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Abstract
We consider federated learning of an embedding-
based classifier with a metric loss, where each
client has access to the data of only one class and
cannot share embeddings with the server or other
clients. In this setting, each client may not opti-
mize the negative loss term which discriminates
the embeddings between different clients. Train-
ing only with positive loss causes all embeddings
to collapse into a single point. To address this
problem, we propose Federated Metric Learning
(FedMetric), a framework in which clients update
their local models with a metric learning loss to
minimize intra-class variance and maximize inter-
class variance using proxy centers that are shared
by other clients in a randomized way. Our initial
experiments show the effectiveness of FedMetric
on MNIST and CIFAR-10 datasets.

1. Introduction
The problem of training embedding networks has been
widely studied due to its applicability to various tasks such
as identification, verification, retrieval, and clustering (Sny-
der et al., 2017; Yun et al., 2019; Wang et al., 2018a; Cao
& Jain, 2018; Nguyen et al., 2017; Schroff et al., 2015;
Mikolov et al., 2013). Such networks are usually trained
with a loss function that simultaneously minimizes the dis-
tance of instance embeddings of the same class and maxi-
mizes the distance of instance embeddings from different
classes. In recent years, deep neural networks trained with
large data have been used to obtain nonlinear embeddings
(Zhong & Deng, 2019; Guan et al., 2020; Ge & Moh, 2017;
Chung et al., 2018). Collecting large and high-quality data
to train deep networks is, however, generally expensive for
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real-world applications (Zhao et al., 2017; Zhu et al., 2017;
Zhang et al., 2020).

One approach to address the data collection problem is to
train the model in the federated setup, in which a global
model is iteratively updated by aggregating local models
without the need to have direct access to local data (McMa-
han et al., 2017; Bonawitz et al., 2019; Konečnỳ et al., 2016;
Sattler et al., 2019; Karimireddy et al., 2020). We consider
a setting where each client has access to the data of only
one target class and cannot share the embeddings with the
server or other clients. In this setting, the clients can train
the model using only their own embedding vector and, thus,
cannot compute the negative loss term that depends on the
embedding vectors of other users. Training with only the
positive loss function, however, cause all embeddings to
collapse into a single point.

The problem of training embedding networks in federated
setup has been recently explored in different settings. Feder-
ated Averaging with Spreadout (FedAwS) (Yu et al., 2020)
learns an embedding network for multi-class classification in
the federated setup, where each client has access to only pos-
itive labels. In this method, the client embeddings are shared
with the server, where a regularization terms is applied to in-
crease the pairwise distances between embeddings. Another
recent approach is Federated User Verification (FedUV)
(Hosseini et al., 2021), which proposed to use predefined
codewords with maximum pairwise distance as embeddings
and, thus, does not require sharing client embeddings with
the server. FedUV, however, does not take into account the
similarity of clients’ data in training embeddings which are
obtained based on the predefined codewords.

We consider a setting, where clients update their local model
with a metric learning loss that minimizes intra-class vari-
ance and maximizes inter-class variance. For training local
models, clients generate hyperspheres within which all em-
bedding vectors are located. They then train the model
to minimize the overlap between the local hyperspheres.
This approach requires hypersphere centers to be shared
with other users and thus exposes security-sensitive infor-
mation. We instead propose a method, called Federated
Metric Learning (FedMetric), in which clients share the cen-
ter of a proxy hypersphere that includes the true hypersphere.
Here, the proxy hypersphere is set to be bigger than the true
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hypersphere such that the expose of security-sensitive in-
formation is minimized. We show our approach reduces
the exposure of the sensitive embeddings to other users,
while maintaining the performance of the model. We show
the effectiveness of our method on MNIST and CIFAR-10
datasets.

