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Abstract

Random Reshuffling (RR), which is a variant of
Stochastic Gradient Descent (SGD) employing
sampling without replacement, is an immensely
popular method for training supervised machine
learning models via empirical risk minimization.
Due to its superior practical performance, it is
embedded and often set as default in common
machine learning software. Under the name Fe-
dRR, this method was recently shown to be ap-
plicable to federated learning (Mishchenko et al.,
2021), with superior performance when compared
to common baselines such as Local SGD. Inspired
by this development, we design three new algo-
rithms with the aim of further improving FedRR:
compressed FedRR, and two variance reduced
extensions: one for taming the variance coming
from shuffling, and the other for taming the vari-
ance due to compression. The variance reduction
mechanism for compression allows us to elimi-
nate dependence on the compression parameter,
and applying additional controlled linear perturba-
tions for Random Reshuffling, introduced by Ma-
linovsky et al. (2021) helps to eliminate variance
at the optimum. We provide the first analysis
of compressed local methods under standard as-
sumptions without bounded gradient assumptions
and for heterogeneous data, overcoming the limi-
tations of the compression operator. We corrob-
orate our theoretical results with experiments on
synthetic and real data sets.

1. Introduction
In modern machine learning world the main approach for
training supervised machine learning models is Empirical
Risk Minimization. While the ultimate goal of supervised
learning is to train models that generalize well to unseen
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data, in practice only a finite data set is available during
training. This leads to the following finite-sum optimization
problem

min
x∈Rd

[
f(x) =

1

M

M∑
m=1

gm(x)

]
, (1)

where each function we also have finite-sum structure

gm =
1

n

n∑
i=1

fm,i(x).

Big machine learning models are typically trained in a dis-
tributed setting. The training data is distributed across sev-
eral workers, all of which compute local updates and then
communicate them to the server. We are particularly inter-
ested in the Federated Learning setting. Federated Learn-
ing (Konečnỳ et al., 2016) is a subarea of distributed ma-
chine learning, where the number of devices n is enormous.
Usually, millions and local devices are heterogeneous to lo-
cal data, computational and memory resources. Also, users
want to keep their privacy, so the algorithm should do train-
ing locally. Moreover, communication between workers and
server should be conducted via a trusted aggregation server,
which is very expensive.

Communication as the bottleneck. Nowadays, in liter-
ature, we have two strategies to overcome communica-
tion issue in federated learning. The first one is com-
munication compression, where our goal is to reduce the
number of communicated bits using gradient compression
scheme (Mishchenko et al., 2019; Gorbunov et al., 2020)
and compressed iterates (Khaled & Richtárik, 2019; Chraibi
et al., 2019). There are many compression techniques
such as quantization (Alistarh et al., 2017; Bernstein et al.,
2018; Ramezani-Kebrya et al., 2019), sparsification (Aji &
Heafield, 2017; Lin et al., 2017; Wangni et al., 2017; Alis-
tarh et al., 2018) and other approaches (Shamir et al., 2014;
Vogels et al., 2019; Wu et al., 2018). The second strategy
to tackle this issue is increasing the total number of local
steps between the communication rounds. The most popular
algorithm — FedAvg (McMahan et al., 2017)— is based
on this idea. Many papers provide theoretical justifications
for special cases of FedAvg such as local GD (Khaled et al.,
2019) and local SGD (Khaled et al., 2020; Gorbunov et al.,
2020; Stich, 2018; Lin et al., 2018). The natural union
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of communication compression and local computations is
presented in Basu et al. (2020); Haddadpour et al. (2021).
However, the theory provided in these papers is limited due
to unrealistic assumptions.

Sampling without replacement. Stochastic first-order al-
gorithms, in particular, have attracted a lot of attention in
the machine learning world. Of these, stochastic gradient
descent (SGD) is perhaps the best known and the most ba-
sic. SGD has a long history (Robbins & Monro, 1951)
and is therefore well-studied and well-understood (Gower
et al., 2019). However, methods based on data permuta-
tions (Bottou, 2009), when data points are shuffled ran-
domly and processed in order, without replacement, show
better performance than SGD (Recht & Ré, 2013). Also,
this method has software implementation advantages since
these methods are friendly to cache locality (Bengio, 2012).
The most popular model in this class is Random Reshuf-
fling (Recht & Ré, 2012). Shuffle-Once (Safran & Shamir,
2020) uses a similar approach, but shuffling occurs only
once, at the very beginning, before the training begins. Ran-
dom Reshuffling and Shuffle-Once have a long history, and
many theoretical works try to show advantages of Random
Reshuffling (Gürbüzbalaban et al., 2019; Haochen & Sra,
2019; Nagaraj et al., 2019) and Shuffle Once (Rajput et al.,
2020).

Federated Random Reshuffling. Recent advances of
Mishchenko et al. (2020) and providing extension for Feder-
ated Learning (Mishchenko et al., 2021) allow us to consider
this technique as a particular variant of FedAvg with a fixed
number of local computations and sampling without replace-
ment.

Variance Reduction. Compression operators help to re-
duce the number of transmitted bits, but at the same time, it
starts to be a source of variance, which increase the neigh-
bourhood of the optimal solution. This variance can suffi-
ciently slow down the algorithm. In order to overcome this
challenge, we need to use a variance reduction mechanism.
The idea of this approach is based on shifted compression
operator, and firstly it was proposed for compressed gra-
dients (Mishchenko et al., 2019). For compressed iterates,
the variance reduction mechanism was proposed in Chraibi
et al. (2019). Moreover, stochastic first-order become to be
a source of variance due to their random nature. Hopefully,
there is another variance reduction mechanism that can help
with this type of variance. There are many methods which
use sampling with replacement such as SVRG (Johnson &
Zhang, 2013), L-SVRG (Kovalev et al., 2020),SAGA (De-
fazio et al., 2014a),SAG (Roux et al., 2012),Finito(Defazio
et al., 2014b) etc. For permutation-based algorithms, we
have only a few variance-reduced methods (Ying et al., 2019;
Park & Ryu, 2020; Mokhtari et al., 2018). In a recent paper
of Malinovsky et al. (2021) introduced linear perturbation

reformulation that allows getting better rates for variance
reduced Random Reshuffling.

2. Contributions
In this section, we outline our work’s key contributions and
offer explanations and clarifications regarding some of the
development.

