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Abstract

In statistical learning and analysis from shared
data, which is increasingly widely adopted in
platforms such as federated learning and meta-
learning, there are two major concerns: privacy
and robustness. Each participating individual
should be able to contribute without the fear of
leaking one’s sensitive information. At the same
time, the system should be robust in the pres-
ence of malicious participants inserting corrupted
data. Recent algorithmic advances in learning
from shared data focus on either one of these
threats, leaving the system vulnerable to the other.
We bridge this gap for the canonical problem of
estimating the mean from i.i.d. samples. We intro-
duce PRIME, which is the first efficient algorithm
that achieves both privacy and robustness for a
wide range of distributions. We further comple-
ment this result with a novel exponential time
algorithm that improves the sample complexity of
PRIME, achieving a near-optimal guarantee and
matching a known lower bound for (non-robust)
private mean estimation. This proves that there is
no extra statistical cost to simultaneously guaran-
teeing privacy and robustness.

1. Introduction
When releasing database statistics on a collection of en-
tries from individuals, we would ideally like to make it
impossible to reverse-engineer each individual’s potentially
sensitive information. Privacy-preserving techniques add
just enough randomness tailored to the statistical task to
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guarantee protection. At the same time, it is becoming in-
creasingly common to apply such techniques to databases
collected from multiple sources, not all of which can be
trusted. Emerging data access frameworks, such as feder-
ated analyses across users’ devices or data silos (Kairouz
et al., 2019), make it easier to temper with such collected
datasets, leaving private statistical analyses vulnerable to a
malicious corruption of a fraction of the data.

Differential privacy has emerged as a widely accepted de
facto measure of privacy, which is now a standard in releas-
ing the statistics of the U.S. Census data (Abowd, 2018)
statistics and also deployed in real-world commercial sys-
tems (Tang et al., 2017; Erlingsson et al., 2014; Fanti et al.,
2016). A statistical analysis is said to be differentially pri-
vate (DP) if the likelihood of the (randomized) outcome
does not change significantly when a single arbitrary entry
is added/removed (formally defined in §1.2). This provides
a strong privacy guarantee: even a powerful adversary who
knows all the other entries in the database cannot confidently
identify whether a particular individual is participating in the
database based on the outcome of the analysis. This ensures
plausible deniability, central to protecting an individual’s
privacy.

In this paper, we focus on one of the most canonical prob-
lems in statistics: estimating the mean of a distribution
from i.i.d. samples. For distributions with unbounded sup-
port, such as sub-Gaussian and heavy-tailed distributions,
fundamental trade-offs between accuracy, sample size, and
privacy have only recently been identified (Karwa & Vad-
han, 2017; Kamath et al., 2019; 2020b; Aden-Ali et al.,
2020) and efficient private estimators proposed. However,
these approaches are brittle when a fraction of the data is
corrupted, posing a real threat, referred to as data poisoning
attacks (Chen et al., 2017; Xiao et al., 2015). In defense
of such attacks, robust (but not necessarily private) statis-
tics has emerged as a popular setting of recent algorithmic
and mathematical breakthroughs (Steinhardt et al., 2018;
Diakonikolas et al., 2017).

One might be misled into thinking that privacy ensures ro-
bustness since DP guarantees that a single outlier cannot
change the estimation too much. This intuition is true only
in a low dimension; each sample has to be an obvious out-
lier to significantly change the mean. However, in a high
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dimension, each corrupted data point can look perfectly un-
corrupted but still shift the mean significant when colluding
together (e.g., see Fig. 1). Focusing on the canonical prob-
lem of mean estimation, we introduce novel algorithms that
achieve robustness and privacy simultaneously even when a
fraction of data is corrupted arbitrarily. For such algorithms,
there is a fundamental question of interest: do we need more
samples to make private mean estimation also robust against
adversarial corruption?

Sub-Gaussian distributions. If we can afford exponen-
tial run-time in the dimension, robustness can be achieved
without extra cost in sample complexity. We introduce a
novel estimator that (i) satisfies (ε, δ)-DP, (ii) achieves
near-optimal robustness under α-fraction of corrupted data,
achieving accuracy of O(α

√
log(1/α)) nearly matching

the fundamental lower bound of Ω(α) that holds even for a
(non-private) robust mean estimation with infinite samples,
and (iii) achieves near-optimal sample complexity match-
ing that of a fundamental lower bound for a (non-robust)
private mean estimation as shown in Table 1.