2. Background
2.1. Federated learning

Federated learning (FL) is a method to train a model across
distributed edge (client) devices without sharing local data
information. During each round of learning process, the
server broadcasts current global model to selected clients.
After the clients update their local models from the shared
global model using local data, local models are uploaded
to to server. Finally, the server aggregates the local models
to update the global model. The most commonly-used al-
gorithm is Federated Averaging (FedAvg) (McMahan et al.,
2017). Many federated learning methods consider clas-
sification losses. However, if the class is closely related
with the client, sharing the parameters of the output layer
for classification with other client is not appropriate since
the output parameter contains client-specific information.
This paper considers federated learning of an embedding
networks using a metric-learning based loss.

2.2. Embedding network learning

Let x ∈ X be an input data. An embedding network
gθ(·) : X → Rd takes x as input and outputs an embed-
ding vector gθ(x). This embedding network can be learned
with classification losses or metric learning losses. For the
classification loss, softmax-based cross entropy loss and
margin-based losses (Liu et al., 2017; Wang et al., 2018b;
Deng et al., 2019) can be used. For the metric learning loss,
contrastive loss (Chopra et al., 2005), triplet loss (Schroff
et al., 2015), and prototypical loss (Snell et al., 2017) can
be used.

2.3. Learning an embedding network with access to
only positive data

DeepSVDD Deep Support Vector Data Description
(DeepSVDD) (Ruff et al., 2018) was proposed for anomaly
detection. It trains an embedding network by minimizing the
volume of a hypersphere that encloses the instance embed-
dings of the data. Minimizing the volume of the hypersphere
forces the network to extract the common factors of varia-
tion since the network needs to closely map the data points
to the center of the hypersphere. To prevent a hypersphere
collapse solution, they use neural networks without bias
terms or bounded activation functions. The loss function of

DeepSVDD is as follows:

d(gθ(xi), C)
2, (1)

where d(·, ·), xi, and C are a distance measure, the i-th
input, and the target center obtained by average of instance
embeddings, respectively.

FedAwS FedAwS (Yu et al., 2020) was proposed for train-
ing an embedding network for multi-class classification in
the federated setting, where each client has access to the only
positive data. The embedding network can be shared among
clients. However, class embeddings cannot be shared with
other clients. They introduced a regularization to spread out
class embeddings at server. The loss function of FedAwS is
based on the following contrastive loss:

d(gθ(xi), wy)
2+λ

∑
c6=y

(max{0, ν−d(gθ(xi), wc)})2, (2)

where y, {wi}Ci=1, and ν are the target label, class embed-
dings, and margin, respectively. The loss function cannot be
optimized at each client since each client does not have ac-
cess to client embeddings of other clients. The second term
is replaced with

∑
c∈[C′]

∑
c′ 6=c(max{0, ν−d(wc, wc′)})2.

Now this term can be optimized at the server because it is
not a function of local data anymore. FedAwS still requires
sharing class embedding with the server, which may leads
privacy issues.

FedUV FedUV (Hosseini et al., 2021) was proposed to
eliminate the requirement of sharing class embeddings with
the server. Error correction codewords with known mini-
mum distance are generated and used for class embeddings.
In the paper, authors proved that each client can learn a
local model using only the positive loss given the spread-out
codewords. The loss function of FedUV is as follows:

max

(
0, 1− 1

c
vTy σ(Wgθ(xi))

)2

, (3)

where c, vy, and W are scaling factor, codeword, and lin-
ear projection matrix, respectively. However, FedUV has
limitation to model the similarity between clients in the em-
bedding space since the codewords are predefined without
consideration of local data.