Compressed FedRR. We propose first method which com-
bine three ideas: compression, local steps and sampling
without replacement. This is compressed federated random
reshusffling. Basic approach is to apply compression op-
erator to the iterates after each epoch and then aggregate
compressed updates. Applying compression to the iterates
can sugnificantly worsen convergence properties. We prove
the following rate:

E‖xT − x∗‖2 ≤ (1− γµ)
nT
2 E‖x0 − x∗‖2

+
2ω

M

1

γµ

1

M

M∑
m=1

‖xn∗,m‖2

+
2

µ

(
1 +

2ω

M

)
γ2L

1

M

M∑
m=1

(
‖∇Fm(x∗)‖2 +

n

4
σ2
∗,m

)
As we can see, we have a part with linear rate: (1 −
γµ)

nT
2 E‖x0−x∗‖2. Also there are three sources of variance

in the optimum. The first one is 2ω
M

1
γµ

1
M

∑M
m=1 ‖xn∗,m‖2

and it caused by compression. It is equal to zero
only if ω = 0. This term cannot be elimated by
decreasing step-sizes strategies. The second term is
2
µ

(
1 + 2ω

M

)
γ2L 1

M

∑M
m=1

n
4σ

2
∗,m. This source of variance

is caused by stochasticity of Random Reshuffling method.
This variance can be decreased by decreasing step-sizes.
The third term is 2

µ

(
1 + 2ω

M

)
γ2L 1

M

∑M
m=1 ‖∇Fm(x∗)‖2.

This source of variance is caused by heterogeneity of data.
In other words, if we have the same optimum for all func-
tions Fm(x), we can get rid of this term. In heterogenious
regime we need to use additional mechanism for controlling
client drift such as SCAFFOLD (Karimireddy et al., 2019).

Variance-reduced Compressed FedRR. In the previous
section, it was shown that using compressed iterates causes
additional variance, which cannot be vanished by decreasing
step-sizes strategies. Moreover, it forces us to have an ad-
ditional assumption on the compression operator. We need
to have very small compression parameter ω ≤ Mγµε

2
M ‖xn∗,m‖2

.
In order to fix it, we propose Variance-reduced compressed
FedRR (FedCRR-VR) that utilize shifted compressed up-
dates with learning shifts. The similar mechanism is used in
Mishchenko et al. (2019) and Gorbunov et al. (2020).

Double Variance-reduced Compressed FedRR. We pro-
pose a modification of Variance-reduced Compressed Fed-
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erated Random Reshuffling, which allows eliminating vari-
ance caused by stochasticity. We armed Variance-reduced
Compressed FedRR with linear permutation approach pro-
posed by Malinovsky et al. (2021). Now we get both vari-
ance reduction mechanisms in one algorithm.

3. Preliminaries
3.1. L-smooth and µ-strongly convex functions

Before introducing our convergence results, let us first for-
mulate all concepts that we use throughout the paper. Firstly,
we consider a class of mu-strongly convex and L-smooth
functions.

Definition 1. A differentiable function f is µ-strongly con-
vex if

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2

for µ > 0 and all x, y.

Definition 2. A differentiable function f is L-smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

for some L > 0 and all x, y.

There is the first assumption that we use in all theorems.

Assumption 1. Each fm,i is µ-strongly convex and L-
smooth.

We also need to define Bregman divergence, which is used
many times in analysis.

Definition 3. The Bregman divergence with respect to f is
the mapping Df : Rd × Rd → R defined as follows:

Df (x, y)
def
= f(x)− f(y)− 〈∇f(y), x− y〉.

3.2. Compression operator

In order to overcome communication issues, we apply a
compression operator to the iterates. Now we are going to
extend Federated Random Reshuffling using compression.
Let us define the concept of compressors.

Definition 4. We say that a randomized map C : Rd → Rd
is in class Bd(ω) if there exists a constant ω ≥ 0 such that
the following relations hold for all x ∈ Rd:

E [C(x)] = x, E
[
‖C(x)‖2

]
≤ (ω + 1)‖x‖2.

Assumption 2. All compression operators are in class
Bd(ω).

This class of compressor operators is classical in litera-
ture (Mishchenko et al., 2019; Horvath et al., 2019; Basu
et al., 2020).

3.3. Random Reshuffling, Shuffle Once

In order to conduct analysis for sampling without replace-
ment we need to establish specific notions. We sam-
ple a random permutation {π0, π1, . . . , πn−1} of the set
{1, 2, . . . , n}, and proceed with n iterates of the form
xi+1
t,m = xit,m − γ∇fm,πi

(
xit,m

)
at each machine locally.

We also consider option when we have only one random
permutation, at the very beginning, and then algorithm uses
this permutation during the whole process.

For a constant stepsize and a fixed permutation, we define
intermediate limit point:

xi∗
def
= x∗ − γ

i−1∑
j=0

∇fπj (x∗) , i = 1, . . . , n− 1.

To measure the closeness between x∗ and xn∗ we use defini-
tion from Mishchenko et al. (2021) of Shuffling radius.
Definition 5. For given a stepsize γ > 0 and a random
permutation π of {1, 2, . . . , n} shuffling radius is defined by

σ2
rad

def
= max

i=1,...,n−1

[
1

γ2
Eπ
[
Dfπi

(
xi∗, x∗

)]]
.

We also need to define the most popular parameter for
method’s stochastisity.
Definition 6. Variance at the optimum:

σ2
∗

def
=

1

n

n∑
i=1

‖∇fi (x∗)−∇f (x∗)‖2 .

The shuffling radius for permutation-based algorithms is
natural, and it is more convenient to work with this concept.
However, we need to have an upper bound in terms of σ2

∗
to compare different methods. To get an upper bound for
shuffling radius, we need to use a lemma in Mishchenko
et al. (2020) that bounds variance of sampling without re-
placement.
Theorem 1. For any stepsize γ > 0 and any random per-
mutation π of {1, 2 . . . , n} we have

σ2
rad ≤

Lmax

2
n

(
n ‖∇f (x∗)‖2 +

1

2
σ2
∗

)
.

In case when we have only one node we obtain that
‖∇f (x∗)‖2 = 0. However, in multuple node case we will
need this term.

