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Abstract
In Federated Learning (FL) multiple worker nodes
(WNs) jointly aim to build a combined model by
using only local data. The goal of FL is to design
algorithms such that the WNs require minimum
number of samples and communication rounds
to achieve the desired solution. This work ad-
dresses the above concern and considers a class
of stochastic algorithms where the WNs perform
a few local updates before communication. We
show that when both the WN’s and the server’s di-
rections are chosen based on a stochastic momen-
tum estimator, the algorithm requires Õ(ε−3/2)
samples and Õ(ε−1) communication rounds to
compute an ε-stationary solution. To the best of
our knowledge, this is the first FL algorithm that
achieves such near-optimal sample and communi-
cation complexities simultaneously. Further, we
show a trade-off curve between the number of
local updates and minibatch sizes, on which the
above sample and communication complexities
are maintained. Our insights on this trade-off
provides guidelines for choosing the four impor-
tant design elements for FL algorithms, WN and
server’s update directions, number of local up-
dates, and the minibatch sizes to achieve the best
performance.

1. Introduction
Federated Learning (FL) is a distributed optimization frame-
work where multiple worker nodes (WNs) collaborate with
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the goal of learning a joint model, by only using local data
(Konečnỳ et al., 2016). A classical distributed optimization
problem that K WNs aim to solve:

min
x∈Rd

{
f(x) :=

1

K

K∑
k=1

f (k)(x)
}
. (1)

with f (k)(x) := Eξ(k)∼D(k) [f (k)(x; ξ(k))], and where f (k) :

Rd → R denotes the smooth (possibly non-convex) objec-
tive function and ξ(k) ∼ D(k) represents the sample/s drawn
from distribution D(k) at the kth WN with k ∈ [K]. When
the distributions D(k) are different across the WNs, it is
referred to as the heterogeneous data setting.

The optimization performance of non-convex FL algorithms
is typically measured by the total number of samples ac-
cessed (cf. Definition 2.2) and the total rounds of communi-
cation (cf. Definition 2.3) required by each WN to achieve
an ε-stationary solution (cf. Definition 2.1). To minimize
the sample and the communication complexities, FL algo-
rithms rely on the following four key design elements: (i)
the WNs’ local model update directions, (ii) Minibatch size
to compute each local direction, (iii) the number of local
updates before WNs share their parameters, and (iv) the
SN’s update direction. How to find effective FL algorithms
by (optimally) designing these parameters has received sig-
nificant research interest recently.

Contributions. In this work, we propose Stochastic
Two-Sided Momentum (STEM) algorithm, that utilizes
momentum-assisted stochastic gradient directions for both
the WNs and server node’s (SN) updates. We show that
there exists an optimal trade off between the minibatch sizes
and the number of local updates, such that on the trade-off
curve STEM requires Õ(ε−3/2)1 samples and Õ(ε−1) com-
munication rounds to reach an ε-stationary solution; see
Figure 1 for an illustration. These complexity results are
the best achievable for first-order stochastic FL algorithms
(under certain assumptions, cf. Assumption 1); see (Fang
et al., 2018) and (Zhang et al., 2020), as well as Remark 1
of this paper for discussions regarding optimality. To the
best of our knowledge, STEM is the first algorithm which

1The notation Õ(·) hides the logarithmic factors.
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(a) Communication complexity. (b) Minibatch sizes vs Local Updates.

Figure 1. The 3D surface in (a) plots the communication complexity of the proposed STEM for different minibatch sizes and number
of local updates. The surface is generated such that each point represents STEM with a particular choice of (b, I), so that it requires
Õ(ε−3/2) samples to achieve ε-stationarity. Plot (b) shows the optimal trade off between the minibatch sizes and the number of local
updates at each WN (i.e., achieving the lowest communication and sample complexities). Both plots are generated for an accuracy of
ε = 10−3 and all the constants dependent on system parameters (variance of stochastic gradients, heterogeneity parameter, optimality gap,
Lipschitz constants, etc.) are assumed to be 1. Fed STEM is a special case of STEM where O(1) minibatch is used; Minibatch STEM is
a special case of STEM where O(1) local updates are used.