3. Method
3.1. Algorithm

We propose Federated Metric Learning (FedMetric), a
framework in which clients update local models with a
metric learning loss to minimize intra-class variance and
simultaneously maximize inter-class variance with respect
to the centers of proxy hyperspheres generated by each of
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Figure 1. An illustration of the proposed FedMetric: the true hyper-
sphere of client i (black dashed circle) and the proxy hypersphere
of client j (green dashed circle) with the center Aj . The FedMetric
tries to learn the network such that the distance between any point
in client i and Aj should be larger than at least Rj +Dj .

the client. Instead of sharing information about true hyper-
spheres enclosing the instance embeddings of local data, we
consider a proxy hypersphere which is bigger enough to
include the true hypersphere and also lead to minimize the
expose of security-sensitive information, i.e. the local data
used to train a local embedding network such that the intra-
class variation is minimized. With this proxy hypersphere,
we try to maximize the inter-class variations between differ-
ent clients.

Figure 1 shows an example of true hyperspheres and a proxy
hypersphere for FedMetric. We want to minimize overlap
between hyperspheres of different classes. However, sharing
the true hypersphere leads privacy leakage. In FedMetric,
instead of sharing the true hypersphere, a proxy hypersphere
characterized by center Aj and radius Rj +Dj including
the true hypersphere is shared with client i. Here Dj is the
distance between true center and the proxy center, and Aj

is generated on the hypersphere with radius Dj (refer the
details in Algorithm 1). Now, client i learns its embeddings
to be located outside the shared proxy hypersphere.

The proposed FedMetric is based on the following loss
function including a positive loss and a negative loss,

l(θ, b) = lpos(θ, b) + λ× lneg(θ, b), (4)

where b represents a mini-batch of local data, and λ repre-
sents a scaling factor for the negative loss.

The positive loss function lpos is generally optimized to
minimize intra-class variation. The positive loss function is
defined as follows:

lpos(θ, b) =
∑
i∈b

d(gθ(xi), C
k), (5)

where d represents a distance between an embedding gθ(xi)
and a Ck representing the center of the local hypersphere.

Algorithm 1 Federated Metric Learning
Initialize global model θ0

for each global round t do
select M clients
for each client k of the selected clients do
θkt , A

k
t ,M

k
t = Client Update(θ, {Aj}, {M j})

Client Update(θ, {Aj}, {M j})
Global mode update by averaging
θt =

1
M

∑
k θ

k
t

end for
end for
function Client Update(θ, {Aj}, {M j})

Calculate local center Ck by averaging the instance
embeddings based on the θ
for local batch b do
θ ← θ − η∇l(θ, b)
l(θ, b) = lpos(θ, b) + λ× lneg(θ, b)
lpos(θ, b) =

∑
i∈b d(gθ(xi), C

k)
lneg(θ, b) =

∑
i∈b
∑
j 6=kmax(M j −

d(gθ(xi), A
j), 0)

end for
Calculate local radius: Rk = maxi(d(gθ(xi), C

k)
Generate proxy center Ak

Ak = Ck +X , where X a random sample from uni-
form distribution on surface of hyper-sphere character-
ized by zero center and Dk radius
RETURN θ, Ak, (Rk +Dk)

end function

The negative loss function is generally optimized to maxi-
mize inter-class variation. The negative loss is defined as
follows:

lneg(θ, b) =
∑
i∈b

∑
j 6=k

(max{0,M j − d(gθ(xi), Aj)})2,

(6)
where M j = Rj + Dj represents the radius of a proxy
hypersphere for the j-th client. It is used as the margin for
the negative loss, and there is no loss when an embedding
vector is located outside of a proxy hypersphere of the j-th
client.

The proposed learning procedure is described in Algorithm
1 based on FedAvg (McMahan et al., 2017). In FedMetric,
clients share not only the updated local model but also proxy
center and margin with servers and other clients. At the
client side, the local center is iteratively updated using the
mean of instance embeddings in the local batch. After local
model update, a proxy center is generated by adding random
sample on a hypersphere with radius Dk and zero center to
the local center Ck.
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3.2. Security analysis of the shared vector

Given a shared hypersphere with center A and radius
M = R+D including the true hypersphere with center C
and radius R, we can calculate the probability of the risk
exposing the security-sensitive information. This can be cal-
culated by the ratio of true hypersphere volume to the proxy
hypersphere volume. The d-dimensional hypersphere vol-
ume with R radius is π(d/2)

Γ(d/2+1)R
d. Now, the ratio is Rd

(R+D)d
.