3.4. Lifted problem reformulation

Let us consider a bigger product space by introducing
dummy variables and the constraint x1 = x2 = . . . = xM .
We need to define regularizer for this reformulation:

ψ (x1, . . . , xM ) =

{
0, x1 = · · · = xM
+∞, otherwise .
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Table 1. Comparison of the main features of our algorithms and results with other methods with compression.
Feature Variance

reduction for
compression

Variance
reduction for
stochasticity

Variance
reduction for
client-drift

RR(1) No additional
assumption

Communication complexity(2)

QSPARSE (Basu
et al., 2020)

7 3 3 7 7(3) O
(
κ(ω+1)√

ε

)

FedCOMGATE
(Haddadpour et al.,
2021)

3 3 3 7 7(4) Õ
(
κ( ω
M

+ 1)
)

DIANA(Mishchenko
et al., 2019)

3 7 7 7 3 O

(
κmax

{
V 0,

(1−αp)σ2
µLnαp

}
1
ε

)

FedCRR 7 7 7 3 7(5) Õ
((

κ +
√
κ(σcl+σst)

µ
√
ε

))
(6)

FedCRR-VR 3 7 7 3 3 Õ

 (ω+1)
(
1− 1

κ

)n(
1−
(
1− 1

κ

)n)2 +
√
κ(σcl+σst)

µ
√
ε



FedCRR-VR-2 3 3 7 3 7(7) Õ

 (ω+1)

(
1− 1

κ
√
κn

)n
2(

1−
(
1− 1

κ
√
κn

)n
2

)2 +
√
κ(σcl)

µ
√
ε


(1) Sampling without replacement (Random Reshuffling).
(2) Õ notation ignores logarithmic factors.
(3) Bounded second moment: E

[
‖∇fi (x)‖22

]
≤ G2

1. Contractive compressor assumption: E
[
‖x− C(x)‖22

]
≤ (1 − γ)‖x‖22 for

γ ∈ (0, 1].

(4) Assumption that for all x1, . . . , xn ∈ Rd the compressor C satisfies E
[∥∥ 1

n

∑n
i=1 C (xj)

∥∥2 − ∥∥C ( 1
n

∑n
i=1 xj

)∥∥2] ≤ G2.

Classical compression operators like RandK and l2-quantization on Rd does not satisfy this condition. As counterexample we can setn = 2

and x2 = −x1 = t · (1, 1, . . . , 1)> with arbitrary large t > 0.
(5) Small compression operator: ω ≤ Mγµε

2
M
‖xn∗,m‖

2 .

(6) Client drift: σcl = 1
M

∑M
m=1 ‖Fm(x∗)‖, sum of local variances:

∑M
1

√
n
2 σ∗,m

(7) Big data regime: n > log
(

1
1−δ2

)(
log
(

1
1−γµ

))−1
, where 0 < δ < 1.

Using this regularizer, we can establish the reformulated
problem:

min
x1,...,xM∈Rd

1

nM

M∑
m=1

Fm (xm) + ψ (x1, . . . , xM )

Fm(x) =

n∑
j=1

fmj(x).

For this reformulated problem we need to have an upper
bound for shuffling radius. First we need to define variance
of method’s stochastisity in distributed case.

Definition 7. Variance of local gradients:

σ2
m,∗

def
=

1

n

n∑
j=1

∥∥∥∥∇fmj (x∗)−
1

n
∇Fm (x∗)

∥∥∥∥2 .
Now we need to use a lemma from (Mishchenko et al., 2021)
to bound shuffled radius for the reformulated problem:

Lemma 1. The shuffling radius σ2
rad of lifted problem is

upper bounded by

σ2
rad ≤ L

M∑
m=1

(
‖∇Fm (x∗)‖2 +

n

4
σ2
m,∗

)
.

We can see that there are two parts of variance. First
one depends on the sum of local variances

∑M
m=1 σ

2
m,∗.

The second part depends on sum of local gradient norms∑M
m=1 ‖∇Fm (x∗)‖2. Both of these terms appear in analy-

sis of local SGD (Khaled et al., 2020).

4. Compressed Federated Random
Reshuffling

In this section, we propose a direct application of com-
pressed iterates to federated Random Reshuflling. In this
procedure server distributes the current point to workers,
then each worker computes the full epoch according to its
sampled permutation locally. After that, the final iterate
xnt,m is compressed and transmitted to the server, where all
updates are aggregated by taking the average. The following
theorem states how the convergence of FedCRR depends on
compression parameter, shuffling radius and client drift.

Theorem 2. Suppose that Assumption 2 and Assumption 1
hold. Additionally assume that compression parameter is

sufficiently small: ω ≤ M
2

1−(1−γµ)
n
2

(1−γµ)
n
2

. Then provided the

stepsize satisfies γ ≤ 1
L the iterates generated by FedCRR
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Algorithm 1 Federated Compressed Random Reshuffling
(FedCRR) and Shuffle-Once (FedCSO)

1: Parameters: Stepsize γ > 0, initial vector x0 = x00 ∈
Rd, number of epochs T

2: For each m, sample permutation
π0,m, π1,m, . . . , πn−1,m of {1, 2, . . . , n} (Only
FedCSO)

3: for epochs t = 0, 1, . . . , T − 1 do
4: for m = 1, . . . ,M locally in parallel do
5: x0t,m = xt
6: Sample permutation π0,m, π1,m, . . . , πn−1,m of

{1, 2, . . . , n} (Only FedCRR)
7: for i = 0, 1, . . . , n− 1 do
8: xi+1

t,m = xit,m − γ∇fπi,m(xit,m)
9: end for

10: qt,m = C(xnt,m)
11: end for
12: xt+1 = 1

M

∑M
m=1 qt,m;

13: end for

or FedCSO (Algorithm 1) satisfy

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)

nT
2 ‖x0 − x∗‖2

+
2

µ
γ2Lmax

1

M

M∑
m=1

(
‖Fm(x∗)‖2 +

n

4
σ2
∗,m

)
+

2ω

M

1

γµ

1

M

M∑
m=1

‖xn∗,m‖2.

We can see that the last term makes the largest contribution
to the size of the neighborhood and decreasing stepsizes
cannot help. Now we establish communication complexity.

Corollary 1. Let the assumptions in the Theorem 2 hold.
Also assume that ω ≤ Mγµε

2
M ‖xn∗,m‖2

. Then the communication
complexity of Algorithm 1 is

T = Õ
((
κ+

√
κ

µ
√
ε
∆
)

log
(
1
ε

))
,

where ∆ = 1
M

∑M
m=1 (‖∇Fm(x∗)‖+

√
nσ∗,m)

5. Variance Reduced Compressed Federated
Random Reshuffling

In this section, we introduce a variance reduction mech-
anism for compression in order to upgrade Algorithm 1.
The main part of the algorithm remains the same. How-
ever, after each epoch, we apply the compression operator
to the difference between local iterates and learning shifts.
After that, at each node, we compute updates of learning
shifts. To control the learning process of shifts, we use
additional parameter α. To get convergence we need to

Algorithm 2 Variance Reduced Federated Compressed
Random Reshuffling (FedCRR-VR) and Shuffle-Once
(FedCSO-VR)

1: Parameters: Stepsize γ > 0, initial vector x0 = x00 ∈
Rd, number of epochs T

2: For each m, sample permutation
π0,m, π1,m, . . . , πn−1,m of {1, 2, . . . , n} (Only
FedCSO-VR)

3: for epochs t = 0, 1, . . . , T − 1 do
4: for m = 1, . . . ,M locally in parallel do
5: x0t,m = xt
6: Sample permutation π0,m, π1,m, . . . , πn−1,m of

