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Abstract

Federated learning is a novel paradigm that in-
volves learning from data samples distributed
across a large network of clients while the data re-
mains local. It is, however, known that federated
learning is prone to multiple system challenges in-
cluding system heterogeneity where clients have
different computation and communication capa-
bilities. Such heterogeneity in clients’ computa-
tion speed has a negative effect on the scalability
of federated learning algorithms and causes sig-
nificant slow-down in their runtime due to slow
devices (stragglers). In this paper, we propose
FLANP, a novel straggler-resilient federated learn-
ing meta-algorithm that incorporates statistical
characteristics of the clients’ data to adaptively
select the clients in order to speed up the learning
procedure. The key idea of FLANP is to start the
training procedure with faster nodes and gradu-
ally involve the slower ones in the model train-
ing once the statistical accuracy of the current
participating nodes’ data is reached, while the
final model for each stage is used as a warm-
start model for the next stage. Our theoretical
results characterize the speedup provided by the
meta-algorithm FLANP in comparison to standard
federated benchmarks for strongly convex losses
and non-i.i.d. samples. For particular instances,
FLANP slashes the overall expected runtime by a
factor of O(ln(Ns)/ ln(C)), where C, N and s
are number of clusters, number of nodes per clus-
ter and number of samples per node, respectively.
In experiments, FLANP demonstrates significant
speedups in wall-clock time –up to 6×– compared
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to standard federated learning benchmarks.

1. Introduction
Federated learning is a distributed framework whose ob-
jective is to train a model using the data of many clients
(nodes), while keeping each node’s data local. In contrast
with centralized learning, the federated learning architecture
allows for preserving the clients’ privacy as well as reducing
the communication burden caused by transmitting data to a
cloud. Nevertheless, as we move towards deploying feder-
ated learning in practice, it is becoming apparent that several
major challenges still remain and the existing frameworks
need to be rethought to address them. Important among
these challenges is system (device) heterogeneity due to
existence of straggling nodes – slow nodes with low compu-
tational capability – that significantly slow down the model
training [1, 2].

In this paper, we focus on system heterogeneity in federated
learning and leverage the interplay between statistical accu-
racy and system heterogeneity to design a straggler-resilient
federated learning method that carefully and adaptively se-
lects a subset of available nodes in each round of training.
Federated networks consist of thousands of devices with a
wide range of computational, communication, battery power,
and storage characteristics. Hence, deploying traditional fed-
erated learning algorithms such as FedAvg [3] on such a
highly heterogeneous cluster of devices results in significant
and unexpected delays due to existence of slow clients or
stragglers. In most such algorithms, clients participate in
the model training regardless of their computational capabil-
ities. Consequently, in each communication round of such
methods, the server has to wait for the slowest participating
node to complete and upload its local updates which slows
down the training process.

In this work, we aim to mitigate the effect of stragglers
in federated learning based on an adaptive node participa-
tion approach, in which clients are selected to participate in
different stages of training according to their computation
speed. We call our straggler-resilient scheme a Federated
Learning method with Adaptive Node Participation or
FLANP. The key idea of this scheme is to start the model
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training procedure with only a few clients which are the
fastest among all the nodes. These participating clients con-
tinue to train their shared models while interacting with the
parameter server. Note that since the server waits only for
the participating nodes, it takes a short time for the partic-
ipating (and fast) clients to promptly train a shared model.
This model is, however, not accurate as it is trained over
only a small fraction of all the samples. We next increase
the number of participating clients and include the next
fastest subset of nonparticipating nodes in the training. Note
that the model trained from the previous stage can be a
warm-start initialization for the current stage.

In a data heterogeneous federated architecture, multiple
clusters of clients with different data distributions partici-
pate in the model training. Such clustered architecture in
federated learning has been the subject of several works
[4, 5, 6]. In the proposed FLANP algorithm, as time pro-
gresses, we gradually increase the number of participating
clients in each cluster until we reach the full training set
and all clients are involved. Note that in this procedure, the
slower clients are only used towards the end of the learning
process, where the model is already close to the optimal
model of the aggregate loss. Another essential observation
is that since the model trained in previous rounds already
has a reasonable statistical accuracy and this model serves
as the initial point of the next round of the iterative algo-
rithm, the slower nodes of each cluster are only needed
to contribute in the final rounds of training, leading to a
smaller wall-clock time. This is in contrast with having
all nodes participate in training from the beginning, which
leads to computation time of each round being determined
by the slowest node. In this paper, we formally character-
ize the speedup obtained by the proposed adaptive node
participation scheme when FedGATE [7] is used as the op-
timization subroutine for solving each Empirical Risk Mini-
mization (ERM) problem. We would like to emphasize that
FLANP is a general meta-algorithm that can be employed
with any federated learning subroutine studied in the litera-
ture [3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Next, we state a summary of our main contributions:

• We present a straggler-resilient federated learning frame-
work that leverages the interplay between statistical ac-
curacy and device heterogeneity by adaptively activating
heterogeneous clients.

• We specify the proposed meta-algorithm with a feder-
ated learning subroutine and present its optimization
guarantees for strongly convex risks. Further, we char-
acterize the wall-clock time of the proposed straggler-
resilient scheme and demonstrate analytically that it
achieves up to O(ln(Ns)) speedup compared to stan-
dard benchmarks, where N and s respectively denote
the number of clients per cluster and the number of data

samples per client.

• Our numerical experiments demonstrate that our adap-
tive node participation approach significantly speeds
up federated learning benchmarks –with either full or
partial node participation– in convex and nonconvex
settings.

Related work. System (device) heterogeneity challenge,
which refers to the case that clients have different compu-
tational, communication and storage characteristics, has
been studied in the literature. Asynchronous methods
have demonstrated improvements in distributed data cen-
ters. However, such methods are less desirable in federated
settings as they rely on bounded staleness of slow clients
[23, 24]. The active sampling approach is another direction
in which the server aims for aggregating as many local up-
dates as possible within a predefined time span [25]. More
recently, [26] proposed a normalized averaging method to
mitigate stragglers in federated systems and the objective
inconsistency due to mismatch in clients’ local updates.
Deadline-based computation has also been studied to miti-
gate stragglers in decentralized settings [27].

The idea of adaptive sample size training in which we solve
a sequence of geometrically increasing ERM problems has
been used previously for solving large-scale ERM problems.
In particular, it has been shown that this scheme improves
the overall computational cost of both first-order [28, 29]
and second-order [30, 31, 32] methods for achieving the
statistical accuracy of the full training set. In this paper, we
exploit this idea to develop FLANP for a different setting
to address the issue of device heterogeneity in federated
learning.

2. Federated learning setup
We consider a federated architecture where C clusters of
clients (nodes) interact with a central server. Nodes are as-
signed to clusters based on their data distribution, meaning
that two nodes belong to the same cluster if their underlying
data distributions are the same, and two nodes that belong
to different clusters have different data distributions. Hence,
for any cluster c ∈ [C] := {1, · · · , C}, we assume that the
samples of nodes in cluster c are drawn from a common dis-
tribution Dc. We also assume that there are N nodes within
each cluster and each of them has access to s samples.1

We let Lc,i(w) represent the empirical risk over the s

1For readability, we consider equal N and s across the network.
However, our method and results extend to the case that N and
s vary across the clusters and clients while remaining within the
same order of magnitude. Also, note that we do not need to
know the clustering pattern. Indeed, several federated clustering
methods have been proposed which one can employ to identify the
clustering of clients [4, 5, 6].
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samples stored on client i ∈ [N ] in cluster c denoted
by {zc,i1 , · · · , zc,is } drawn from Dc. That is, Lc,i(w) :=
1
s

∑s
j=1 `(w, z

c,i
j ), where the loss function `(w, z) indi-

cates how well the model w performs with respect to the
sample z. For an arbitrary n ∈ [N ], define Lcn(w) as
the collective empirical risk corresponding to samples of
nodes {1, · · · , n} in cluster c, which is formally defined as
Lcn(w) := 1

n

∑n
i=1 L

c,i(w). Indeed, the collective empir-
ical risk of all nodes in cluster c is LcN (w). Finally, we
aggregate all the empirical risks Lcn(w) over all clusters and
define the empirical risk

Ln(w) :=
1

C

C∑
c=1

Lcn(w). (1)

Empirical risk Ln(w) captures the aggregate risk corre-
sponding to C ·n · s non-iid data samples from distributions
D1, · · · ,DC . We let w∗n denote the optimal minimizer of
the loss Ln(w), i.e., w∗n = arg minw Ln(w). Note that the
problem of finding a global model for the aggregate loss of
all available CN nodes in the network is a special case of
(1) for n = N , i.e.,

min
w

LN (w) =
1

C

C∑
c=1

LcN (w) =
1

CNs

C∑
c=1

N∑
i=1

s∑
j=1

`(w, zc,ij ).