– (i) simultaneously achieves the optimal sample and com-
munication complexities and (ii) can optimally trade off
the minibatch sizes and the number of local updates. Col-
lectively, our insights on the trade-offs provide practical
guidelines for choosing different design elements for FL
algorithms.

Related Works. FL algorithms were first proposed in the
form of FedAvg (McMahan et al., 2017), where the local
update directions at each WN were chosen to be the SGD
updates. Recent studies have focused on designing new
algorithms to deal with heterogeneous data settings, as well
as problems where the local loss functions are non-convex
(Zhang et al., 2020; Li et al., 2018; Yu et al., 2018; 2019;
Karimireddy et al., 2020b; Das et al., 2020; Liang et al.,
2019; Reddi et al., 2019). In (Yu et al., 2018), the au-
thors showed that Parallel Restarted SGD (Local SGD or
FedAvg) achieves linear speed up while requiring O(ε−2)
samples and O(ε−3/2) rounds of communication to reach
an ε-stationary solution. In (Yu et al., 2019), a Momen-
tum SGD was proposed, which achieved the same sample
and communication complexities as Parallel Restarted SGD
(Yu et al., 2018). The works in (Karimireddy et al., 2020b;
Yang et al., 2021) conducted tighter analysis for FedAvg
with partial WN participation with O(1) local updates and
batch sizes. Their analysis showed that FedAvg’s sample
and communication complexities are both O(ε−2). Addi-
tionally, SCAFFOLD was proposed in (Karimireddy et al.,
2020b), which utilized variance reduction based local up-
date directions (Johnson & Zhang, 2013) to achieve the
same sample and communication complexities as FedAvg.
Similarly, VRL-SGD proposed in (Liang et al., 2019) also

utilized variance reduction and showed improved commu-
nication complexity of O(ε−1), while requiring the same
computations as FedAvg. Importantly, both SCAFFOLD
and VRL-SGD’s guarantees were independent of the data
heterogeneity. FedProx and FedPD proposed in (Li et al.,
2018) and (Zhang et al., 2020), resp., improved the com-
munication complexity of FedAvg to O(ε−1). Recently,
(Karimireddy et al., 2020a; Das et al., 2020) proposed to
utilize hybrid momentum gradient estimators (Cutkosky
& Orabona, 2019; Tran-Dinh et al., 2019). Both MIME
(Karimireddy et al., 2020a) and FedGLOMO (Das et al.,
2020) matched the optimal sample complexity (under cer-
tain smoothness assumptions) of O(ε−3/2) of the central-
ized non-convex stochastic optimization algorithms (Fang
et al., 2018; Zhou et al., 2018; Cutkosky & Orabona, 2019;
Tran-Dinh et al., 2019), while requiring O(ε−3/2) commu-
nication rounds to achieve an ε-stationary solution. Please
see Table 1 for a summary of the above discussion.

The comparison of Local SGD (FedAvg) to Minibatch SGD
for convex and strongly convex problems with heteroge-
neous data setting was conducted in (Woodworth et al.,
2020). It was shown that Minibatch SGD almost always
dominates the Local SGD. In contrast, it was shown in (Lin
et al., 2018) that Local SGD dominates Minibatch SGD
in terms of generalization performance. Although exist-
ing FL results are rich, but they are somehow ad hoc and
there is a lack of principled understanding of the algorithms.
We note that the proposed STEM algorithmic framework
provides a theoretical framework that unifies federated and
minibatch algorithms while achieving near optimal sample
and communication complexities.
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Algorithm Work Sample Comm. Minibatch (b) Updates (I)

FedAvg�
(Yu et al., 2018) /(Yu et al., 2019)

O(ε−2)

O(ε−3/2) O(1) O(ε−1/2)

(Karimireddy et al., 2020b)/(Yang et al., 2021) O(ε−2) O(1) O(1)

this work O(ε−3/2) O
(
ε
− 2(1−ν)

(4−ν)
)
O
(
ε
− 3ν

2(4−ν)
)