{1, 2, . . . , n} (Only FedCRR-VR)
7: for i = 0, 1, . . . , n− 1 do
8: xi+1

t,m = xit,m − γ∇fπi,m(xit,m)
9: end for

10: qt,m = C(xnt,m − ht,m)
11: ht+1,m = ht,m + αqt,m
12: end for
13: xt+1 = (1− η)xt + η 1

M

∑M
m=1 (qt,m + ht,m);

14: end for

satisfy α ≤ 1
ω+1 . After that server aggregates updates by

using a convex combination of previous iterate and average
of updates. To control this convex combination, we use
additional parameter η. The next theorem shows that this
mechanism helps to get rid of compression variance and
the additional assumptions. To get the convergence rate, we
introduce the Lyapunov function.
Theorem 3. Suppose that Assumption 1 and Assumption 2
hold. Then provided the stepsize satisfies γ ≤ 1

L , α ≤ 1
ω+1

and η ≤ min
(

1, (1−(1−γµ)
n)M

12ω(1−γµ)n
)

the iterates generated by
FedCRR-VR or FedCSO-VR (Algorithm 2) satisfy

EΨT ≤
(

1− min (α, η(1− (1− γµ)n))

2

)T
Ψ0

+
2
(
α+ η + 2η2ω

M

)
γ3Lmax

M (α, η(1− (1− γµ)n))

M∑
m=1

δm,

where Lyapunov function is defined as Ψt = ‖xt −
x∗‖2 + 4η2ω

αM
1
M

∑M
m=1

∥∥ht,m − xn∗,m∥∥2 and δm =(
‖∇Fm (x∗)‖2 + n

4σ
2
m,∗

)
.

Now there is no compression variance term anymore. Next
corollary demonstrates communication complexity.
Corollary 2. Let the assumptions in the Theorem 3 hold.
Then the communication complexity of Algorithm 2 is

T = O
((

(ω+1)(1− 1
κ )
n

(1−(1− 1
κ )
n
)
2 +

√
κ

µ
√
ε
∆

)
log
(
1
ε

))
,

where ∆ = 1
M

∑M
m=1 (‖∇Fm(x∗)‖+

√
nσ∗,m) .
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Algorithm 3 Double Variance Reduced Federated Com-
pressed Random Reshuffling (FedCRR-VR-2) and Shuffle-
Once (FedCSO-VR-2)

1: Parameters: Stepsize γ > 0, initial vector x0 = x00 ∈
Rd, number of epochs T

2: For each m, sample permutation
π0,m, π1,m, . . . , πn−1,m of {1, 2, . . . , n} (Only
VR-FedCSO)

3: for epochs t = 0, 1, . . . , T − 1 do
4: for m = 1, . . . ,M locally in parallel do
5: x0t,m = xt
6: yt = xt
7: Sample permutation π0,m, π1,m, . . . , πn−1,m of

{1, 2, . . . , n} (Only D-VR-FedCRR)
8: for i = 0, 1, . . . , n− 1 do
9: g

(
xit,m, yt

)
= ∇fπi,m

(
xit,m

)
−∇fπi,m (yt)+

1
n∇Fm (yt)

10: xi+1
t,m = xit,m − γg

(
xit,m, yt

)
11: end for
12: qt,m = C(xnt,m − ht,m)
13: ht+1,m = ht,m + αqt,m
14: end for
15: xt+1 = (1− η)xt + η 1

M

∑M
m=1 (qt,m + ht,m);

16: end for

We have the same second term, which depends on the sum
of local gradients and local variances. Also, the linear rate
is slightly worse since we can use any compression oper-
ator, and we also need to learn shifts. However, the main
advantage of this method is the possibility of using any
compression parameter ω.

6. Double Variance Reduced Compressed
Federated Random Reshuffling

This section proposes another variance reduction mecha-
nism to eliminate local variances caused by the method’s
stochasticity. To achieve this goal, we need to use inner prod-
uct reformulation introduced by Malinovsky et al. (2021).
We can get an equivalent form of the local function. Let
ai, . . . , an ∈ Rd are vectors that sum to zero

∑n
i=1 ai = 0:

Fm(x) =

n∑
i=1

(fi,m + 〈ai,m, x〉) =

n∑
i=1

f̃i,m. (2)

Let us consider the following gradient estimate:

g
(
xit, yt

)
= ∇fπi,m

(
xit
)
−∇fπi,m (yt) +

1

n
∇Fm (yt) .

Obviously, the sum of these vectors is equal to zero:
n∑
i=1

ai,m = −
n∑
i=1

∇fπi,m (yt) +
1

n

n∑
i=1

∇Fm (yt) = 0.

Now we are ready to formulate the theorem of convergence
guarantees.

Theorem 4. Suppose that Assumption 2 and Assumption 1
hold. Then provided the stepsize satisfies γ ≤ 1

2L

√
µ
nL ,

α ≤ 1
ω+1 , η ≤ min

(
1,

(
1−(1−γµ)

n
2

)
M

12ω(1−γµ)
n
2

)
and 1

2 ≤ (1 −

γµ)
n
2

(
1− (1− γµ)

n
2

)
, the iterates generated by FedCRR-

VR-2 or FedCSO-VR-2 (Algorithm 3) satisfy

EΨT ≤
(

1− 1

2
min

(
α, η(1− (1− γµ)

n
2 )
))T

Ψ0

+
2
(
α+ η + 2η2ω

M

)
γ3L

∑M
m=1

(
‖∇Fm(x∗)‖2

)
M min

(
α, η(1− (1− γµ)

n
2 )
) ,

where Lyapunov function is defined as Ψt = ‖xt − x∗‖2 +
4η2ω
αM

1
M

∑M
m=1

∥∥ht,m − xn∗,m∥∥2 .
We need to use smaller stepsize since we applied variance
reduction mechanism. However, we managed to vanish sum
of local variances. The next theorem shows the communica-
tion complexity of Algorithm 3.

Corollary 3. Let the assumptions in the Theorem 3 hold.
Then the communication complexity of Algorithm 3 is

T = O

 (ω+1)
(
1− 1

κ
√
κn

)n
2(

1−
(
1− 1

κ
√
κn

)n
2

)2 +
√
κ

µ
√
ε
∆′

 log
(
1
ε

) ,

where ∆′ = 1
M

∑M
m=1 (‖∇Fm(x∗)‖) .