(2)
Also, note that empirical risk of cluster c denoted by LcN (w)
is a surrogate for the expected risk of that cluster defined
as Lc(w) := EZ∼Dc

[`(w, Z)]. Our ultimate goal is to
minimize the expected loss L(w), defined as the aver-
age of expected risks of the clusters in the network, i.e.,
minw L(w) := 1

C

∑C
c=1 L

c(w). We denote the minimizer
of L by w∗. Also, distributions Dc are unknown and we
only have access to a finite number of realizations. Hence,
we settle to solve problem (2).

Statistical Accuracy. The difference of expected and em-
pirical risks of each cluster c denoted by Lcn(w) − Lc(w)
is referred to as estimation error, which approaches zero as
the number of samples in the empirical risk becomes larger.
In this case, since Lcn(w) captures ns samples, we assume
that there exists a constant Vns bounding the estimation er-
ror with high probability, supw |Lcn(w) − Lc(w)| ≤ Vns.
The estimation error Vns has been deeply studied in the
statistical learning literature [33, 34]. It has been shown
that for strongly convex functions the estimation error is
proportional to the inverse of sample size [35, 36]. In this
work, we also assume that Vns = v

ns for a constant v in-
dependent of n and s. Note that for the loss function Lcn,
once we find a point w̃ that has an optimization error of Vns,
i.e., Lcn(w̃) − Lcn(w∗n) ≤ Vns, there is no gain in improv-
ing the optimization error as the overall error with respect
to the expected risk Lc would not improve. Hence, when
we find a point w̃ such that Lcn(w̃)− Lcn(w∗n) ≤ Vns, we

state that it has reached the statistical accuracy of Lcn. By
the same argument, one can show that the estimation error
corresponding to the aggregate losses over all the clusters
is at most O( 1

ns ), i.e., supw |Ln(w)− L(w)| ≤ v
ns w.h.p.

Our goal is to find a solution wN that is within the statistical
accuracy of LN defined in (2).

System heterogeneity model. As mentioned earlier, feder-
ated clients attribute a wide range of computational pow-
ers leading to significantly different processing times for
a fixed computing task such as gradient computation and
local model update. To be more specific, for each cluster
c and node i in it, we let T ci denote the (expected) time to
compute one local model update. The time for such update
is mostly determined by the computation time of a fixed
batch-size stochastic gradient of the local empirical risk
Lc,i(w). Clearly, larger T corresponds to slower clients or
stragglers.

3. Adaptive node participation approach
Several federated learning algorithms have been proposed
to solve the ERM problem in (2) such as FedAvg
[3], FedProx [37], SCAFFOLD [21], DIANA [38], and
FedGATE [7]. These methods consist of several rounds of
local computations by the clients and communication with
the server. As explained earlier, federated clients operate in
a wide range of computational characteristics, and, therefore,
the server has to wait for the slowest node in each commu-
nication round to complete its local computation task. Since
device participation in such methods is irrespective of their
computation speeds, the slowest nodes determine the overall
runtime which causes significant slow-down.

In this section, we describe our adaptive node participation
approach to mitigate stragglers in federated learning, and
lay out the intuition behind it. Our proposal, FLANP, is
essentially a meta-algorithm that can be specified with the
choice of any particular federated learning subroutine.

3.1. FLANP: A straggler-resilient federated learning
meta-algorithm

As discussed in Section 2, we assume that our network con-
sists of C clusters, where each cluster contains N available
nodes with possibly different computation times (See foot-
note 1). Our proposal to address the device heterogeneity
and mitigate the stragglers is as follows.

The server first solves the ERM problem corresponding to
n0 fastest nodes in each cluster, where n0 is much smaller
than the total number of available nodes N in each cluster.
To identify the n0 fastest nodes in each cluster, the server
first broadcasts a short hand-shake message to all nodes in
that cluster and waits for the first n0 nodes that respond.
These n0C nodes will participate in the training process
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Algorithm 1: FLANP meta-algorithm
Initialize n = n0 participating nodes per cluster, initial
global model wn0

while n ≤ N do
while Ln(wn)− Ln(w∗n) > Vns do

participating nodes [n] from all clusters update
local models via Federated_Solver

server waits for the updates of the first n nodes
from each cluster

server aggregates local models from
participants and updates global model wn

end
n← min{2n,N} % doubling the

participants in all clusters
end

in the first stage. Using Federated_Solver which is
a federated learning subroutine of choice, e.g., FedAvg
or FedGATE, the n0C participating nodes proceed to min-
imize the empirical risk corresponding to their samples,
which we denote by Ln0

(w) as defined in (1). This contin-
ues until the n0C nodes reach their corresponding statistical
accuracy, that is, they reach a global model wn0 such that
Ln0

(wn0
)− Ln0

(w∗n0
) ≤ Vn0s. Note that at this stage the

server has to wait only for the slowest client among the n0

participating nodes, which is potentially much faster than
the slowest node of the network.

Per our discussion in Section 2, a more accurate solution
than wn0

would not be beneficial. Therefore, once statisti-
cal accuracy of Ln0 is achieved, the procedure is terminated
and we increase the number of participating nodes in each
cluster from n0 to 2n0. To select the 2n0 fastest nodes
in each cluster, we repeat the hand-shaking communica-
tion protocol that we discussed. Then, the selected nodes
use Federated_Solver to find the minimizer of the
loss corresponding to 2n0C participating nodes, while us-
ing the solution of the previous stage wn0 as their starting
point. Note that since the samples of nodes within each
cluster come from the same distribution, we can show that
the solutions of two successive stages with n0C and 2n0C
participants are close to each other (see Section 4).

Again, in this stage, the training process terminates when
we find a point w2n0

within the statistical accuracy of
the loss corresponding to 2n0C participating nodes, i.e.,
L2n0(w2n0) − L2n0(w∗2n0

) ≤ V2n0s. In the stage with
2n0C participating nodes, the computation delay is deter-
mined by the slowest participating node among 2n0C nodes,
which is slower than the previous stage with n0C partici-
pating nodes, but still faster than the slowest node of the
network. The procedure of geometrically increasing the
number of participating nodes continues till the set of par-

ticipating nodes contains all the available N nodes in each
cluster, and these nodes find the final global model wN

within the statistical accuracy of the global loss function
LN (w). Algorithm 1 summarizes the straggler-resilient
meta-algorithm.

Remark 1 In our proposed scheme, clients’ computation
speeds are not needed, and the parameter server figures
out the fastest n nodes only by following the presented
handshaking protocol.

From a high-level perspective, Algorithm 1 exploits faster
nodes in the beginning of the learning procedure to promptly
reach a global model withing their statistical accuracy. By
doing so, the server avoids waiting for slower nodes to
complete their local updates; however, the optimality gap of
such models are relatively large since only a small fraction
of data samples have contributed in the global model. By
gradually increasing the number of participating nodes and
activating slower nodes, the quality of the global model
improves while the synchronous computation slows down
due to slower nodes. The key point is that slower nodes join
the learning process towards the end.