Theorem 1 (Informal Theorem 9, exponential time). Al-
gorithm 3 is (ε, δ)-DP. When α fraction of the data is ar-
bitrarily corrupted from n samples from a d-dimensional
sub-Gaussian distribution with mean µ and an iden-
tity sub-Gaussian parameter, if n = Ω̃(d/α2 + (d +
d1/2 log(1/δ))/(αε)) then Algorithm 3 achieves ‖µ̂ −
µ‖2 = O(α

√
log(1/α)) w.h.p.

We introduce PRIME (PRIvate and robust Mean Estima-
tion) in §2.3 with details in Algorithm 9 in Appendix F.1, to
achieve computational efficiency. It requires a run-time of
only Õ(d3 +nd2), but at the cost of requiring extra d1/2 fac-
tor larger number of samples. This cannot be improved upon
with current techniques since efficient robust estimators rely
on the top PCA directions of the covariance matrix to detect
outliers. (Wei et al., 2016) showed that Ω̃(d3/2) samples
are necessary to compute PCA directions while preserv-
ing (ε, δ)-DP when ‖xi‖2 = O(

√
d). It remains an open

question if this Ω̃(d3/2/(αε)) bottleneck is fundamental; no
matching lower bound is currently known.

Theorem 2 (Informal Theorem 6, polynomial time).
PRIME is (ε, δ)-DP and under the assumption of Thm.1 if
n = Ω̃(d/α2+(d3/2 log(1/δ))/(αε)) achieves ‖µ̂−µ‖2 =
O(α

√
log(1/α)) w.h.p.

Heavy-tailed distributions. When samples are drawn from
a distribution with a bounded covariance, parameters of
Algorithm 3 can be modified to nearly match the optimal
sample complexity of (non-robust) private mean estimation
in Table 2. This algorithm also matches the fundamental
limit on the accuracy of (non-private) robust estimation,
which in this case is Ω(α1/2).

Theorem 3 (Informal Theorem 7, exponential time). From

a distribution with mean µ ∈ Rd and covariance Σ � I, n
samples are drawn and α-fraction is corrupted. Algorithm 3
is (ε, δ)-DP and if n = Ω̃((d + d1/2 log(1/δ))/(αε) +

d1/2 log3/2(1/δ)/ε) achieves ‖µ̂− µ‖2 = O(α1/2) w.h.p.

The proposed PRIME-HT for covariance bounded distri-
butions achieve computational efficiency at the cost of an
extra factor of d1/2 in sample size. This bottleneck is also
due to DP PCA, and it remains open whether this gap can
be closed by an efficient estimator.

Theorem 4 (Informal Theorem 8, polynomial
time). PRIME-HT is (ε, δ)-DP and if n =

Ω̃((d3/2 log(1/δ))/(αε)) achieves ‖µ̂ − µ‖2 = O(α1/2)
w.h.p. under the assumptions of Thm. 3.

1.1. Technical contributions

We introduce PRIME which simultaneously achieves (ε, δ)-
DP and robustness against α-fraction of corruption. A major
challenge in making a standard filter-based robust estima-
tion algorithm (e.g., (Diakonikolas et al., 2017)) private is
the high sensitivity of the filtered set that we pass from one
iteration to the next. We propose a new framework which
makes private only the statistics of the set, hence signif-
icantly reducing the sensitivity. Our major innovation is
a tight analysis of the end-to-end sensitivity of this multi-
ple interactive accesses to the database. This is critical in
achieving robustness while preserving privacy and is also
of independent interest in making general iterative filtering
algorithms private.

The classical filter approach (see, e.g. (Diakonikolas et al.,
2017)) needs to access the database O(d) times, which
brings an extra O(

√
d) factor in the sample complexity due

to DP composition. In order to reduce the iteration complex-
ity, following the approach in (Dong et al., 2019), we pro-
pose filtering multiple directions simultaneously using a new
score based on the matrix multiplicative weights (MMW).
In order to privatize the MMW filter, our major innovation
is a novel adaptive filtering algorithm DPTHRESHOLD(·)
that outputs a single private threshold which guarantees suf-
ficient progress at every iteration. This brings the number
of database accesses from O(d) to O((log d)2).