7. Experiments
Model. In our experiments we solve the regularized ridge
regression problem, which has the form 1 with fim(x) =
1
2

∥∥Ami,:x− ymi ∥∥2 + λ
2 ‖x‖

2, where Am ∈ Rn×d, ym ∈ Rn
and λ > 0 is regularization parameter. Consider concate-
nated matrix A ∈ Rmn×d. This problem satisfies Assump-

tion 1 for L = maxi ‖Ai,:‖2 + λ and µ =
ρmin(A>A)

n + λ,
where ρmin is the smallest eigenvalue. In our experiments
we set λ = 1

n . In all plots x-axis is the number of commu-
nicated bits, and y-axis is the squared norm of difference
between current iterate and solution.

Hardware and software. We use real datasets from open
LIBSVM corpus (Chang & Lin, 2011) (Modified BSD
License www.csie.ntu.edu.tw/ cjlin/libsvm/) and synthetic
datasets from scikit-learn.datasets (Pedregosa et al., 2011)
(BSD License https://scikit-learn.org). We implemented all
algorithms in Python. All methods were evaluated on a com-
puter with an Intel(R) Xeon(R) Gold 6146 CPU at 3.20GHz,
having 24 cores. You can find more details and additional
experiments in supplementary materials.
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Figure 1. Comparison of distributed methods and versions of Compressed Federated Random Reshuffling: FedCRR, FedCRR-VR,
FedCRR-VR-2 on synthetic datasets with the different data points. In order to have fair competition, we used the same parameter ω for all
methods with compression.

Results. We have a very tight match between our theory
and the numerical results. As we can see, Compressed Fed-
erated Random Reshuffling cannot get appropriate accuracy
since we have a huge compression variance term. It means
that this method can be used only if the required accuracy
is not high. However, we can see that variance-reduced
methods show better convergence. While FedRR-VR has
the same linear rate, the solution’s neighbourhood is smaller
in comparison to other methods. FedRR-VR-2 has a slower
linear rate because of stepsize requirements, but the neigh-
bourhood of the solution is the smallest and allows to get a
much better solution of the problem.

8. Conclusion
In this work, we propose three new algorithms: Compressed
Federated Random Reshuffling and two variance-reduced
variants. These methods are first-of-its-kind algorithms
that include three popular approaches: periodic aggrega-
tion, compressed updates and sampling without replacement.
Moreover, we sequentially applied variance reduction mech-
anisms for compression and then for Random Reshuffling.
We provide the first analysis under general assumptions.
Experimental results confirm our theoretical findings. Thus,
we gain a deeper theoretical understanding of how these al-
gorithms work and hope that this will inspire researchers to
develop further and analyze methods for Federated learning.
In future work, we desire to get rid of the client drift term in

the neighbourhood of the solution and get an algorithm that
will converge linearly to the exact solution. We also want to
allow a method to have partial participation of clients since
it is essential for a Federated Learning setting. We also be-
lieve that our theoretical and practical results can be applied
to other aspects of machine learning and federated learning,
leading to improvements in current and future applications.
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ysis of local gd on heterogeneous data. arXiv preprint
arXiv:1909.04715, 2019.

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter
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Recht, B. and Ré, C. Toward a noncommutative arithmetic-
geometric mean inequality: conjectures, case-studies, and
consequences. In Conference on Learning Theory, pp. 11–
1. JMLR Workshop and Conference Proceedings, 2012.

Recht, B. and Ré, C. Parallel stochastic gradient algorithms
for large-scale matrix completion. Mathematical Pro-
gramming Computation, 5(2):201–226, 2013.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Roux, N. L., Schmidt, M., and Bach, F. A stochastic gradient
method with an exponential convergence rate for finite
training sets. arXiv preprint arXiv:1202.6258, 2012.

Safran, I. and Shamir, O. How good is SGD with random
shuffling? In Conference on Learning Theory, pp. 3250–
3284. PMLR, 2020.

Shamir, O., Srebro, N., and Zhang, T. Communication-
efficient distributed optimization using an approximate
newton-type method. In International conference on
machine learning, pp. 1000–1008. PMLR, 2014.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Vogels, T., Karimireddy, S. P., and Jaggi, M. Powersgd:
Practical low-rank gradient compression for distributed
optimization. arXiv preprint arXiv:1905.13727, 2019.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient sparsi-
fication for communication-efficient distributed optimiza-
tion. arXiv preprint arXiv:1710.09854, 2017.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error com-
pensated quantized sgd and its applications to large-scale
distributed optimization. In International Conference on
Machine Learning, pp. 5325–5333. PMLR, 2018.

Ying, B., Yuan, K., Vlaski, S., and Sayed, A. H. Stochastic
learning under random reshuffling with constant step-
sizes. In IEEE Transactions on Signal Processing, vol-
ume 67, pp. 474–489, 2019.



Random Reshuffling with Variance Reduction: New Analysis and Better Rates

Supplementary materials
A. Basic Facts
Proposition 1. Let f : Rd → R be continuously differentiable and let L ≥ 0. Then the following statements are equivalent:

• f is L-smooth

• 2Df (x, y) ≤ L‖x− y‖2 for all x, y ∈ Rd

• 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖2 for all x, y ∈ Rd

Proposition 2. Let f : Rd → R be continuously differentiable and let µ ≥ 0. Then the following statements are equivalent:

• f is µ-strongly convex

• 2Df (x, y) ≥ µ‖x− y‖2 for all x, y ∈ Rd

• 〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2 for all x, y ∈ Rd

Note that the µ = 0 case reduces to convexity.

Proposition 3. Let f : Rd → R be continuously differentiable and L > 0. Then the following statements are equivalent:

• f is convex and L-smooth

• 0 ≤ 2Df (x, y) ≤ L‖x− y‖2 for all x, y ∈ Rd

• 1
L‖∇f(x)−∇f(y)‖2 ≤ 2Df (x, y) for all x, y ∈ Rd

• 1
L‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉 for all x, y ∈ Rd

Proposition 4 (Jensen’s inequality). Let f : Rd → R be a convex function, x1, . . . , xm ∈ Rd and λ1, . . . , λm be
nonnegative real numbers adding up to 1. Then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif (xi)

Proposition 5. For all a, b ∈ Rd and t > 0 the following inequalities holds:

〈a, b〉 ≤ ‖a‖
2

2t
+
t‖b‖2

2

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2

1

2
‖a‖2 − ‖b‖2 ≤ ‖a+ b‖2

B. General lemmas
B.1. Proposition 1

We need to prove a basic fact which will be used later.

Proposition 6. Let us consider

xn∗,m = x∗ − γ
n−1∑
i=0

∇fπi,m(x∗),

then
1

M

M∑
m=1

xn∗,m = x∗.
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Proof. We start from the definition:

1

M

M∑
m=1

xn∗,m =
1

M

M∑
m=1

(
x∗ − γ

n−1∑
i=0

∇fπi,m(x∗)

)

=
1

M

M∑
m=1

x∗ −
1

M

M∑
m=1

n−1∑
i=0

∇fπi,m(x∗)

= x∗ −∇f(x∗)

= x∗.