The criterion Ln(wn) − Ln(w∗n) > Vns in Algorithm 1
verifies that the current global model satisfies the statistical
accuracy corresponding to n participating nodes {1, · · · , n}.
This condition, however, is not easy to check since the opti-
mal solution w∗n is unknown. A sufficient and computation-
ally feasible criterion is to check if ‖∇Ln(wn)‖2 ≤ 2µVns,
when ` is µ-strongly convex.

3.2. FLANP via FedGATE

As FLANP in Algorithm 1 is a general mechanism to mit-
igate stragglers in federated settings, one needs to specify
the inner optimization subroutine Federated_Solver
to quantify the speedup of the proposed approach. This
subroutine could be any federated learning algorithm, but
here we focus on FedGATE [7], a federated algorithm that
employs gradient tracking to provide tight convergence guar-
antees for nodes with heterogeneous data distributions.

Why FedGATE? FLANP is a meta-procedure that can be
used for any federated learning solver other than FedGATE
to make it resilient against straggling nodes. Nevertheless,
we use FedGATE as the subroutine since it can handle the
case that local gradients are not an unbiased estimator of
the global loss gradient, which is the case in our setting. Al-
gorithm 2 demonstrates how adaptive node participation in
FLANP is adopted to mitigate straggler delays in FedGATE.
Let us briefly discuss the main points of Algorithm 2 and
defer the implementation details to the appendix. Here, the
gradient tracking variables δc,i aim to correct the directions
of local updates at node i from cluster c by tracking the dif-
ference of local gradients ∇̃Lc,i and global gradients∇Ln
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Algorithm 2: FLANP via FedGATE
Initialize n = n0 participating nodes per cluster, initial
model wn0

, initial gradient tracking δ(0)
c,i = 0 for

participating nodes i ∈ [n0] in all clusters c ∈ [C]
while n ≤ N do

r = 0 % reset round counter for each

stage

for participating nodes i ∈ [n] and all clusters
c ∈ [C] do
δ

(0)
c,i = 0 % reset gradient tracking

end
while ‖∇Ln(wn)‖2 > 2µVns do

for participating nodes i ∈ [n] in all clusters
c ∈ [C] do

w
(0,r)
c,i = wn

for t = 0, · · · , τn − 1 do
set d(t,r)

c,i = ∇̃Lc,i(w(t,r)
c,i )− δ(r)

c,i and

update w
(t+1,r)
c,i = w

(t,r)
c,i − ηnd

(t,r)
c,i

end
upload ∆

(r)
c,i = (wn −w

(τn,r)
c,i )/ηn and

update δ(r+1)
c,i = δ

(r)
c,i + 1

τn
(∆

(r)
c,i −∆(r))

end
server broadcasts ∆(r) = 1

nC

∑C
c=1

∑n
i=1 ∆

(r)
c,i

and wn ← wn − ηnγn∆(r)

participating nodes i ∈ [n], c ∈ [C] upload
gradients∇Lc,i(wn) to server, r ← r + 1

end
n← min{2n,N} % doubling the

participants
end

such that directions dc,i closely follow the correct global
gradient direction.

4. Theoretical results
Next, we analyze FLANP outlined in Algorithm 2, which
employs FedGATE as its subroutine. We first characterize
optimization guarantees of Algorithm 2. Using such results,
we derive the expected runtime of our proposed algorithm
and the speedup it provides compared to naive methods.

Connection between two successive stages. As we dis-
cussed in Section 3.1, we expect the solution of each stage
with m participating nodes to be close to the solution of
the next stage with n nodes, where n > m, if the larger
set of nodes contain the smaller set. This is due to the fact
that within each cluster, samples are drawn from the same
distribution. To formalize this claim, consider a subset of m
participating nodes and a model w∗m within their statistical
accuracy, i.e., Lm(wm)−Lm(w∗m) ≤ Vms. Next, we show

that the suboptimality error of wm for the next loss with n
nodes is small, when the set of n nodes contains m nodes.

Proposition 1 Consider two subsets of nodes Nm ⊆ Nn
and assume that model wm attains the statistical accu-
racy for the empirical risk associated with nodes in Nm,
i.e., ‖∇Lm(wm)‖2 ≤ 2µVms where the loss function `
is µ-strongly convex. Then the suboptimality of wm for
risk Ln is w.h.p. bounded above by Ln(wm)−Ln(w∗n) ≤
2(n−m)

n (V(n−m)s + Vms) + Vms.

Proposition 1 demonstrates that a model attaining the statis-
tical accuracy for m nodes can be used as an initial model
for the ERM corresponding to a larger set with n nodes. In
particular, when the number of participating nodes is dou-
bled, i.e., n = 2m, then the initial sub-optimality error is
bounded above by Ln(wm)− Ln(w∗n) ≤ 3Vms.

Optimization guarantees. Next, we characterize the re-
quired communication and computation for solving each
subproblem. Specifically, consider the case that we are
given a model wm which is within the statistical accuracy
of Lm corresponding to m fastest nodes in each cluster, and
the goal is to find a new model wn that is within the statisti-
cal accuracy of Ln corresponding to n fastest nodes of each
cluster, where n = 2m. To analyze this procedure, we must
specify three parameters: the choice of stepsizes ηn, γn, the
number of local updates τn at each participating node, and
the number of communication rounds with the server Rn.
For these parameters we use index n, as they refer to the
case that n nodes participate in the training. Next, we state
our main assumptions.

Assumption 1 The loss `(w, z) is µ-strongly convex with
respect to w, and the gradient ∇`(w, z) is L-Lipschitz con-
tinuous. The condition number is defined as κ := L/µ.

The conditions in Assumption 1 imply that the empirical
risks Ln(w) and local loss functions Lc,i(w) are µ-strongly
convex and have L-Lipschitz gradients. As we discussed in
Section 2, the gap between the expected and the empirical
risks corresponding to nCs data samples can be bounded
as |Ln(w)−L(w)| ≤ Vns, with high probability. Next, we
formalize this assumption.

Assumption 2 The approximation error for the expected
loss L(w) using nCs samples of n nodes per clus-
ter in the empirical risk Ln(w) is w.h.p. upper-
bounded as supw |Ln(w)− L(w)| ≤ Vns, where Vns
= O(1/ns). Moreover, we assume that the approxi-
mation error for gradients is upper-bounded by supw∥∥∇Ln(w)−∇L(w)

∥∥ ≤ √Vns, w.h.p. We also assume
that the diversity of the gradients ∇Lc(w) is bounded as
1
C

∑C
c=1

∥∥∇Lc(w)−∇L(w)
∥∥2 ≤ ρ, for any w and some

constant ρ.
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Theorem 1 Consider the federated ERM problem in (2)
and suppose Assumptions 1 and 2 hold. Let FLANP in
Algorithm 2 be initialized with the fastest n0 nodes in each
cluster and the model wn0

. Moreover, suppose the variance
of stochastic local gradients is bounded as E[‖∇̃Lc,i(w)−
∇Lc,i(w)‖2] ≤ σ2 for all nodes i and clusters c. At any
stage of Algorithm 2 with nC participating nodes, if for
sufficiently small αn the stepsizes are ηn = αn/τn

√
n, γn =

√
n/2αnL, and each node runs τn = 1.5sσ2/v local updates,

then nodes reach the statistical accuracy of Ln after Rn =
12κ ln(6) rounds of communication. Here v captures the
constant term in the statistical accuracy Vns = v

ns .

The result in Theorem 1 guarantees that if we initialize
Algorithm 2 with n0 fastest nodes of each cluster and in
each stage the participating nodes update their local models
according to Algorithm 2 for τ = O(s) iterations and R =
O(κ) rounds, before doubling the number of participating
nodes, then at the end of the final stage in which allN nodes
of each cluster are participating, we reach a model wN that
attains the statistical accuracy of the empirical risk LN (w).
Specifically, we have E[LN (wN )−LN (w∗N )] ≤ VNs. Note
that to obtain the best guarantee, τn and Rn are independent
of number of participating nodes n, while the stepsizes
ηn and γn change as the number of participating nodes
increases.