For example, when R = 0.1, D = 0.1, d = 128, the proba-
bility is 2.9× 10−39. We can easily reduce this probability
by increasing the embedding vector dimensionality.

4. Experiments
4.1. Experimental Setup

We evaluate our methods on MNIST (LeCun et al., 2010)
and CIFAR-10 (Krizhevsky et al., 2009) datasets. Table
1 shows the statics of the used datasets. To evaluate the
performance of the proposed methods, we use the area under
the receiver operating characteristic (AUROC) measure.

We train the embedding networks with 1 local iteration
and 10, 000 rounds for MNIST and 100, 000 rounds for
CIFAR-10. At each round, all clients are participated for
global model update. We use embedding networks based on
LeNet used in (Ruff et al., 2018) for MNIST and ResNet-
32 used in (Yu et al., 2020) for CIFAR-10. In the models,
we use Group Normalization (GN) (Wu & He, 2018) in-
stead of batch normalization (BN) (Ioffe & Szegedy, 2015)
following the observations that BN does not work well in
non-i.i.d. data setting of federated learning (Hsieh et al.,
2019). The LeNet-based model generates 32-dimensional
embedding vector, and the ResNet-32-based models gener-
ates 64-dimensional embedding vector. Local models are
trained with a SGD optimizer with the learning rate of 0.1
and the mini-batch size of 16. We compared our method
FedMetric with DeepSVDD, FedAwS and FedUV. Note
that DeepSVDD is not FL method and was proposed for
one-class classification.

4.2. Results

Table 2 shows average AUROCs in % per method for one-
class experiments on MNIST and CIFAR-10. We compared
FedMetric with DeepSVDD, FedAwS, and FedUV. Also,
in FedMetric, we compared three loss functions, 1) pos:
only positive loss, 2) pos+neg(proxy): positive and negative
loss with the proxy centers, and 3) pos+neg(true): posi-
tive and negative loss with the true centers. The second
loss is our main proposal, and the the performance using
the third loss function is our upper-bound performance. In
DeepSVDD, each client has different model while feder-
ated learning methods use a single global model for evalua-

Figure 2. Ablation study of the negative loss weight on CIFAR-10.

tion. The performances are taken from the paper (Yu et al.,
2020). FedMetric with pos showed better performance than
DeepSVDD due to the use of shared information from other
clients. By using positive loss and negative loss with the
proxy centers, we obtained better performance. As shown
in the table, FedMetric using positive loss with negative loss
with the true centers is showed better performance than our
proposed method. However, note that there is privacy issue
when sharing the true centers with other clients.

Figure 2 shows AUROCs on the CIFAR-10 dataset by chang-
ing the negative loss weight λ. λ = 0 means the case using
only positive loss. We tested FedMetric using lambda values
from 0.1 to 1.0 with 0.1 interval. We compared the FedMet-
ric of proxy center and true center with the FedMetric of
only positive loss which already shows good performance.
FedMetric with proxy center shows better performance than
FedMetric with only positive loss when we choose lambda
appropriately. As expected, FedMetric with true center gen-
erally shows better performance than FedMetric with proxy
center.

Figure 3 shows AUROCs on the CIFAR-10 dataset by chang-
ing the distance Dk of the proxy center. Here, the distance
was defined as Dk = s × Rk where s is a hyperparame-

Figure 3. Ablation study of the proxy center distance scaling factor
on CIFAR-10.
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Table 1. Datasets used for experiments.

Name # of Classes (Clients) # of samples per class input

MNIST 10 6000 28x28 gray-scale image
CIFAR-10 10 5000 32x32 colour image

Table 2. Average AUROCs in % per method for one-class classification on MNIST and CIFAR-10.