SCAFFOLD∗ (Karimireddy et al., 2020b) O(ε−2) O(ε−2) O(1) O(1)
FedPD/FedProx‡ (Zhang et al., 2020)/(Li et al., 2018) O(ε−2) O(ε−1) O(1) O(ε−1)

MIME†/FedGLOMO (Karimireddy et al., 2020a)/(Das et al., 2020) O(ε−3/2) O(ε−3/2) O(1) O(1)

STEM� O
(
ε
− 3(1−ν)

2(3−ν)
)
O
(
ε
− ν

(3−ν)
)

Fed STEM O(1) O(ε−1/2)

Minibatch STEM∗
this work Õ(ε−3/2) Õ(ε−1)

O(ε−1/2) O(1)

Table 1. Comparison of FedAvg and STEM with different FL algorithms for various choices of the minibatch sizes (b) and the number of
per node local updates between two rounds of communication (I).
� ν ∈ [0, 1] trades off b and I; ν = 1 (resp. ν = 0) uses multiple (resp. O(1)) local updates and O(1) (resp. multiple) samples.
Fed STEM and Minibatch STEM are two variants of the proposed STEM.
‡The data heterogeneity assumption is weaker than Assumption 2 (please see (Zhang et al., 2020) for details).
†Requires bounded Hessian dissimilarity to model data heterogeneity across WNs.
∗Guarantees for Minibatch STEM with I = 1 and SCAFFOLD are independent of the data heterogeneity.

Notations. The expected value of a random variable X
is denoted by E[X] and its expectation conditioned on an
Event A is denoted as E[X|Event A]. We denote by R (and
Rd) the real line (and the d-dimensional Euclidean space).
The set of natural numbers is denoted by N. Given a positive
integer K ∈ N, we denote [K] , {1, 2, . . . ,K}. Notation
‖ · ‖ denotes the `2-norm and 〈·, ·〉 the Euclidean inner
product. For a discrete set B, |B| denotes the cardinality
of the set. We denote by x̄ = 1

K

∑K
k=1 x

(k) the empirical
mean of a set of vectors.

2. Preliminaries
Before we proceed to the the algorithms, we make the fol-
lowing assumptions about problem (1).

Assumption 1 (Sample Gradient Lipschitz Smoothness).
The stochastic functions f (k)(·, ξ(k)) with ξ(k) ∼ D(k) for
all k ∈ [K], satisfy the mean squared smoothness property,
i.e, ∀x, y ∈ Rd we have

E‖∇f (k)(x; ξ(k))−∇f (k)(y; ξ(k))‖2 ≤ L2‖x− y‖2.

Assumption 2 (Unbiased gradient and Variance Bounds).
(i) Unbiased Gradient. The stochastic gradients computed
at each WN are unbiased

E[∇f (k)(x; ξ(k))] = ∇f (k)(x), ∀ ξ(k) ∼ D(k), ∀ k ∈ [K].

(ii) Intra- and inter- node Variance Bound. The following
bounds hold:

E‖∇f (k)(x; ξ(k))−∇f (k)(x)‖2 ≤ σ2, ∀ξ(k) ∼ D(k),

‖∇f (k)(x)−∇f (`)(x)‖2 ≤ ζ2, ∀k, ` ∈ [K].

Note that Assumption 1 is stronger than directly assuming
f (k)’s are Lipschitz smooth (which we will refer to as the av-
eraged gradient Lipschitz smooth condition), but it is still a
rather standard assumption in SGD analysis. For example it
has been used in analyzing centralized SGD algorithms such
as SPIDER (Fang et al., 2018), SNVRG (Zhou et al., 2018),
STORM (Cutkosky & Orabona, 2019) (and many others) as
well as in FL algorithms such as MIME (Karimireddy et al.,
2020a) and Fed-GLOMO (Das et al., 2020). The second re-
lation in Assumption 2-(ii) quantifies the data heterogeneity,
and we call ζ > 0 as the heterogeneity parameter. This is a
typical assumption required to evaluate the performance of
FL algorithms. If data distributions across individual WNs
are identical, i.e., D(k) = D(`) for all k, ` ∈ [K] then we
have ζ = 0. Next, we define the ε-stationary solution for
non-convex optimization problems, as well as quantify the
sample and communication complexities.