Wall-clock time analysis. We have thus far established
the convergence properties of Algorithm 2. It is, however,
equally important to show that it provably mitigates strag-
glers in a federated learning framework and hence speeds
up the overall wall-clock time. In the following, we first
characterize the run-time of Algorithm 2 and then compare
it with the one for straggler-prone FedGATE benchmarks.

Let T c1 ≤ · · · ≤ T cN denote the computation times of the
N available nodes in cluster c. We also denote by T̄FLANP
the average runtime of FLANP in Algorithm 2 to reach the
overall statistical accuracy of the ERM problem correspond-
ing to all nodes defined in (2). As discussed before, at the
stage of FLANP with n participating node per cluster, the
slowest node in each cluster determines the computation
time of that stage. More precisely, the computation time
of each iteration of FLANP with n participating node per
cluster is Tn := max{T 1

n , · · · , TCn }. Since each stage con-
sists of R communication rounds each with τ local updates,
the average run-time of each stage is RτTn. Therefore,
the overall wall-clock time of Algorithm 2 is on average
T̄FLANP = Rτ(Tn0

+T2n0
+ · · ·+TN ) with R = 12κ ln(6)

and τ = 1.5sσ2/v as characterized in Theorem 1.

This further demonstrates how the adaptive node participa-
tion approach incorporates faster nodes in order to save in
the overall wall-clock time. As Theorem 1 shows, it suffices
for each participating node in the straggler-resilient Algo-
rithm 2 to run R = O(κ) rounds of local updates and τ =

O(s) iterations per round to reach the final statistical accu-
racy. Therefore, the overall wall-clock time of Algorithm 2
is order-wise T̄FLANP = O(κsσ2(Tn0 + T2n0 + · · ·+ TN )).

To quantify the speedup provided by our proposed method,
we need to characterize the wall-clock time for the non-
adaptive benchmark FedGATE. Note that in this benchmark,
all the N available nodes are participating in the training
process from the beginning.

Proposition 2 The average runtime for the non-adaptive
benchmark FedGATE to solve the federated ERM problem
(2) and to reach the statistical accuracy of all the samples
of the N nodes is T̄FedGATE = O(κsσ2 ln(Ns)TN ) where
TN is the unit computation time of the slowest node.

As expected, the result in Proposition 2 indicates that as
all N nodes in each cluster participate in training since
the beginning of the algorithm, the overall wall-clock time
depends only on the slowest node across all clusters with
computation time TN = max{T 1

N , · · · , TCN }.
Thus far, we have characterized the order-wise expressions
of the average wall-clock time for FLANP and FedGATE
methods as follows

T̄FLANP = O(κsσ2 (Tn0
+ T2n0

+ · · ·+ TN )),

T̄FedGATE = O(κsσ2 ln(Ns)TN ). (3)

To establish the speedup for the straggler-resilient method,
we consider a random exponential time model for clients
computation times, which has been widely used to capture
the computation delay for distributed clusters [39, 40]. We
assume that nodes computation time are independent real-
izations of an exponential random variable and characterize
the speedup of the resilient Algorithm 2 compared to the
benchmark FedGATE.

Theorem 2 Let Assumptions 1 and 2 hold and the random
computation times be drawn as T ci ∼ exp(λ) for all clients
i ∈ [N ] and clusters c ∈ [C]. Then, the speedup of the
proposed FLANP compared to the naive federated learning
method FedGATE is

E[T̄FLANP]

E[T̄FedGATE]
≤ O

(
1 + ln(C)

ln(Ns)

)
.

Theorem 2 establishes O(ln(Ns)/ ln(C)) speedup for
FLANP compared to its non-adaptive and straggler-prone
benchmark FedGATE, when the clients’ computation time
are drawn from a random exponential time model. Note
that this is a significant gain as the number of samples per
cluster Ns is often much larger than the number of clusters
C.

We have so far considered device heterogeneous clients
with potentially well-spread computation speeds and demon-
strated the speedup obtained by adaptive node participation
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approach, particularly in Theorem 2. We would like to add
that our method provides provable speedups even for de-
vice homogeneous clients with identical speeds, implying
T1 = · · · = TN . Comparing the average runtimes in (3)
yields that FLANP in Algorithm 2 slashes the expected wall-
clock time of FedGATE by a factor ln(Ns)/ ln(N). This
observation demonstrates that the adaptive node participa-
tion approach results in two different speedups: (i) leverag-
ing faster nodes to speedup the training and (ii) adaptively
increase the effective sample size by participating more
clients.

5. Numerical experiments and discussion
We conduct various numerical experiments for convex and
nonconvex risks and evaluate the performance of the pro-
posed method versus other benchmarks. Below is a brief
description for multiple federated benchmarks that we use
to compare with the proposed FLANP in Algorithm 2.

Benchmarks. FedAvg [3]: Nodes update their local model
using SGD for τ local iterations in each round. FedGATE
[7]: This is the subroutine used in Algorithm 2. Here we
consider it as a benchmark with update rule similar to the
subroutine in Algorithm 2. FedNova [26]: In each round,
each node i updates its local model for τi iterations where
τis vary across the nodes. To mitigate the heterogeneity
in τis, the parameter server aggregates normalized updates
(w.r.t. τi) and updates the global model.

We compare the performance of FLANP with such bench-
marks in terms of communication rounds and wall-clock
time –under both full and partial node participation sce-
narios and highlight its practicality and compatibility. We
conduct two sets of experiments on networks consisting of
C = 3 and C = 1 clusters.

Case I: C = 3. We partition the available N = 60 nodes
into C = 3 clusters of size 20 and assign their data samples
as follows [21]. For each node, we pick s% of its total
samples to be i.i.d., i.e. s% similarity of samples across
all the nodes. For the remaining (100 − s)%, we create
heterogeneous samples as follows [41]. For each cluster
c ∈ {1, 2, 3}, we let the vector pc denote the prior distri-
bution of classes for nodes in cluster c. For MNIST [42]
(60, 000 training, 10, 000 test samples) and CIFAR10 [43]
(50, 000 training, 10, 000 test samples) datasets with 10 to-
tal classes, pc ∈ R10

≥0 and ‖pc‖1 = 1. Then, for each
node i ∈ {1, · · · , 20} in cluster c, we draw a random vector
qc,i ∼ Dir(αpc) from a Dirichlet distribution with α a con-
stant, which determines the portions of the 10 classes for
this node. In our experiments with MNIST and CIFAR10,
we consider three different classes with equal weights as the
prior distribution for each of the C = 3 clusters and use the
one class left out as part of the i.i.d. samples pool. Note that
after realizing qc,i, each node is assigned samples from all

(a) MNIST (b) CIFAR10

Figure 1: NN training on C = 3 clusters.

the 10 classes but with biased portions.
Next, we use the clustering method proposed in [4] to clus-
ter the N = 60 nodes into C = 3 clusters. With some
parameter tuning, it recovers the ground truth clustering for
all the 60 nodes. After we obtain the clustering, we run
FLANP using FedGATE as the federated solver along with
other benchmarks. As Figure 1 shows, the adaptive node
participation approach leads FLANP to speedups of up to
6× compared to FedGATE.

Case II: C = 1. In this case, we consider several scenarios
as follows.

Uniform computation speeds. The network consists of N
nodes where we realize and then fix the computation speed
of each node from [50, 500] uniformly at random.

Logistic Regression. In a network of N = 50 nodes, each
client stores s = 1200 samples of MNIST. As demon-
strated in Figure 2 (left), FLANP is slightly outperformed by
FedGATE at the initial rounds. This is however expected
as FLANP starts with only a fraction of nodes which leads
to less accurate models. With respect to wall-clock time
however, FLANP outperforms both FedAvg and FedGATE
benchmarks due to the fact that the initial participating
nodes are indeed the fastest ones. As Figure 2 (right) shows,
FLANP significantly speeds up the training by up to 2.1×
compared to FedGATE. We defer our experiments for linear
regression to the appendix.