One downside of PRIME is that it requires an extra d1/2

factor in the sample complexity, compared to known lower
bounds for (non-robust) DP mean estimation. To investigate
whether this is also necessary, we propose a sample optimal
exponential time robust mean estimation algorithm in §C
and prove that there is no extra statistical cost to jointly
requiring privacy and robustness. Our major technical in-
novations is in using resilience property of the dataset to
not only find robust mean (which is the typical use case of
resilience) but also bound sensitivity of that robust mean.
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Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP (Kamath et al., 2019) Õ( d
α2 + d log1/2(1/δ)

αε ) Õ( d
α2 + d

αε )♣ Ω̃( d
α2 + d

αε )♠

α-corruption (Dong et al., 2019) Õ( d
α2 ) Õ( d

α2 ) Ω( d
α2 )

α-corruption and Õ
(
d
α2 + d3/2 log(1/δ)

αε

)
Õ( d

α2 + d+d1/2 log(1/δ)
αε ) Ω̃( d

α2 + d
αε )♠

(ε, δ)-DP (this paper) [Theorem 6] [Theorem 9] (Kamath et al., 2019)

Table 1. For estimating the mean µ ∈ [−R,R]d of a sub-Gaussian distribution with a known covariance, we list the sufficient or necessary
conditions on the sample sizes to achieve an error ‖µ̂− µ‖2 = Õ(α) under (ε, δ)-DP, corruption of an α-fraction of samples, and both.
♣ requires the distribution to be a Gaussian (Bun et al., 2019) and ♠ requires δ ≤

√
d/n.

Upper bound (poly-time) Upper bound (exp-time) Lower bound

(ε, δ)-DP (Kamath et al., 2020b) Õ(d log1/2(1/δ)
αε ) Õ(d log1/2(1/δ)

αε ) Ω( d
αε )

α-corruption (Dong et al., 2019) Õ( dα ) Õ( dα ) Ω( dα )

α-corruption and Õ
( d3/2 log(1/δ)

αε

)
Õ(d+d1/2 log3/2(1/δ)

αε ) Ω( d
αε )

(ε, δ)-DP (this paper) [Theorem 8] [Theorem 7] ((Kamath et al., 2020b))

Table 2. For estimating the mean µ ∈ [−R,R]d of a covariance bounded distribution, we list the sufficient or necessary conditions on the
sample size to achieve an error ‖µ̂− µ‖2 = O(α1/2) under (ε, δ)-DP, corruption of an α-fraction of samples, and both.

1.2. Preliminary on differential privacy (DP)

DP is a formal metric for measuring privacy leakage when
a dataset is accessed with a query (Dwork et al., 2006).

Definition 1.1. Given two datasets S = {xi}ni=1 and S′ =

{x′i}n
′

i=1, we say S and S′ are neighboring if d4(S, S′) ≤
1 where d4(S, S′) , max{|S \ S′|, |S′ \ S|}, which is
denoted by S ∼ S′. For an output of a stochastic query q on
a database, we say q satisfies (ε, δ)-differential privacy for
some ε > 0 and δ ∈ (0, 1) if P(q(S) ∈ A) ≤ eεP(q(S′) ∈
A) + δ for all S ∼ S′ and all subset A.

Let z ∼ Lap(b) be a random vector with entries i.i.d. sam-
pled from Laplace distribution with pdf (1/2b)e−|z|/b. Let
z ∼ N (µ,Σ) denote a Gaussian random vector with mean
µ and covariance Σ.

Definition 1.2. The sensitivity of a query f(S) ∈ Rk is
defined as ∆p = supS∼S′ ‖f(S) − f(S′)‖p for a norm
‖x‖p = (

∑
i∈[k] |xi|p)1/p. For p = 1, the Laplace mech-

anism outputs f(S) + Lap(∆1/ε) and achieves (ε, 0)-DP
(Dwork et al., 2006). For p = 2, the Gaussian mecha-
nism outputs f(S)+N (0, (∆2(

√
2 log(1.25/δ))/ε)2I) and

achieves (ε, δ)-DP (Dwork & Roth, 2014).