Definition 2.1 (ε-Stationary Point). A point x is called ε-
stationary if ‖∇f(x)‖2 ≤ ε. Moreover, a stochastic algo-
rithm is said to achieve an ε-stationary point in t iterations
if E[‖∇f(xt)‖2] ≤ ε, where the expectation is over the
stochasticity of the algorithm until time instant t.

Definition 2.2 (Sample complexity). We assume an
Incremental First-order Oracle (IFO) framework (Bot-
tou et al., 2018), where, given a sample ξ(k) ∼
D(k) at the kth node and iterate x, the oracle returns
(f (k)(x; ξ(k)),∇f (k)(x; ξ(k))). Each access to the oracle is
counted as a single IFO operation. We measure the sample
(and computational) complexity in terms of the total number
of calls to the IFO by all WNs to achieve an ε-stationary
point given in Definition 2.1.

Definition 2.3 (Communication complexity). We define a
communication round as a one back-and-forth sharing of pa-
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rameters between the WNs and the SN. The communication
complexity is defined to be the total number of communica-
tion rounds between any WN and the SN required to achieve
an ε-stationary point given in Definition 2.1.

3. The STEM algorithm and the trade-off
analysis

In this section, we discuss the proposed algorithm and
present the main results. The key in the algorithm design is
to carefully balance all the four design elements, WNs and
SNs update directions, local updates and the minibatch sizes,
mentioned in Sec. 1, so that sufficient and useful progress
can be made between two rounds of communication.

Let us discuss the key steps of STEM, listed in Algorithm 1.
In Step 10, each node locally updates its model parameters
using the local direction dkt , computed by using b stochastic
gradients at two consecutive iterates x(k)

t+1 and x(k)
t as

d
(k)
t+1 =

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t+1; ξ

(k)
t+1)

+ (1− at+1)
(
d

(k)
t −

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t ; ξ

(k)
t+1)

)
(2)

with |B(k)
t+1| = b, and at+1 = c·η2

t . After every I local steps,
the WNs share their current local models {x(k)

t+1}Kk=1 and
directions {d(k)

t+1}Kk=1 with the SN. The SN aggregates these
quantities, and performs a server-side momentum step, be-
fore returning x(k)

t+2 and d̄t+1 to all the WNs. Because both
the WNs and the SN perform momentum based updates,
we call the algorithm a stochastic two-sided momentum al-
gorithm. The key parameters are: b the minibatch size, I
the local update steps between two communication rounds,
{ηt} the stepsizes, and {at} the momentum parameters.

One key technical innovation of our algorithm design is to
identify the most suitable way to incorporate momentum
based directions in FL algorithms. Although the momentum-
based gradient estimator itself is not new and has been used
in the literature before (see e.g., in (Cutkosky & Orabona,
2019; Tran-Dinh et al., 2019) and (Karimireddy et al., 2020a;
Das et al., 2020) to improve the sample complexities of cen-
tralized and decentralized stochastic optimization problems,
respectively), it is by no means clear if and how it can con-
tribute to improve the communication complexity of FL
algorithms. We show that in the FL setting, the local direc-
tions together with the local models have to be aggregated
by the SN so to avoid being influenced too much by the local
data. More importantly, besides the WNs, the SN also needs
to perform updates using the (aggregated) momentum direc-
tions. Finally, such two-sided momentum updates have to
be done carefully with the correct choice of minibatch size

Algorithm 1 STEM Algorithm

1: Input: Parameters: c > 0, the number of local updates
I , batch size b, stepsizes {ηt}.