Neural Network Training. We train a fully connected neural
network with two hidden layers with 128 and 64 neurons and
compare with three other benchmarks including FedNova
which is stragglers-resilient. We conduct two sets of ex-
periments over CIFAR10 (and MNIST in the appendix) on
a network of N = 20 clients. Figure 3 demonstrates that
FLANP significantly accelerates the training by up to 3×
and 4× compared to FedNova.

Random exponential computation speeds. We conduct
another set of experiments using the same setup described
above. However, we here pick the clients’ computation
speed to be i.i.d. random exponential variables, i.e. con-
sistent with Theorem 2. We train a fully connected neural
network with two hidden layers with 128 and 64 neurons on
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Figure 2: Logistic Regression over MNIST Figure 3: NN on CIFAR10 (random uniform speeds)

Figure 4: NN on MNIST (random exponential speeds)
(a) k nodes are randomly picked. (b) k fastest nodes are picked.

Figure 5: Partial node participation

MNIST as demonstrated in Figure 4.

Comparison with partial node participation methods.
Thus far, we have compared FLANP with federated bench-
marks in which all of the available nodes participate in
every round. To demonstrate the resiliency of FLANP to
partial node participation methods, we consider two differ-
ent scenarios. First, we compare the wall-clock time of a
linear regression model with Gaussian synthetic samples
using FLANP with partial node participation FedGATE in
which only k out of N = 50 nodes are randomly picked and
participate in each round. As demonstrated in Figure 5(a),
FLANP is significantly faster than FedGATE with partial
node participation. Second, we consider the case that the
k participating nodes are not randomly picked, rather are
the fastest clients. As shown in Figure 5(b), although partial
participation methods with k fastest nodes begin to outper-
form FLANP, towards the end of the training, they suffer
from higher training error saturation as the data samples of
only k nodes contribute in the trained model and hence the
final model is significantly inaccurate.

FLANP with other federated solvers. To illustrate the
compatibility of FLANP with solvers other than FedGATE,
we train the neural network on MNIST and employ FedAvg
and FedNova as solvers of FLANP. As shown in Figure 6,
FLANP is able to significantly speedup all three solvers.

Lastly, we note that from the practical point of view, there
are several heuristic approaches to estimate the constant
parameters µ, v, Vns in Algorithm 2. We conducted an ex-
periment to learn a linear regression model with Gaussian
synthetic data in which none of the constants are assumed
to be known. Rather, we heuristically tune the threshold for
each stage transition (i.e. doubling the nodes) by monitoring
the norm of the global gradient and successively halving

the threshold. As shown in Figure 7, the performance of
such heuristic methods is indeed close to FLANP which
highlights its practicality.

Figure 6: FLANP with other fed-
erated solvers

Figure 7: FLANP with heuri-stic
parameter tuning
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J. Konečnỳ, S. Kumar, and H. B. McMahan, “Adaptive feder-
ated optimization,” arXiv preprint arXiv:2003.00295, 2020.

[23] S. U. Stich, “Local sgd converges fast and communicates
little,” in ICLR 2019 ICLR 2019 International Conference on
Learning Representations, no. CONF, 2019.

[24] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” arXiv preprint arXiv:1903.03934, 2019.

[25] T. Nishio and R. Yonetani, “Client selection for federated
learning with heterogeneous resources in mobile edge,” in
ICC 2019-2019 IEEE International Conference on Commu-
nications (ICC), pp. 1–7, IEEE, 2019.

[26] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tack-
ling the objective inconsistency problem in heterogeneous
federated optimization,” arXiv preprint arXiv:2007.07481,
2020.

[27] A. Reisizadeh, H. Taheri, A. Mokhtari, H. Hassani, and
R. Pedarsani, “Robust and communication-efficient collabo-
rative learning,” in Advances in Neural Information Process-
ing Systems, pp. 8388–8399, 2019.

[28] A. Mokhtari and A. Ribeiro, “First-order adaptive sample
size methods to reduce complexity of empirical risk mini-
mization,” in NeurIPS, 2017.

[29] A. Mokhtari, A. Ozdaglar, and A. Jadbabaie, “Efficient non-
convex empirical risk minimization via adaptive sample size
methods,” in AISTATS, 2019.

[30] A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann, and
A. Ribeiro, “Adaptive Newton method for empirical risk
minimization to statistical accuracy,” in NeurIPS, 2016.

[31] M. Eisen, A. Mokhtari, and A. Ribeiro, “Large scale empiri-
cal risk minimization via truncated adaptive Newton method,”
in AISTATS, 2018.

[32] M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere,
A. Ribeiro, and M. Takác, “Efficient distributed hessian free
algorithm for large-scale empirical risk minimization via
accumulating sample strategy,” in AISTATS, 2020.

[33] V. Vapnik, The nature of statistical learning theory. Springer
science & business media, 2013.

[34] O. Bousquet, Concentration inequalities and empirical pro-
cesses theory applied to the analysis of learning algorithms.
PhD thesis, École Polytechnique: Department of Applied
Mathematics Paris, France, 2002.

[35] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity,
classification, and risk bounds,” Journal of the American
Statistical Association, vol. 101, no. 473, pp. 138–156, 2006.

[36] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Compet-
ing with the empirical risk minimizer in a single pass,” in
Conference on learning theory, pp. 728–763, 2015.

[37] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, “Federated optimization in heterogeneous net-
works,” arXiv preprint arXiv:1812.06127, 2018.

[38] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik,
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A. Proof of Proposition 1
Let us present and prove the following lemma which includes the claim in Proposition 1.

Lemma 1 Consider two subsets of nodes Nm ⊆ Nn and assume that model wm attains the statistical accuracy for the
empirical risk associated with nodes inNm, that is, ‖∇Lm(wm)‖2 ≤ 2µVms where the loss function ` is µ-strongly convex.
Then the suboptimality of wm for risk Ln, i.e., Ln(wm)− Ln(w∗n) is w.h.p. bounded above as follows:

Ln(wm)− Ln(w∗n) ≤ 2(n−m)

n

(
V(n−m)s + Vms

)
+ Vms. (4)

Moreover, norms of the global gradient is upper-bounded w.h.p. as follows:

‖∇Ln(wm)‖2 ≤ 2

(
n−m
n

)2 (
V

1/2
(n−m)s + V 1/2

ms

)2

+ 4µVms (5)

Furthermore, for any i ∈ [N ] we have

1

C

C∑
c=1

∥∥∥∇Lc,i(wm)
∥∥∥2

≤ 4(2µ+ 1)Vms + 4Vs + 4ρ, (6)

where we assume that the diversity of the gradients∇Lc(w) is bounded as

1

C

C∑
c=1

∥∥∇Lc(w)−∇L(w)
∥∥2 ≤ ρ, (7)

for any w and some constant ρ.

