms the
same way we run the multi-stage methods as described in Section 4, except the second super-stage lasts the entire run and
the initial stepsize is η. We find here that our algorithms with two superstages perform best.

Figure 4 gives hyperparameter ablation studies for the SCAFFOLD→SGD experiment at 100% shuffled dataset across
clients. We are generally able to take larger initial stepsizes with multi-staging, which is what gives us the gain we observe.

Multistage stepsize schedule in Federated Learning: Bridging Theory and Practice

Figure 4. Stochastic gradients are computed with 1% of the data. Each datapoint is the average of 1000 runs. These are ablation studies of
initial stage length and initial stepsize for SCAFFOLD→SGD, when the data is shuffled across all clients completely. No stage refers to
simply running SCAFFOLD for a fixed step size. One super stage refers to running SCAFFOLD in a multistage manner (i.e. the first
super stage lasts the whole run). Two stage refers to running SCAFFOLD with the initial learning rate specified and switching to SGD
after the initial stage length with learning rate η/K. Two super stage is run as specified in Sec 4. Overall, multistaging appears to allow us
to take larger initial step sizes, which is what is giving us our gain.