2: Initialize: Iterate x(k)
1 = x̄1 = 1

K

∑K
k=1 x

(k)
1 , descent

direction d
(k)
1 = d̄1 = 1

K

∑K
k=1 d

(k)
1 with d

(k)
1 =

1
B

∑
ξ
(k)
1 ∈B

(k)
1
∇f (k)(x

(k)
1 ; ξ

(k)
1 ) and |B(k)

1 | = B for
k ∈ [K].
Perform: x(k)

2 = xk1 − η1d
(k)
1 , ∀ k ∈ [K]

3: for t = 1 to T do
4: for k = 1 to K do
5: Compute d(k)

t+1 using (2)
6: if t mod I = 0 then
7: d

(k)
t+1 = d̄t+1

8: x
(k)
t+2 := x̄t+1 − ηt+1d̄t+1 #SN momentum

9: else
10: x

(k)
t+2 = x

(k)
t+1 − ηt+1d

(k)
t+1 #WN momentum

11: end if
12: end for
13: end for
14: x̄a chosen uniformly randomly from {x̄t}Tt=1

b, and the number of local updates I . Overall, it is the judi-
cious choice of all these design elements that results in the
optimal sample and communication complexities. Next, we
present the convergence guarantees of the STEM algorithm.

Theorem 3.1. Under the Assumptions 1 and 2, suppose
the stepsize sequence is chosen as: ηt = κ̄

(wt+σ2t)1/3
,

where we define : κ̄ = (bK)2/3σ2/3

L and wt =

max

{
2σ2, 4096L3I3κ̄3 − σ2t, c3κ̄3

4096L3I3

}
. Further, let us

set c = 64L2

bK + σ2

24κ̄3LI = L2

(
64
bK + 1

24(bK)2I

)
, and set

the initial batch size as B = bI; set the local updates I and
minibatch size b as follows:

I = O
(
(T/K2)ν/3

)
, b = O

(
(T/K2)1/2−ν/2) (3)

where ν satisfies ν ∈ [0, 1]. For STEM the following holds:

(i) For x̄a chosen according to Algorithm 1, we have:

E‖∇f(x̄a)‖2 = O
( f(x̄1)− f∗

K2ν/3T 1−ν/3

)
+ Õ

( σ2

K2ν/3T 1−ν/3

)
+ Õ

( ζ2

K2ν/3T 1−ν/3

)
.

(4)

(ii) For any ν ∈ [0, 1], we have
Sample Complexity: The sample complexity of
STEM is Õ(ε−3/2). This implies that each WN re-
quires at most Õ(K−1ε−3/2) gradient computations,
thereby achieving linear speedup with the number of
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WNs present in the network.
Communication Complexity: The communication
complexity of STEM is Õ(ε−1).

A few remarks are in order.
Remark 1 (Near-Optimal sample and communication com-
plexities). Theorem 3.1 suggests that when I and b are se-
lected appropriately, then STEM achieves Õ(ε−3/2) and
Õ(ε−1) sample and communication complexities. Tak-
ing them separately, these complexity bounds are the best
achievable by the existing FL algorithms (upto logarithmic
factors regardless of sample or batch Lipschitz smooth as-
sumption) (Drori & Shamir, 2020); see Table 1. We note
that the O(ε−3/2) complexity is the best possible that can
be achieved by centralized SGD with the sample Lipschitz
gradient assumption; see (Fang et al., 2018). On the other
hand, the O(ε−1) complexity bound is also likely to be the
optimal, since in (Zhang et al., 2020) the authors showed
that even when the local steps use a class of (deterministic)
first-order algorithms, O(ε−1) is the best achievable com-
munication complexity. The only difference is that (Zhang
et al., 2020) does not explicitly assume the intra-node vari-
ance bound (i.e., the second relation in Assumption 2-(ii)).
We leave the precise characterization of the communication
lower bound with intra-node variance as future work.
Remark 2 (The Optimal Batch Sizes and Local Updates
Trade-off). The parameter ν ∈ [0, 1] balances the local
minibatch sizes b, and the number of local updates I . Eqs.
in (3) suggest that when ν increases from 0 to 1, b decreases
and I increases. Specifically, if ν = 1, then b is a O(1)
but I = O(T 1/3/K2/3). In this case, each WN chooses
a small minibatch while executing multiple local updates,
and STEM resembles FedAvg (a.k.a. Local SGD) but with
double-sided momentum update directions, and is referred
to as FedSTEM. In contrast, if ν = 0, then b = O(T 1/2/K)
but I is O(1). In this case, each WN chooses a large batch
size while executing only a few, or even one, local updates,
and STEM resembles the Minibatch SGD, but again with
different update directions, and is referred to as Minibatch
STEM. Such a trade-off can be seen in Fig. 1(b).
Remark 3 (Sub-Optimal batch sizes & local up-
dates trade-off). STEM requires Õ