Proof. We begin the proof of Lemma 1 by proving the inequality in (4). Let us decompose the sub-otpimiality error
Ln(wm)− Ln(w∗n) to four difference terms as follows:

Ln(wm)− Ln(w∗n) = Ln(wm)− Lm(wm) + Lm(wm)− Lm(w∗m)

+ Lm(w∗m)− Lm(w∗n) + Lm(w∗n)− Ln(w∗n). (8)

From definition of local empirical risks in (1), the difference of local risks Ln(w) and Lm(w) for any w can be bounded
w.h.p. as follows:

Ln(w)− Lm(w) ≤
∣∣Ln(w)− Lm(w)

∣∣
=

∣∣∣∣∣∣ 1

C

C∑
c=1

Lcn(w)− 1

C

C∑
c=1

Lcm(w)

∣∣∣∣∣∣
≤ 1

C

C∑
c=1

∣∣Lcn(w)− Lcm(w)
∣∣ . (9)
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For any cluster c ∈ [C], we can bound the difference of local risks Lcn(w) and Lcm(w) as follows:

∣∣Lcn(w)− Lcm(w)
∣∣ =

∣∣∣∣∣∣ 1n
∑

i∈Nn\Nm

Lc,i(w)− n−m
n
· 1

m

∑
i∈Nm

Lc,i(w)

∣∣∣∣∣∣
=
n−m
n

∣∣∣∣∣∣ 1

n−m
∑

i∈Nn\Nm

Lc,i(w)− 1

m

∑
i∈Nm

Lc,i(w)

∣∣∣∣∣∣
≤ n−m

n

∣∣∣∣∣∣ 1

n−m
∑

i∈Nn\Nm

Lc,i(w)− Lc(w)

∣∣∣∣∣∣
+
n−m
n

∣∣∣∣∣∣ 1

m

∑
i∈Nm

Lc,i(w)− Lc(w)

∣∣∣∣∣∣
≤ n−m

n

(
V(n−m)s + Vms

)
, w.h.p., (10)

which together with (9) yields that

Ln(w)− Lm(w) ≤ n−m
n

(
V(n−m)s + Vms

)
. (11)

The last inequality in (10) is implied from the statistical accuracy assumption, where the gap between the empirical
risk of (n − m)s samples from distribution Dc, i.e. 1

n−m
∑
i∈Nn\Nm

Lc,i(w), and the corresponding expected risk
Lc(w) := EZ∼Dc

[`(w, Z)] can be bounded by V(n−m)s. By a similar argument, such gap for ms samples can be bounded
by Vms. This also shows how Assumption 2 for aggregated risks over all clusters can be independently derived given the
statistical accuracy assumption within each cluster.

We now proceed to bound the next term in (8), that is the optimality gap Lm(wm)− Lm(w∗m). Using the strong convexity
assumption in Assumption 1 and the condition ‖∇Lm(wm)‖2 ≤ 2µVms assumed to hold in the statement of the lemma, we
can write

Lm(wm)− Lm(w∗m) ≤ 1

2µ

∥∥∇Lm(wm)
∥∥2 ≤ 2µVms

2µ
= Vms. (12)

Next, the term Lm(w∗m)−Lm(w∗n) in (8) can be simply bounded as Lm(w∗m)−Lm(w∗n) ≤ 0, since w∗m is the minimizer
of Lm(w). Finally, to bound Lm(w∗n)− Ln(w∗n) in (8), we use the result in (11) which holds for any w and here we pick
w = w∗n to conclude

Lm(w∗n)− Ln(w∗n) ≤ n−m
n

(
V(n−m)s + Vms

)
. (13)

Putting the upper bounds for the four terms in (8) together proves inequality (4) which is the same claim as in Proposition 1.

Next we prove inequality (5) by first noting the following:∥∥∇Ln(wm)
∥∥2 ≤ 2

∥∥∇Ln(wm)−∇Lm(wm)
∥∥2

+ 2
∥∥∇Lm(wm)

∥∥2
. (14)

The first term ‖∇Ln(wm)−∇Lm(wm)‖ can be bounded as follows. For any w we can write

∥∥∇Ln(w)−∇Lm(w)
∥∥ =

∥∥∥∥∥∥ 1

C

C∑
c=1

∇Lcn(w)− 1

C

C∑
c=1

∇Lcm(w)

∥∥∥∥∥∥
≤ 1

C

C∑
c=1

∥∥∇Lcn(w)−∇Lcm(w)
∥∥ . (15)



Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity

For any cluster c ∈ [C], we can bound the difference
∥∥∇Lcn(w)−∇Lcm(w)

∥∥ as follows:

∥∥∇Lcn(w)−∇Lcm(w)
∥∥ =

∥∥∥∥∥∥ 1

n

∑
i∈Nn

∇Lc,i(w)− 1

m

∑
i∈Nm

∇Lc,i(w)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

n

∑
i∈Nn\Nm

∇Lc,i(w)− n−m
n
· 1

m

∑
i∈Nm

∇Lc,i(w)

∥∥∥∥∥∥
=
n−m
n

∥∥∥∥∥∥ 1

n−m
∑

i∈Nn\Nm

∇Lc,i(w)− 1

m

∑
i∈Nm

∇Lc,i(w)

∥∥∥∥∥∥
≤ n−m

n

∥∥∥∥∥∥ 1

n−m
∑

i∈Nn\Nm

∇Lc,i(w)−∇Lc(w)

∥∥∥∥∥∥
+
n−m
n

∥∥∥∥∥∥ 1

m

∑
i∈Nm

∇Lc,i(w)−∇Lc(w)

∥∥∥∥∥∥
≤ n−m

n

(
V

1/2
(n−m)s + V 1/2

ms

)
, w.h.p., (16)

which together with (15) yields that∥∥∇Ln(w)−∇Lm(w)
∥∥ ≤ n−m

n

(
V

1/2
(n−m)s + V 1/2

ms

)
, w.h.p. (17)

In the last inequality in (16), we used the assumption that within any cluster c, the difference of empirical risk gradient for
(n−m)s samples from distribution Dc and the corresponding expected risk gradient ∇Lc(w) can be bounded by V(n−m)s.
Similarly, such gap for ms samples from Dc can be bounded by Vms. Assumption 2 states a more general account of such
assumption for the aggregated risk across any number of clusters. Here, we basically showed how Assumption 2 can be
derived if we assume such upper-bound holds within any cluster. Together with (14) and the assumption of the lemma, that
is
∥∥∇Lm(wm)

∥∥2 ≤ 2µVms, the claim in (5) is concluded:

‖∇Ln(wm)‖2 ≤ 2

(
n−m
n

)2 (
V

1/2
(n−m)s + V 1/2

ms

)2

+ 4µVms. (18)

Finally, we prove the claim in inequality (6) by bounding node i’s local gradient∇Li(wm) as follows:∥∥∥∇Lc,i(wm)
∥∥∥2

≤ 4
∥∥∥∇Lc,i(wm)−∇Lc(wm)

∥∥∥2

+ 4
∥∥∇Lc(wm)−∇L(wm)

∥∥2

+ 4
∥∥∇Lm(wm)−∇L(wm)

∥∥2
+ 4
∥∥∇Lm(wm)

∥∥2

≤ 4Vs + 4
∥∥∇Lc(wm)−∇L(wm)

∥∥2
+ 4Vms + 6µVms

= 4(2µ+ 1)Vms + 4Vs + 4
∥∥∇Lc(wm)−∇L(wm)

∥∥2
, (19)

where we used Assumption 2 to upper-bound the approximation error of empirical gradients for node i in cluster c with s
samples and m nodes with ms samples. Averaging both sides of (19) over c ∈ {1, · · · , C} yields that

1

C

C∑
c=1

∥∥∥∇Lc,i(wm)
∥∥∥2

≤ 4(2µ+ 1)Vms + 4Vs + 4ρ, (20)

where we use the bounded gradient diversity assumption that for any w.