We use these output perturbation mechanisms along with
the exponential mechanism (McSherry & Talwar, 2007) as
building blocks. Appendix A provides detailed survey of
privacy and robust estimation.

1.3. Problem formulation

We are given n samples from a sub-Gaussian distribution
with a known covariance but unknown mean, and α fraction

of the samples are corrupted by an adversary. Our goal is to
estimate the unknown mean. We follow the standard defini-
tion of adversary in (Diakonikolas et al., 2017), which can
adaptively choose which samples to corrupt and arbitrarily
replace them with any points.

Assumption 1. An uncorrupted dataset Sgood consists of
n i.i.d. samples from a d-dimensional sub-Gaussian distri-
bution with mean µ ∈ [−R,R]d and covariance E[xx>] =
Id, which is 1-sub-Gaussian, i.e., E[exp(v>x)] ≤
exp(‖v‖22/2). For some α ∈ (0, 1/2), we are given a cor-
rupted dataset S = {xi ∈ Rd}ni=1 where an adversary
adaptively inspects all the samples in Sgood, removes αn of
them, and replaces them with Sbad which are αn arbitrary
points in Rd.

Similarly, we consider the same problem for heavy-tailed
distributions with a bounded covariance. We present the
assumption and main results for covariance bounded distri-
butions in Appendix B.

Outline. We present PRIME for sub-Gaussian distribution
in §2, and present theoretical analysis in §3. We then intro-
duce an exponential time algorithm with near optimal guar-
antee in §C (due to space constraints). Analogous results
for heavy-tailed distributions are presented in Appendix B
(due to space constraints).

2. PRIME: efficient algorithm for robust and
DP mean estimation

In order to describe the proposed algorithm PRIME, we need
to first describe a standard (non-private) iterative filtering
algorithm for robust mean estimation.
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2.1. Background on (non-private) iterative filtering for
robust mean estimation

Non-private robust mean estimation approaches recursively
apply the following filter, whose framework is first pro-
posed in (Diakonikolas et al., 2019a). Given a dataset
S = {xi}ni=1, the current set S0 ⊆ [n] of data points is
updated starting with S1 = [n]. At each step, the follow-
ing filter (Algorithm 1 in (Li, 2019)) attempts to detect the
corrupted data points and remove them.

1. Compute the top eigenvector vt ←
arg maxv:‖v‖2=1 v

>Cov(St−1)v of the covariance of
the current data set {xi}i∈St−1 ;

2. Compute scores for all data points j ∈ St−1: τj ←(
v>t (xj −Mean(St−1))

)2
;

3. Draw a random threshold: Zt ← Unif([0, 1]) ;

4. Remove outliers from St−1 defined as {i ∈ St−1 :
τi is in the largest 2α-tail of {τj}j∈St−1 and τi ≥
Zt τmax}, where τmax = maxj∈St−1

τj

This is repeated until the empirical covariance is sufficiently
small and the empirical mean µ̂ is output. At a high level, the
correctness of this algorithm relies on the key observation
that the α-fraction of adversarial corruption can not signifi-
cantly change the mean of the dataset without introducing
large eigenvalues in the empirical covariance. Therefore, the
algorithm finds top eigenvector of the empirical covariance
in step 1, and tries to correct the empirical covariance by
removing corrupted data points. Each data point is assigned
a score in step 2 which indicates the “badness” of the data
points, and a threshold Zt in step 3 is carefully designed
such that step 4 guarantees to remove more corrupted data
points than good data points (in expectation). This guaran-
tees the following bound achieving the near-optimal sample
complexity shown in the second row of Table 1. A formal de-
scription of this algorithm is in Algorithm 4 in Appendix D.
Proposition 2.1 (Corollary of (Li, 2019, Theorem 2.1)).
Under assumption 1, the above filtering algorithm achieves
accuracy ‖µ̂ − µ‖2 ≤ O(α

√
log(1/α)) w.p. 0.9 if n ≥

Ω̃(d/α2) .