(
max

{
(b ·

I)ε−1,K−1ε−3/2
})

samples and Õ
(

max
{
ε−1, (b ·

I)−1K−1ε−3/2
})

communication rounds. Above expres-
sions imply if b · I increases beyond O(K−1ε−1/2), then
the sample complexity will increase from the optimal
Õ(ε−3/2); otherwise, the optimal sample complexity
Õ(ε−3/2) is maintained. On the other hand, if b · I
decreases beyond O(K−1ε−1/2), the communication
complexity increases from Õ(ε−1). For instance, if we
choose b = O(1) and I = O(1) the communication
complexity becomes Õ(ε−3/2). This trade-off is illustrated
in Figure 1(a), where we maintain the optimal sample

complexity, while changing b and I to generate the trade-off
surface.
Remark 4 (Data Heterogeneity). The term
Õ
(

ζ2

K2ν/3T 1−ν/3

)
in the gradient bound (4) captures

the effect of the heterogeneity of data across WNs, where
ζ is the parameter characterizing the intra-node variance
and has been defined in Assumption 2-(ii). Highly
heterogeneous data with large ζ2 can adversely impact the
performance of STEM. Note that such a dependency on ζ
also appears in other existing FL algorithms, such as (Zhang
et al., 2020; Yu et al., 2019; Das et al., 2020). However,
there is one special case of STEM that does not depend
on the parameter ζ. This is the case where I = 1, i.e., the
minibatch SGD counterpart of STEM where only a single
local iteration is performed between two communication
rounds. We have the following corollary.

Corollary 1 (Minibatch STEM). Under Assumptions 1 and
2 , and choose the algorithm parameters as in Theorem 3.1.
At each WN, choose I = 1, b = (T/K2)1/2, and the initial
batch size B = b · I . Then STEM satisfies:

(i) For x̄a chosen according to Algorithm 1, we have

E‖∇f(x̄a)‖2 = O
(f(x̄1)− f∗

T

)
+ Õ

(σ2

T

)
.

(ii) Minibatch STEM achieves Õ(ε−3/2) sample and
Õ(ε−1) communication complexity.

This section established that once the WNs’ and the SNs’
update directions are fixed, there exists a sequence of opti-
mal choices of the number of local updates I , and the batch
sizes b, which guarantees the best possible sample and com-
munication complexities for STEM. The trade-off analysis
presented in this section provides some useful guidelines
for how to best select b and I in practice. Our subsequent
numerical results verify that if b or I are not chosen judi-
ciously, then the practical performance of the algorithms
can degrade significantly.

4. Numerical results
In this section, we validate the proposed STEM algo-
rithm and compare its performance with the de facto stan-
dard FedAvg (McMahan et al., 2017) and recently proposed
SCAFFOLD (Karimireddy et al., 2020b). The goal of our
experiments are three-fold: (1) To show that STEM per-
forms better compared to other algorithms, (2) there are
multiple ways to reach the desired solution accuracy, one
can either choose a large batch size and perform only a few
local updates or select a smaller batch size and perform mul-
tiple local updates, and finally, (3) if the local updates and
the batch sizes are not chosen appropriately, the WNs might
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Figure 2. Training loss and testing accuracy for classification on CIFAR-10 dataset against the number of communication rounds for
moderate heterogeneity setting with b = 8 and I = 61.

Figure 3. Training loss and testing accuracy for classification on CIFAR-10 dataset against the number of communication rounds for
moderate heterogeneity setting with b = 64 and I = 7.

need to perform excessive computations, thereby slowing
down convergence.