B. Proof of Theorem 1
Consider a stage of Algorithm 2 running with n participating nodes. More precisely, n nodes in {1, · · · , n} begin a sequence
of local and global model updates according to FedGATE initialized with wm obtained from the previous stage (n = 2m).
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After Rn communication rounds each with τn local updates, the final sub-optimality error is upper-bounded as follows:
(refer to Algorithm 2 and Theorem E.6 in [7] with no quantization)

E[Ln(w)− Ln(w∗n)] ≤
(

1− 1

3
µηnγnτn

)Rn (
Ln(wm)− Ln(w∗n)

)
+ 24κ3Lτ2

nη
2
n

1

Cn

C∑
c=1

n∑
i=1

∥∥∥∇Lc,i(wm)
∥∥∥2

+ 24κLτ2
nη

2
n

∥∥∇Ln(wm)
∥∥2

+ 24κ2L2τ2
nη

3
nσ

2 + 15κL3τ3
nη

2
n(ηnγn)2 σ

2

Cn
+
L

2
ηnγn

σ2

Cn
, (21)

where two stepsizes ηn, γn satisfy the following conditions:

1− Lηnγnτn +
10η2

nτ
4
nL

4(ηnγn)2

1− µτnγnηn + 20µγnη3
nL

2η3
n

≤ 1 & 30η2
nL

2τ2
n ≤ 1. (22)

To satisfy the two conditions in (22), we can pick stepsizes ηn, γn such that

2ηnγnτnL = 1 & 30η2
nL

2τ2
n ≤ 1. (23)

Now we use the result in Lemma 1 and put n = 2m to conclude that

Ln(wm)− Ln(w∗n) ≤ 3Vms,

‖∇Ln(wm)‖2 ≤ 2(2µ+ 1)Vms,

1

C

C∑
c=1

‖∇Lc,i(wm)‖2 ≤ 4(2µ+ 1)Vms + 4Vs + 4ρ. (24)

Substituting the three inequalities (24) in the sub-optimality error (21) yields that

E[Ln(w)− Ln(w∗n)] ≤ 3

(
1− 1

3
µηnγnτn

)Rn

Vms

+ 96κ3Lτ2
nη

2
n

(
(2µ+ 1)Vms + Vs + ρ

)
+ 48(2µ+ 1)κLτ2

nη
2
nVms

+ 24κ2L2τ2
nη

3
nσ

2 + 15κL3τ3
nη

2
n(ηnγn)2σ

2

n
+
L

2
ηnγn

σ2

n
. (25)

We use the fact that 2ηnγnτnL = 1 and rearrange the terms in (25) and rewrite it as follows:

E[Ln(w)− Ln(w∗n)] ≤ 3

(
1− 1

6κ

)Rn

Vms

+ 96κ3Lτ2
nη

2
n(Vs + ρ) + 48(2κ2 + 1)(2µ+ 1)κLτ2

nη
2
nVms

+ 24κ2L2τ2
nη

3
nσ

2 +
15

4
κLτnη

2
n

σ2

Cn
+
L

2
ηnγn

σ2

Cn
. (26)
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To ensure that a model w = wn attains the statistical accuracy of Ln(w), i.s. E[Ln(wn)− Ln(w∗n)] ≤ Vns, it suffices to
have each of the six terms in RHS of (26) less than or equal to Vns/6. That is,

3

(
1− 1

6κ

)Rn

Vms ≤
Vns
6
,

96κ3Lτ2
nη

2
nVs ≤

Vns
12

,

96κ3Lτ2
nη

2
nρ ≤

Vns
12

,

48(2κ2 + 1)(2µ+ 1)κLτ2
nη

2
nVms ≤

Vns
6
,

24κ2L2τ2
nη

3
nσ

2 ≤ Vns
6
,

15

4
κLτnη

2
n

σ2

Cn
≤ Vns

6
,

L

2
ηnγn

σ2

Cn
≤ Vns

6
, (27)

where n = 2m and Vns = v
ns for any n. One can check that the following picks for the stepsizes ηn, γn satisfies all the

conditions in (22) and (27):

ηn =
αn
τn
√
n
,

γn =

√
n

2αnL
, (28)

where

αn ≤ min

{
1

24
√

2κ
√
κL

,

√
v

24
√

2κ
√
κLsρ

,

√
n

12
√

2(3κ2 + 2)(2µ+ 1)κL
,

( √
n

96κ2L2

)1/3

,

√
Cnv√
15κL

,

√
n

L
√

30

}
. (29)

Moreover, the first and the last conditions in (27) yield that the number of local updates and the number of communication
rounds for the stage with n participating nodes are

τn =
3

2

σ2s

Cv
,

Rn = 12κ ln(6). (30)

C. Proof of Proposition 2
In order to characterize the runtime of FedGATE, we first need to determine its two major parameters τ and R. More
precisely, we run FedGATE algorithm with all the N available nodes while initialized with arbitrary model w0 and look for
τ,R after which the global model w̃ attains the statistical accuracy of LN (w), i.e. E[LN (w̃)− LN (w∗N )] ≤ VNs. We use
the convergence guarantee of FedGATE [7] in (21) with n = N nodes, that is,

E[LN (w)− LN (w∗N )] ≤
(

1− 1

3
µηγτ

)R (
LN (w0)− LN (w∗N )

)
+ 24κ3Lτ2η2 1

CN

C∑
c=1

N∑
i=1

∥∥∥∇Lc,i(w0)
∥∥∥2

+ 24κLτ2η2
∥∥∇LN (w0)

∥∥2

+ 24κ2L2τ2η3σ2 + 15κL3τ3η2(ηγ)2 σ2

CN
+
L

2
ηγ

σ2

CN
, (31)
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where the stepsizes η, γ satisfy the following conditions:

1− Lηγτ +
10η2τ4L4(ηγ)2

1− µτγη + 20µγη3L2η3
≤ 1 & 30η2L2τ2 ≤ 1. (32)

Note that the initial model w0 is arbitrary and therefore the initial sub-optimality error can be treated as a constant (and
not scaling with N ), that is, LN (w0) − LN (w∗N ) = ∆0 for a constant ∆0 = O(1). Similarly, we can assume that

1
CN

∑C
c=1

∑N
i=1

∥∥∇Lc,i(w0)
∥∥2

= ∆′0 for a constant ∆′0 = O(1) which also yields that
∥∥∇LN (w0)

∥∥2 ≤ ∆′0. We can
therefore further simplify (31) and write

E[LN (w)− LN (w∗N )] ≤
(

1− 1

3
µηγτ

)R
∆0 + 24κ(κ2 + 1)Lτ2η2∆′0

+ 24κ2L2τ2η3σ2 + 15κL3τ3η2(ηγ)2σ
2

N
+
L

2
ηγ
σ2

N
. (33)

We furthermore pick the parameters such that 2ηγτL = 1 which further simplifies (33) as follows:

E[LN (w)− LN (w∗N )] ≤
(

1− 1

6κ

)R
∆0 + 24κ(κ2 + 1)Lτ2η2∆′0

+ 24κ2L2τ2η3σ2 +
15

4
κLτη2 σ2

CN
+
L

2
ηγ

σ2

CN
. (34)

Now to ensure that E[LN (w̃)−LN (w∗N )] ≤ VNs holds for a model w̃ in (34), it suffices to satisfy the following inequalities:(
1− 1

6κ

)R
∆0 ≤

VNs
5
,

24κ(κ2 + 1)Lτ2η2∆′0 ≤
VNs

5
,

24κ2L2τ2η3σ2 ≤ VNs
5
,

15

4
κLτη2 σ2

CN
≤ VNs

5
,

L

2
ηγ

σ2

CN
≤ VNs

5
, (35)

with VNs = v
Ns . The following picks for the stepsizes satisfy the aforementioned conditions

η =
α

τ
√
Ns

,

γ =

√
Ns

2αL
, (36)

where

α ≤ min


√
c

2
√

30
√
κ(κ2 + 1)L∆′0

,

( √
Ns

96κ2L2

)1/3

,

√
Ns√

15κL
,

√
Ns

L
√

30

 . (37)

Moreover, the number of local updates and the number of communication rounds to reach the final statistical accuracy are as
follows:

τ =
5

4

σ2s

Cv
= O(s),

R = 6κ ln

(
5∆0Ns

v

)
= O(κ ln(Ns)). (38)
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Figure 8: Computation time notation

Now note that the expected runtime of each communication round of FedGATE is τTN as the server has to wait for the
slowest node that is node N with processing time TN . Therefore, the total expected wall-clock time of FedGATE to reach
the final statistical accuracy of all the samples of the N nodes in LN (w) is

T̄FedGATE = RτTN = O(κs ln(Ns)TN ),

as claimed in Proposition 2.