B.2. Proof of Theorem 1

For completeness we include the proof of important theorem introduced in Mishchenko et al. (2020).

Proof.

E
[
Dfπi

(
xi∗, x∗

)]
≤ E

[
L

2

∥∥xi∗ − x∗∥∥2] ≤ Lmax

2
E
[∥∥xi∗ − x∗∥∥2]

=
γ2Lmax

2
E


∥∥∥∥∥∥
i−1∑
j=0

∇fπj (x∗)

∥∥∥∥∥∥
2


=
γ2Lmaxi

2

2
E


∥∥∥∥∥∥1

i

i−1∑
j=0

∇fπj (x∗)

∥∥∥∥∥∥
2


=
γ2Lmaxi

2

2
E
[∥∥X̄π

∥∥2] ,
where X̄π = 1

j

∑i−1
j=0Xπj with Xj

def
= ∇fj (x∗) for j = 1, 2, . . . , n . Since X̄ = ∇f (x∗) , by applying Lemma 1 in

(Mishchenko et al., 2020).

E
[∥∥X̄π

∥∥2] = ‖X̄‖2 + E
[∥∥X̄π − X̄

∥∥2] = ‖∇f (x∗)‖2 +
n− i
i(n− 1)

σ2
∗.

It remains to combine both terms and use the bounds i2 ≤ n2 and i(n − i) ≤ n(n−1)
2 , which holds for all

i ∈ {1, 2, . . . , n− 1}, and divide both sides of the resulting inequality by γ2.

B.3. Proof of Lemma 1

Proof. We start from Theorem 1. Then for reformulated problem we have

nσ2
∗

def
=

n∑
i=1

‖∇fi (x∗)−∇f (x∗)‖2 =

n∑
i=1

M∑
m=1

∥∥∥∥∇fmi (x∗)−
1

n
∇Fm (x∗)

∥∥∥∥2 .
For inner sum we have a bound from Mishchenko et al. (2021):

n∑
i=1

∥∥∥∥∇fmi (x∗)−
1

n
∇Fm (x∗)

∥∥∥∥2 ≤ nσ2
m,∗ + ‖∇Fm (x∗)‖2 .

Also, we have

n2 ‖∇f (x∗)‖2 = n2

∥∥∥∥∥ 1

n

n∑
i=1

∇fi (x∗)

∥∥∥∥∥
2

=

M∑
m=1

∥∥∥∥∥
n∑
i=1

∇fmi (x∗)

∥∥∥∥∥
2

=

M∑
m=1

‖∇Fm (x∗)‖2 .

Plugging the last two inequalities back inside the first bound on σ2
rad, we get the lemma’s statement.
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C. Analysis of Algorithm 1
C.1. Proof of Theorem 1

Proof. We start from conditional expectation

E
[
‖xt+1 − x∗‖2 | xnt,m

]
= E

∥∥∥∥∥ 1

M

M∑
m=1

C(xnt,m)− x∗

∥∥∥∥∥
2 ∣∣∣∣xnt,m


≤ E

∥∥∥∥∥ 1

M

M∑
m=1

C(xnt,m)− 1

M

M∑
m=1

xnt,m

∣∣∣∣xnt,m
∥∥∥∥∥
2

+

∥∥∥∥∥ 1

M

M∑
m=1

xnt,m − x∗

∥∥∥∥∥
2

≤ ω

M2

M∑
m=1

‖xnt,m‖2 +
1

M

M∑
m=1

‖xnt,m − xn∗,m‖2

≤ 2ω

M2

M∑
m=1

‖xnt,m − xn∗,m‖2 +
1

M

M∑
m=1

‖xnt,m − xn∗,m‖2 +
2ω

M2

M∑
m=1

‖xn∗,m‖2

≤ (1− γµ)n
(

1 +
2ω

M

)
‖xt − x∗‖2 +

2ω

M

1

M

M∑
m=1

‖xn∗,m‖2

+ 2

(
1 +

2ω

M

)
γ3σ2

rad

n−1∑
j=0

(1− γµ)j

 .

Using tower property we get

E
[
‖xt+1 − x∗‖2

]
= E

[
E
[
‖xt+1 − x∗‖2 | xnt,m

]]
.

Utilizing this property we have

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)n

(
1 +

2ω

M

)
E
[
‖xt − x∗‖2

]
+

2ω

M

1

M

M∑
m=1

E‖xn∗,m‖2

+ 2

(
1 +

2ω

M

)
γ3σ2

rad

n−1∑
j=0

(1− γµ)j

 .

Unrolling this recursion we get

E
[
‖xt+1 − x∗‖2

]
≤
(

(1− γµ)n
(

1 +
2ω

M

))T
‖x0 − x∗‖2

+

T−1∑
i=0

(
(1− γµ)n

(
1 +

2ω

M

))i
2ω

M

1

M

M∑
m=1

E‖xn∗,m‖2

+ 2

T−1∑
i=0

(
(1− γµ)n

(
1 +

2ω

M

))i(
1 +

2ω

M

)
γ3σ2

rad

n−1∑
j=0

(1− γµ)j

 .

Using assumption of compression operator we have

(1− γµ)n
(

1 +
2ω

M

)
≤ (1− γµ)

n
2 .
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Also let us look at last term:

(
1 +

2ω

M

)(T−1∑
i=0

(1− γµ)i

)
≤
T−1∑
i=0

(1− γµ)i
(

1 +
2ω

M

)i

≤
T−1∑
j=0

(
(1− γµ)

(
1 +

2ω

M

))i

≤
T−1∑
i=0

(1− γµ)
nj
2 .

Moreover, we have this bound for geometric sequence:

(
T−1∑
i=0

(1− γµ)
nj
2

)n−1∑
j=0

(1− γµ)j

 ≤ T−1∑
i=0

n−1∑
j=0

(1− γµ)
ni
2 +j ≤ 1

γµ
.

The same bound we have for the second sum:

(
T−1∑
i=0

(1− γµ)
nj
2

)
≤ 1

γµ
.

Finally, we have the following:

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)

nT
2 ‖x0 − x∗‖2 +

2

µ
γ2σ2

rad +
2ω

M

1

γµ

1

M

M∑
m=1

E‖xn∗,m‖2.

Using Lemma we have

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)

nT
2 ‖x0 − x∗‖2 +

2

µ
γ2Lmax

1

M

M∑
m=1

(
‖Fm(x∗)‖2 +

n

4
σ2
∗,m

)
+

2ω

M

1

γµ

1

M

M∑
m=1

E‖xn∗,m‖2.