Data and Parameter Settings: We compare the algorithms
for image classification tasks on CIFAR-10 and MNIST
data sets with 100 WNs in the network. For both CIFAR-
10 and MNIST, each WN implements a two-hidden-layer
convolutional neural network (CNN) architecture followed
by three linear layers for CIFAR-10 and two for MNIST.
All the experiments are implemented on a single NVIDIA
Quadro RTX 5000 GPU. We consider two settings, one with
moderate and the other with high heterogeneity. For both
settings, the data is partitioned into disjoint sets among the
WNs. In the moderate heterogeneity setting, the WNs have
access to partitioned data from all the classes but for the
high heterogeneity setting the data is partitioned such that
each WN can access data from only a subset (5 out of 10
classes) of classes. For CIFAR-10 (resp. MNIST), each WN
has access to 490 (resp. 540) samples for training and 90
(resp. 80) samples for testing purposes.

For STEM, we set wt = 1, c = c̄/κ̄2 and tune for κ̄ and
c̄ in the range κ̄ ∈ [0.01, 0.5] and c̄ ∈ [1, 10], respectively
(cf. Theorem 3.1). We note that for small batch sizes κ̄ ∈
[0.01, 0.1], whereas for larger batch sizes κ̄ ∈ [0.3, 0.5]

perform well. We diminish ηt as given in Theorem 3.1 in
each epoch2. For SCAFFOLD and FedAvg, the stepsize
choices of 0.1 and 0.01 perform well for large and smaller
batch sizes, respectively. We use cross entropy as the loss
function and evaluate the algorithm performance under a
few settings discussed next.

Discussion: In Figures 2 and 3, we compare the training
and testing performance of STEM with FedAvg and SCAF-
FOLD for CIFAR-10 dataset under moderate heterogeneity
setting. For Figure 2, we choose b = 8 and I = 61, whereas
for Figure 3, we choose b = 64 and I = 7. We first note
that for both cases STEM performs better than FedAvg
and SCAFFOLD. Moreover, observe that for both settings,
small batches with multiple local updates (Figure 2) and
large batches with few local updates (Figure 3), the algo-
rithms converge with approximately similar performance,
corroborating the theoretical analysis (see Discussion in
Section 1). Next, in Figure 4 we evaluate the performance
of the proposed algorithms on CIFAR-10 with high het-
erogeneity setting for b = 8 and I = 61. We note that
STEM outperforms FedAvg and SCAFFOLD in this setting

2We define epoch as a single pass over the whole data.
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Figure 4. Training loss and testing accuracy for classification on CIFAR-10 dataset against the number of communication rounds for high
heterogeneity setting with b = 8 and I = 61.

Figure 5. Training loss and the testing accuracy for classification on MNIST data set against the number of samples accessed at each WN
for high heterogeneity setting with b = 8.

as well. Finally, with the next set of experiments we empha-
size the importance of choosing b and I carefully. In Figure
5, we compare the training and testing performance of the
algorithms against the number of samples accessed at each
WN for the classification task on MNIST dataset with high
heterogeneity. We fix b = 8 and conduct experiments under
two settings, one with I = 67, and the other with I = 536
local updates at each WN. Note that although a large number
of local updates might lead to fewer communication rounds
but it can make the sample complexity extremely high as
is demonstrated by Figure 5. For example, Figure 5 shows
that to reach testing accuracy of 96 − 97% with I = 67,
STEM requires approximately 5000 − 6000 samples, in
contrast with I = 536 it requires more than 25000 samples
at each WN. Similar behavior can be observed if we fix
I > 1 and increase the local batch sizes. This implies not
choosing the local updates and the batch sizes judiciously
might lead to increased sample complexity.

5. Conclusion
In this work, we proposed a novel algorithm STEM, for
distributed stochastic non-convex optimization with applica-
tions to FL. We showed that STEM reaches an ε-stationary
point with Õ(ε−3/2) sample complexity while achieving
linear speed-up with the number of WNs. Moreover, the
algorithm achieves a communication complexity of Õ(ε−1).
We established a (optimal) trade-off that allows interpola-
tion between varying choices of local updates and the batch
sizes at each WN while maintaining (near optimal) sample
and communication complexities. Our results provide guide-
lines to carefully choose the number of local updates, direc-
tions, and minibatch sizes to achieve the best performance.
The future directions of this work include developing lower
bounds on communication complexity that establishes the
tightness of the analysis conducted in this work.
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