D. Proof of Theorem 2
Recall the result in Proposition 2 and the following discussion in (3). As discussed, the average runtime for the proposed
FLANP with FedGATE in Algorithm 2 is as follows:

T̄FLANP = RFLANP τFLANP
∑

i=n0, 2n0, 4n0,··· , N
Ti =

18 ln(6)

Cv
κsσ2 (Tn0 + T2n0 + · · ·+ TN ) , (39)

where RFLANP = 12κ ln(6) and τFLANP = 1.5sσ2v−1C−1 per Theorem 1. Moreover, we showed in Proposition 2 that the
expected runtime for FedGATE is

T̄FedGATE = RFedGATE τFedGATE TN =
15

2Cv
κsσ2 ln

(
5∆0Ns

v

)
TN . (40)

In the case that clients’ computation times T ci s are random, the expected runtimes are

E[T̄FLANP] =
18 ln(6)

Cv
κsσ2

(
E[Tn0

] + E[T2n0
] + · · ·+ E[TN ]

)
,

E[T̄FedGATE] =
15

2Cv
κsσ2 ln

(
5∆0Ns

c

)
E[TN ]. (41)

Therefore, in order to derive the runtime gain E[T̄FLANP]
E[T̄FedGATE]

, we first characterize the ratio

E[Tn0
] + E[T2n0

] + · · ·+ E[TN ]

E[TN ]
, (42)

where the clients runtimes T ci are i.i.d. with random exponential distribution exp(λ) with rate λ.

Before moving further, let us recall and reset our notation. We denote by T ci the computation time of node i in cluster c, where
i ∈ [N ] and c ∈ [C]. Let us sort the computation times within each cluster and denote them as T c(1) ≤ T c(2) ≤ T c(3) ≤ · · ·T c(N)

for any cluster c. We also denote

Tn := max{T 1
(n), · · · , TC(n)}, (43)

for any n ∈ [N ] (See Figure 8). Without loss of generality and for simplification, let us take n0 = 1 and λ = 1 and proceed
to bound the ratio

E[T1] + E[T2] + E[T4] + · · ·+ E[TN ]

E[TN ]
. (44)
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We initialize FLANP with n0 = 1 client per cluster. For this stage, the computation time of each iteration of FLANP for
cluster c is T c(1). Therefore, the overall wall-clock time to aggregate from all clusters is T1 = maxc∈[C] T

c
(1). Similarly,

when n client per cluster participate in FLANP, the wall-clock time for each iteration is Tn = maxc∈[C] T
c
(n). Therefore, to

determine the total expected wall-clock time of FLANP, we need to characterize E[Tn] for any 1 ≤ n ≤ N .

Using Jensen’s inequality for any t > 0 and 1 ≤ n ≤ N , we can write

etE[Tn] ≤ E[etTn ]

= E[max
i∈[C]

etT
i
(n) ]

≤
∑
i∈[C]

E[etT
i
(n) ]

= C · E[etT
1
(n) ] (45)

In order to calculate the moment generating function E[etT
1
(n) ], we can write

E[etT
1
(n) ] = E

[
e
t
(
T 1
(n)−T

1
(n−1)

)
· et

(
T 1
(n−1)−T

1
(n−2)

)
· · · · · et

(
T 1
(2)−T

1
(1)

)
· etT 1

(1)

]
= E

[
e
t
(
T 1
(n)−T

1
(n−1)

)]
· E
[
e
t
(
T 1
(n−1)−T

1
(n−2)

)]
· · · · · E

[
e
t
(
T 1
(2)−T

1
(1)

)]
· E
[
etT

1
(1)

]
=

1

1− t
N−n+1

· 1

1− t
N−n+2

· · · · · 1

1− t
N−1

· 1

1− t
N

, (46)

for any 0 < t < N − n+ 1. In above, we use few useful facts. First, we note that we can write the nth order statistics of a
random exponential as sum of n independent random exponentials as follows:

T 1
(n) =

(
T 1

(n) − T 1
(n−1)

)
+
(
T 1

(n−1) − T 1
(n−2)

)
+ · · ·+

(
T 1

(2) − T 1
(1)

)
+ T 1

(1), (47)

where

T 1
(1) ∼ exp

(
1

N

)
, T 1

(i) − T 1
(i−1) ∼ exp

(
1

N − i+ 1

)
. (48)

We also used the fact that the moment generating function for a random exponential T ∼ exp(λ) with parameter λ is

E[etT ] =
1

1− λt , t <
1

λ
. (49)

Putting all the above derivations together, we have for any 0 < t < N − n+ 1

E[Tn] ≤ 1

t
ln

 C(
1− t

N−n+1

)(
1− t

N−n+2

)
· · ·
(

1− t
N−1

) (
1− t

N

)
 . (50)

Let us pick t = 1 in the above upper bound and conclude that

E[Tn] ≤ ln

(
CN

N − n

)
. (51)

Now recall that the expected run-time for FLANP is

E[T̄FLANP] =
18 ln(6)

Cv
κsσ2

(
E[T1] + E[T2] + E[T4] + · · ·+ E[TN ]

)
. (52)



Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity

Using the bound in (51) we can write

E[T1] ≤ ln(C) + ln(N + 1)− ln(N − 1),

E[T2] ≤ ln(C) + ln(N + 1)− ln(N − 2),

E[T4] ≤ ln(C) + ln(N + 1)− ln(N − 4),

E[T8] ≤ ln(C) + ln(N + 1)− ln(N − 8),

...
E[TN/2] ≤ ln(C) + ln(N + 1)− ln(N/2),

E[TN ] ≤ ln(N + 1) + γ, (53)

where γ ≈ 0.577 is the Euler-Mascheroni constant and we assumed that N is a power of 2, i.e. N = 2K . Summing up the
above inequalities yield that

E[T1] + E[T2] + E[T4] + · · ·+ E[TN ]

≤ (K + 1) ln
(

2K + 1
)

+K ln(C) + γ − ln

((
2K − 1

)(
2K − 2

)(
2K − 4

)
· · ·
(

2K−1
))

≤ (K + 1) ln
(

2K + 1
)

+K ln(C) + γ − (K2 −K) ln(2)

≤ (K + 1)

(
K ln(2) +

1

2K

)
+K ln(C) + γ − (K2 −K) ln(2)

= K

(
ln(C) + 2 ln(2) +

1

2K

)
+

1

2K
+ γ (54)

On the other hand, the expected run-time for FedGATE is as follows

E[T̄FedGATE] =
15

2Cv
κsσ2 ln

(
5∆0Ns

v

)
E[TN ]. (55)

Since TN is the maximum of NC iid random exponentials, we have

E[TN ] ≥ ln(NC) + γ = K ln(2) + ln(C) + γ. (56)

Putting (54) and (56) together, we can bound the following ratio:

E[T1] + E[T2] + E[T4] + · · ·+ E[TN ]

E[TN ]
≤
K
(

ln(C) + 2 ln(2) + 1
2K

)
+ 1

2K + γ

K ln(2) + ln(C) + γ

≤ 2

(
ln(C) + 1 +

1

N

)
. (57)

Now, we are able to precisely characterize the speedup gain of FLANP compared to FedGATE according to the expressions
in (52), (55) and the ratio in (57) to conclude that

E[T̄FLANP]

E[T̄FedGATE]
=

12 ln(6)

5 ln (5v−1∆0Ns)

E[T1] + E[T2] + E[T4] + · · ·+ E[TN ]

E[TN ]

≤ 24 ln(6)

5 ln (5v−1∆0Ns)

(
ln(C) + 1 +

1

N

)
= O

(
1 + ln(C)

ln(Ns)

)
, (58)

which concludes the theorem.

E. Additional numerical experiments
In the main paper, we demonstrated the performance of FLANP and other benchmarks for a neural network training over
CIFAR-10 in Figure 3, where the clients’ computation speed are random exponentials. The following plots illustrate the
result of a similar experiment over MNIST dataset.
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Figure 9: Neural Network Training over MNIST
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