Dataset DeepSVDD FedMetric FedAwS FedUV
pos pos+neg(proxy) pos+neg(true)

MNIST 94.8 99.4 99.6 99.6 99.6 99.7
CIFAR-10 64.8 94.0 94.2 94.4 94.1 87.2

ter. When s = 0, the shared proxy centers are equal to
the true centers. If the distance increases, the performance
decreases but it helps to reduce the privacy concern. When
s < 1.0, the shared center can be used to attack the client
since the shared vector is located inside the hypersphere of
the client. So we need to set s > 1.0. We can choose proper
s by considering the trade-off between the performance and
privacy.

As shown in Table 2, the proposed FedMetric shows a
big performance improvement over DeepSVDD, especially
when CIFAR-10 dataset was used. And, using both positive
and negative loss terms is better than using only positive
term, but the performance gap is not remarkable. We think
the main reason is due to the small-sized dataset of easy
classes in which the proposed FedMetric already obtained
quite good performance with only positive loss term. With
a bigger dataset and more confusable categories, adding the
negative loss term would be more effective, and we will
further explore and investigate on this in the future work.

5. Conclusion
We proposed FedMetric, a framework for learning embed-
ding networks with a metric loss in the federated setting,
where each client has access to the data of only a single
target class. In FedMetric, each client learns a local model
by minimizing positive and negative losses with local data
and the shared proxy centers. We showed the effectiveness
of the proposed method empirically. For the future work,
we plan to apply our methods to large-scale datasets.
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Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L.
Sphereface: Deep hypersphere embedding for face recog-
nition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 212–220, 2017.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In ICLR, 2017.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,
J. Distributed representations of words and phrases and
their compositionality. arXiv preprint arXiv:1310.4546,
2013.

Nguyen, K., Fookes, C., Ross, A., and Sridharan, S. Iris
recognition with off-the-shelf cnn features: A deep learn-
ing perspective. IEEE Access, 2017.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Sid-
diqui, S. A., Binder, A., Müller, E., and Kloft, M. Deep
one-class classification. In International conference on
machine learning, pp. 4393–4402. PMLR, 2018.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-iid data. IEEE Trans. neural networks and
learning systems, 31(9):3400–3413, 2019.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815–823, 2015.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Snyder, D., Garcia-Romero, D., Povey, D., and Khudanpur,
S. Deep neural network embeddings for text-independent
speaker verification. 2017.

Wang, F., Cheng, J., Liu, W., and Liu, H. Additive margin
softmax for face verification. 2018a.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J.,
Li, Z., and Liu, W. Cosface: Large margin cosine loss
for deep face recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 5265–5274, 2018b.

Wu, Y. and He, K. Group normalization. In ECCV, 2018.

Yu, F., Rawat, A. S., Menon, A., and Kumar, S. Federated
learning with only positive labels. In International Con-
ference on Machine Learning, pp. 10946–10956. PMLR,
2020.

Yun, S., Cho, J., Eum, J., Chang, W., and Hwang, K. An end-
to-end text-independent speaker verification framework
with a keyword adversarial network. 2019.

Zhang, S., Huang, Z., Zhou, H., and Zhou, Z. Sce: Scalable
network embedding from sparsest cut. In SIGKDD, pp.
257–265, 2020.

Zhao, W., Guan, Z., Chen, L., He, X., Cai, D., Wang, B., and
Wang, Q. Weakly-supervised deep embedding for product
review sentiment analysis. IEEE Trans. Knowledge and
Data Engineering, 30(1):185–197, 2017.

Zhong, Y. and Deng, W. Adversarial learning with margin-
based triplet embedding regularization. In ICCV, pp.
6549–6558, 2019.

Zhu, J., Shan, Y., Mao, J., Yu, D., Rahmanian, H., and
Zhang, Y. Deep embedding forest: Forest-based serving
with deep embedding features. In SIGKDD, pp. 1703–
1711, 2017.