Challenges in making robust mean estimation private.
To get a DP and robust mean, a naive attempt is to apply
a standard output perturbation mechanism to µ̂. However,
this is obviously challenging since the end-to-end sensitiv-
ity is intractable. The standard recipe to circumvent this
is to make the current “state” St private at every iteration.
Once St−1 is private (hence, public knowledge), making
the next “state” St private is simpler. We only need to ana-
lyze the sensitivity of a single step and apply some output
perturbation mechanism with (εt, δt). End-to-end privacy is
guaranteed by accounting for all these (εt, δt)’s using the ad-
vanced composition (Kairouz et al., 2015). This recipe has

been quite successful, for example, in training neural net-
works with (stochastic) gradient descent (Abadi et al., 2016),
where the current state can be the optimization variable xt.
However, for the above (non-private) filtering algorithm,
this standard recipe fails, since the state St is a set and has
large sensitivity. Changing a single data point in St can sig-
nificantly alter which (and how many) samples are filtered
out.

2.2. A new framework for private iterative filtering

Instead of making the (highly sensitive) St itself private,
we propose a new framework which makes private only the
statistics of St: the mean µt and the top principal direc-
tion vt. There are two versions of this algorithm, which
output the exactly same µ̂ with the exactly same privacy
guarantees, but are written from two different perspectives.
We present here the interactive version from the perspec-
tive of an analyst accessing the dataset via DP queries
(qrange, qsize, qmean, qnorm and qPCA), because this version
makes clear the inner operations of each private mecha-
nisms, hence making (i) the sensitivity analysis transparent,
(ii) checking the correctness of privacy guarantees easy, and
(iii) tracking privacy accountant simple. In practice, one
should implement the centralized version (Algorithm 7 in
Appendix E), which is significantly more efficient.

Algorithm 1: Private iterative filtering (interactive
version)

Input: range [−R,R]d, α ∈ (0, 1/2), probability
ζ ∈ (0, 1), # of iterations T = Θ(d), (ε, δ)

1 (x̄, B)← qrange(R, 0.01ε, 0.01δ)

2 ε1 ← min{0.99ε, 0.9}/(4
√

2T log(2/δ)), δ1 ←
0.99δ/(8T )

3 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
4 for t = 1, . . . , T do
5 nt ← qsize({(µ`, v`, Z`)}`∈[t−1], ε1, x̄, B), if

nt < 3n/4 then Output: ∅
6 µt ← qmean({(µ`, v`, Z`)}`∈[t−1], ε1, x̄, B)
7 λt ← qnorm({(µ`, v`, Z`)}`∈[t−1], µt, ε1, x̄, B)
8 if λt ≤ (C − 0.01)α log 1/α then Output: µt
9 vt ←

qPCA({(µ`, v`, Z`)}`∈[t−1], µt, ε1, δ1, x̄, B))
10 Zt ← Unif([0, 1])

Output: µt

We give a high-level explanation of each step of Algo-
rithm 1 here and give the formal definitions of all the
queries in Appendix E. First, qrange returns (the param-
eters of) a hypercube x̄ + [−B/2, B/2]d that is guaran-
teed to include all uncorrupted samples while preserving
privacy. This is achieved by running d coordinate-wise
private histograms and selecting x̄j as the center of the
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largest bin for the j-th coordinate. Since covariance is
I, qrange returns a fixed B = 8σ

√
log(dn/ζ). Such an

adaptive estimate of the support is critical in tightly bound-
ing the sensitivity of all subsequent queries, which oper-
ate on the clipped dataset; all data points are projected as
Px̄+[−B/2,B/2]d(x) = arg miny∈x̄+[−B/2,B/2]d ‖y − x‖2
in all the queries that follow. With clipping, a single data
point can now change at most by B

√
d.

The subsequent steps perform the non-private filtering algo-
rithm of §2.1, but with private statistics µt and vt. As the
set St changes over time, we lower bound its size (which
we choose to be |St| > n/2) to upper bound the sensitivity
of other queries qmean, qnorm and qPCA.