D. Analysis of Algorithm 2 and Algorithm 3
D.1. Lemma 2

For Algorithm 2 and Algorithm 3 the following inequality holds:

E
[
‖xt+1 − x∗‖2 | xt, ht,m

]
≤ η2

M2
ω

M∑
m=1

‖xnt,m − ht,m‖2 + (1− η)‖xt − x∗‖2 + η
1

M

M∑
m=1

‖xnt,m − xn∗,m‖2



Random Reshuffling with Variance Reduction: New Analysis and Better Rates

Proof. Let us use property of compression operator:

E
[
‖xt+1 − x∗‖2 | xt, ht,m

]
= E

∥∥∥∥∥(1− η)xt + η
1

M

M∑
m=1

(
C(xnt,m − ht,m) + ht,m

)∥∥∥∥∥
2 ∣∣∣∣∣xt, ht,m


= E

∥∥∥∥∥η 1

M

M∑
m=1

C(xnt,m − ht,m)− η 1

M

M∑
m=1

(xnt,m − ht,m)

∥∥∥∥∥
2 ∣∣∣∣∣xt, ht,m


+

∥∥∥∥∥(1− η)xt + η
1

M

M∑
m=1

xnt,m − x∗

∥∥∥∥∥
2

≤ η2

M2
ω

M∑
m=1

‖xnt,m − ht,m‖2 + (1− η)‖xt − x∗‖2 + η
1

M

M∑
m=1

‖xnt,m − xn∗,m‖2.

D.2. Lemma 3

For Algorithm 2 and Algorithm 3 the following inequality holds:

E
[
‖ht+1,m − xn∗,m‖2

]
≤ (1− α)E‖ht,m − xn∗,m‖2 + αE‖xnt,m − xn∗,m‖2.

Proof. Let us start from conditional expectation:

E
[
‖ht+1,m − xn∗,m‖2 | xnt,m, ht,m

]
= E

[∥∥ht,m + αqt,m − xn∗,m
∥∥2 | xnt,m, ht,m]

≤ ‖ht,m − xn∗,m‖2 + 2α
〈
ht,m − xn∗,m,E[qt,m]

〉
+ α2E

[
‖qt,m‖2

]
≤ ‖ht,m − xn∗,m‖2 + 2α

〈
ht,m − xn∗,m, xnt,m − ht,m

〉
+ α2(ω + 1)‖xnt,m − ht,m‖2

≤ ‖ht,m − xn∗,m‖2 + 2α
〈
ht,m − xn∗,m, xnt,m − ht,m

〉
+ α‖xnt,m − ht,m‖2

= ‖ht,m − xn∗,m‖2 + α
〈
2ht,m − 2xn∗,m + xnt,m − ht,m, xnt,m − ht,m

〉
.

Let us consider last term: 〈
2ht,m − 2xn∗,m + xnt,m − ht,m, xnt,m − ht,m

〉
=
〈
ht,m − xn∗,m + xnt,m − xn∗,m, xnt,m − xn∗,m −

(
ht,m − xn∗,m

)〉
= −‖ht,m − xn∗,m‖2 + ‖xnt,m − xn∗,m‖2.

Using this result and previous inequlaity we get th following:

E
[
‖ht+1,m − xn∗,m‖2 | xnt,m, ht,m

]
≤ (1− α)‖ht,m − xn∗,m‖2 + α‖xnt,m − xn∗,m‖2.

Taking full expectation we finish the proof.

D.3. Lemma 6

For completeness we include the proof of important theorem introduced in Mishchenko et al. (2021). Suppose that each fi
is L-smooth and µ-strongly convex. Then the inner iterates satisfy

E
[∥∥xi+1

t − xi+1
∗
∥∥2] ≤ (1− γµ)E

[∥∥xit − xi∗∥∥2]− 2γ (1− γL)E
[
Dfπi

(
xit, x∗

)]
+ 2γ3σ2

rad.
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Proof. By definition of xi+1
t and xi+1

∗ , we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2] = E

[∥∥xit − xi∗∥∥2]− 2γE
[〈
∇fπi

(
xit
)
−∇fπi (x∗) , x

i
t − xi∗

〉]
+ γ2E

[∥∥∇fπi (xit)−∇fπi (x∗)
∥∥2] .

Note that the third term can be bounded as∥∥∇fπi (xit)−∇fπi (xit)∥∥2 ≤ 2L ·Dfπi

(
xit, x∗

)
.

Using the three-point identity we get〈
∇fπi

(
xit
)
−∇fπi (x∗) , x

i
t − xi∗

〉
= Dfπi

(
xi∗, x

i
t

)
+Dfπi

(
xit, x∗

)
−Dfπi

(
xi∗, x∗

)
.

Combining these bounds we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2] ≤ E

[∥∥xit − xi∗∥∥2]− 2γ · E
[
Dfπi

(
xi∗, x

i
t

)]
+ 2γ · E

[
Dfπi

(
xi∗, x∗

)]
− 2γ (1− γL)E

[
Dfπi

(
xit, x∗

)]
.

Using µ-strong convexity of fπi , we derive

µ

2

∥∥xit − xi∗∥∥2 ≤ Dfπi

(
xi∗, x

i
t

)
.

Using definition of shuffling radius we have

E
[
Dfπi

(
xi∗, x∗

)]
≤ max
i=1,...,n−1

E
[
Dfπi

(
xi∗, x∗

)]
= γ2σ2

rad.

Putting all bounds together we get result.

D.4. Proof of Theorem 3

Proof. Let us define the Lyapunov function:

Ψt = ‖xt − x∗‖2 +
4η2ω

αM

1

M

M∑
m=1

∥∥ht,m − xn∗,m∥∥2 .
Now we use Lemma 2 and Lemma 3:

E [Ψt+1] = E‖xt+1 − x∗‖2 +
4η2ω

αM

1

M

M∑
m=1

E
∥∥ht+1,m − xn∗,m

∥∥2
≤ 2η2

M2
ω

M∑
m=1

E‖xnt,m − xn∗,m‖2 +
2η2

M2
ω

M∑
m=1

E‖ht,m − xn∗,m‖2 + (1− η)E‖xt − x∗‖2

+ η
1

M

M∑
m=1

E‖xnt,m − xn∗,m‖2 +
4η2ω

αM
(1− α)

M∑
m=1

E
∥∥ht,m − xn∗,m∥∥2 +

4η2ω

αM
α

M∑
m=1

E‖xnt,m − xn∗,m‖2.