At the t-th iterations, every time a query is called the
data curator (i) uses (x̄, B) to clip the data, (ii) computes
St by running t − 1 steps of the non-private filtering al-
gorithm of §2.1 but with a given fixed set of parameters
{(µ`, v`)}`∈[t−1] (and the given randomness {Z`}`∈[t−1]),
and (iii) computes the queried private statistics of St. If
the private spectral norm of the covariance of St (i.e., λt)
is sufficiently small, we output the private and robust mean
µ̂ = µt (line 8). Otherwise, we compute the private top
PCA direction vt and draw an randomness Zt to be used in
the next step of filtering, as in the non-private filtering algo-
rithm. We emphasize that {S`} are not private, and hence
never returned to the analyst. We also note that this inter-
active version is redundant as every query is re-computing
St. In our setting, the analyst has the dataset and there is no
need to separate them. This leads to a centralized version
we provide in Algorithm 7 in the appendix, which avoids
redundant computations and hence is significantly more
efficient.

The main challenge in this framework is the privacy anal-
ysis. Because {S`}`∈[t−1] is not private, each query runs
t− 1 steps of filtering whose end-to-end sensitivity could
blow-up. Algorithmically, (i) we start with a specific choice
of a non-private iterative filtering algorithm (among sev-
eral variations that are equivalent in non-private setting but
widely differ in its sensitivity), and (ii) make appropriate
changes in the private queries (Algorithm 1) to keep the
sensitivity small. Analytically, the following key technical
lemma allows a sharp analysis of the end-to-end sensitivity
of iterative filtering.
Lemma 2.2. Let St(S) denote the resulting subset of sam-
ples after t iterations of the filtering in the queries (qsize,
qmean, qnorm, and qPCA) are applied to a dataset S us-
ing fixed parameters {(µ`, v`, Z`)}t`=1. Then, we have
d4(St(S), St(S ′)) ≤ d4(S,S ′), where d4(S,S ′) ,
max{|S \ S ′|, |S ′ \ S|}.

Recall that two datasets are neighboring, i.e., S ∼ S ′, iff
d4(S,S ′) ≤ 1. This lemma implies that if two datasets
are neighboring, then they are still neighboring after filter-

ing with the same parameters, no matter how many times
we filter them. Hence, this lemma allows us to use the
standard output-perturbation mechanisms with (ε1, δ1)-DP.
Advanced composition ensures that end-to-end guarantee
of 4T such queries is (0.99ε, 0.99δ)-DP. Together with
(0.01ε, 0.01δ)-DP budget used in qrange, this satisfied the
target privacy. Analyzing the utility of this algorithm, we
get the following guarantee.

Theorem 5. Algorithm 1 is (ε, δ)-DP. Under Assumption 1,
there exists a universal constant c ∈ (0, 0.1) such that if
α ≤ c and n = Ω̃

(
(d/α2) + d2(log(1/δ))3/2/(εα)

)
then

Algorithm 1 achieves ‖µ̂ − µ‖2 ≤ O(α
√

log(1/α)) with
probability 0.9.

The first term O(d/α2) in the sample complexity is optimal
(cf. Table 1), but there is a factor of d gap in the second term.
This is due to the fact that we need to run O(d) iterations
in the worst-case. Such numerous accesses to the database
result in large noise to be added at each iteration, requiring
large sample size to combat that extra noise. We introduce
PRIME to reduce the number of iterations to O((log d)2)
and significantly reduce the sample complexity.

2.3. PRIME: novel robust and private mean estimator

Algorithm 1 (specifically Filter(·) in Algorithm 1) accesses
the database O(d) times. This is necessary for two reasons.
First, the filter checks only one direction vt at each iteration.
In the worst case, the corrupted samples can be scattered in
Ω(d) orthogonal directions such that the filter needs to be
repeated O(d) times. Secondly, even if the corrupted sam-
ples are clustered together in one direction, the filter still
needs to be repeated O(d) times. This is because we had to
use a large (random) threshold of dB2Zt = O(d) to make
the threshold data-independent so that we can keep the sen-
sitivity of Filter(·) low, which results in slow progress. We
propose filtering multiple directions simultaneously using a
new score {τi} based on the matrix multiplicative weights.
Central to this approach is a novel adaptive filtering algo-
rithm DPTHRESHOLD(·) that guarantees sufficient decrease
in the total score at every iteration.