Using Lemma 6 and Theorem 2 from Mishchenko et al. (2021) we have

E [Ψt+1] ≤ 4η2ω

αM

(
1− α

2

) 1

M

M∑
m=1

E
∥∥ht,m − xn∗,m∥∥2 +

(
1− η + η(1− γµ)n +

6η2ω

M
(1− γµ)n

)
E‖xt − x∗‖2

+

(
α+ η +

2η2ω

M

)
2γ3σ2

rad

n−1∑
j=0

(1− γµ)j
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Using the condition η ≤ min
(

1, (1−(1−γµ)
n)M

12ω(1−γµ)n

)
we have

E [Ψt+1] ≤ max

(
1− α

2
, 1− η (1− (1− γµ)n)

2

)
E [Ψt] +

(
α+ η +

2η2ω

M

)
2γ3σ2

rad

n−1∑
j=0

(1− γµ)j


Note that we have the following inequality:

1− γµ ≤ 1− 1

2
η (1− (1− γµ)n)

−γµ ≤ −1

2
η (1− (1− γµ)n)

γµ ≥ 1

2
η (1− (1− γµ)n) .

We have it since 0 < η ≤ 1 and n > 1, so we have

γµ ≥ 1

2
(1− (1− γµ)n)

γµ ≥ 1

2
(1− (1− γµ))

1 ≥ 1

2
.

Unrolling this recursion finishes the proof.

Lemma 4

For completeness we include the proof of important theorem introduced in Malinovsky et al. (2021). Suppose that the
functions f1, . . . , fn are µ-strongly convex and L-smooth. Fix constant 0 < δ < 1. If the stepsize satisfies γ ≤ δ

L

√
µ

2nL
and if number of functions is sufficiently big:

n > log

(
1

1− δ2

)
·
(

log

(
1

1− γµ

))−1
and

δ2 ≤ (1− γµ)
n
2

(
1− (1− γµ)

n
2

)
.

E
[
‖xnt − xn∗‖

2
]
≤ (1− γµ)

n
2 E
[
‖xt − x∗‖2

]
,

then we have

E
[
‖xnt − xn∗‖

2 | xt
]
≤ (1− γµ)n ‖xt − x∗‖2 +

γ3Ln

2
σ2
∗

(
n−1∑
i=0

(1− γµ)i

)

Proof. We start from Theorem 1 in Mishchenko et al. (2020):

E
[
‖xnt − xn∗‖

2 | xt
]
≤ (1− γµ)n ‖xt − x∗‖2 +

γ3Ln

2
σ2
∗

(
n−1∑
i=0

(1− γµ)i

)

Using property of geometric progression we can have an upper bound
∑n−1
i=0 (1− γµ)i ≤ 1

γµ :

E
[
‖xnt − xn∗‖

2 | xt
]
≤ (1− γµ)n ‖xt − x∗‖2 +

γ2Ln

2µ
σ2
∗.
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Using Lemma 1 in Malinovsky et al. (2021) we get

E
[
‖xnt − xn∗‖

2 | xt
]
≤
(

(1− γµ)n +
2γ2L3n

µ

)
‖xt − x∗‖2 .

Let us use γ ≤ δ
L

√
µ

2nL . To get convergence we need

(1− γµ)n + δ2 < 1.

This leads to the following inequality:

n > log

(
1

1− δ2

)
·
(

log

(
1

1− γµ

))−1
.

Also assume
δ2 ≤ (1− γµ)

n
2

(
1− (1− γµ)

n
2

)
.

Putting this into bound finishes the proof.

D.5. Lemma 5

For completeness we include the proof of important lemma introduced in Malinovsky et al. (2021).

Assume that each fi is L-smooth and convex. If we apply the linear perturbation reformulation 6, then the variance of
reformulated problem satisfies the following inequality:

σ̃2
∗ ≤ 4L2‖yt − x∗‖2.

Proof.

σ̃2
∗ =

1

n

n∑
i=1

‖∇fi (x∗)−∇fi (yt) +∇f (yt)−∇f (x∗)‖2

Using Young’s inequality we have

σ̃2
∗ ≤

1

n

n∑
i=1

(
2 ‖∇fi (yt)−∇fi (x∗)‖2 + 2 ‖∇f (yt)−∇f (x∗)‖2

)
≤ 1

n

n∑
i=1

4LiDfi (yt, x∗) +
1

n

n∑
i=1

4LDf (yt, x∗)

≤ 4LDf (yt, x∗) + 4LDf (yt, x∗)

= 8LDf (yt, x∗)

≤ 4L2 ‖yt − x∗‖2

D.6. Proof of Theorem 4

The proof is similar to the proof of 3.

Proof. Let us define the Lyapunov function:

Ψt = ‖xt − x∗‖2 +
4η2ω

αM

1

M

M∑
m=1

∥∥ht,m − xn∗,m∥∥2 .
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Now we use Lemma 2 and Lemma 3:

E [Ψt+1] = E‖xt+1 − x∗‖2 +
4η2ω

αM

1

M

M∑
m=1

E
∥∥ht+1,m − xn∗,m

∥∥2
≤ 2η2

M2
ω

M∑
m=1

E‖xnt,m − xn∗,m‖2 +
2η2

M2
ω

M∑
m=1

E‖ht,m − xn∗,m‖2 + (1− η)E‖xt − x∗‖2

+ η
1

M

M∑
m=1

E‖xnt,m − xn∗,m‖2 +
4η2ω

αM
(1− α)

M∑
m=1

E
∥∥ht,m − xn∗,m∥∥2 +

4η2ω

αM
α

M∑
m=1

E‖xnt,m − xn∗,m‖2.

Using Lemma 5 and Theorem 3 from Malinovsky et al. (2021) we have

E [Ψt+1] ≤ 4η2ω

αM

(
1− α

2

) 1

M

M∑
m=1

E
∥∥ht,m − xn∗,m∥∥2 +

(
1− η + η(1− γµ)

n
2 +

6η2ω

M
(1− γµ)

n
2

)
E‖xt − x∗‖2

+

(
α+ η +

2η2ω

M

)
2γ3L

M∑
m=1

‖∇Fm (x∗)‖2
n−1∑
j=0

(1− γµ)j


Using the condition η ≤ min

(
1,

(
1−(1−γµ)

n
2

)
M

12ω(1−γµ)
n
2

)
we have

E [Ψt+1] ≤ max

(
1− α

2
, 1−

η
(
1− (1− γµ)

n
2

)
2

)
E [Ψt]

+

(
α+ η +

2η2ω

M

)
2γ3L

M∑
m=1

‖∇Fm (x∗)‖2
n−1∑
j=0

(1− γµ)j


Unrolling this recursion as we did previously finishes the proof.

E. Experimental details
In all experiments we used random sparsification as compression operator:

C(x) =
d

k

∑
i∈S

xiei,

where S is a random subset of {1, 2, . . . , d〉 of cardinality k chosen uniformly at random, and ei is the i-th standard unit
basis vector in Rd.

We used carefully chosen stepsizes in terms of constants to have fair competition. We include code in folder because a link
to repository can deanonymize the submission.