2.3.1. MATRIX MULTIPLICATIVE WEIGHT (MMW)
SCORING

The MMW-based approach, pioneered in (Dong et al., 2019)
for non-private robust mean estimation, filters out multiple
directions simultaneously. It runs over O(log d) epochs and
every epoch consists of O(log d) iterations. At every epoch
s and iteration t, step 2 of the iterative filtering in §2.1 is
replaced by a new score τi = (xi−Mean(S

(s)
t ))TU

(s)
t (xi−

Mean(S
(s)
t )) where U (s)

t now accounts for all directions in
Rd but appropriately weighted. Precisely, it is defined via
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the matrix multiplicative update:

U
(s)
t =

exp
(
α(s)

∑
r∈[t](Cov(S

(s)
t )− I)

)
Tr
(

exp(α(s)
∑
r∈[t](Cov(S

(s)
t )− I))

) ,
for some choice of α(s) > 0. If we set the number of
iterations to one, a choice of α(s) =∞ recovers the previ-
ous score that relied on the top singular vector from §2.1
and a choice of α(s) = 0 gives a simple norm based score
τi = ‖xi‖22. An appropriate choice of α(s) smoothly in-
terpolates between these two extremes, which ensures that
O(log d) iterations are sufficient for the spectral norm of
the covariance to decrease strictly by a constant factor. This
guarantees that after O(log d) epochs, we sufficiently de-
crease the covariance to ensure that the empirical mean is
accurate enough. Critical in achieving this gain is our care-
fully designed filtering algorithm DPTHRESHOLD that uses
the privately computed MMW-based scores using Gaussian
mechanism on the covariance matrices as shown in Algo-
rithm 11 in Appendix F.

2.3.2. ADAPTIVE FILTERING WITH DPTHRESHOLD

Novelty. The corresponding non-private filtering of (Dong
et al., 2019) for robust mean estimation takes advantage of
an adaptive threshold, but filters out each sample indepen-
dently resulting in a prohibitively large sensitivity; the cou-
pling between each sample and the randomness used to filter
it can change widely between two neighboring datasets. On
the other hand, Algorithm 1 (i.e., Filter(·) in Algorithm 6)
takes advantage of jointly filtering all points above a single
threshold B2dZt with a single randomness Zt ∼ Unif[0, 1],
but the non-adaptive (and hence large) choice of the range
B2d results in a large number of iterations because each
filtering only decrease the score by little. To sufficiently
reduce the total score while maintaining a small sensitivity,
we introduce a filter with a single and adaptive threshold.

Algorithm. Our goal here is to privately find a single scalar
ρ such that when a randomized filter is applied on the scores
{τi} with a (random) threshold ρZ (with Z drawn uniform
in [0, 1]), we filter out enough samples to make progress
in each iteration while ensuring that we do not remove too
many uncorrupted samples. This is a slight generalization of
the non-private algorithm in Section 2.1, which simply set
ρ = maxj∈Stτj . While this guarantees the filter removes
more corrupted samples than good samples, it does not make
sufficient progress in reducing the total score of the samples.

Ideally, we want the thresholding to decrease the total score
by a constant multiplicative factor, which will in the end al-
low the algorithm to terminate within logarithmic iterations.
To this end, we propose a new scheme of using the largest ρ

such that the following inequality holds:∑
τi>ρ

(τi − ρ) ≥ 0.31
∑
τi∈St

(τi − 1) . (1)

We use a private histogram of the scores to approximate
this threshold. Similar to (Kaplan et al., 2020; Karwa &
Vadhan, 2017), we use geometrically increasing bin sizes
such that we use only O(logB2d) bins while achieving a
preferred multiplicative error in our quantization. At each
epoch s and iteration t, we run DPTHRESHOLD sketched
in the following to approximate ρ followed by a random
filter. Step 3 replaces the non-private condition in Eq. (1).
A complete description is provided in Algorithm 11.

1. Privately compute scores for all data points i ∈ S(s)
t :

τi ← (xi − µt)>U (s)
t (xi − µt) ;

2. Compute a private histogram {h̃j}2+log(B2d)
j=1 of

the scores over geometrically sized bins I1 =
[1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) =

[2log(B2d)−1, 2log(B2d)] ;
3. Privately find the largest ` satisfying

∑
j≥`(2

j −
2`) h̃j ≥ 0.31

∑
i∈S(s)

t
(τi − 1) ;

4. Output ρ = 2` .

3. Analyses of PRIME
Building on the framework of Algorithm 1, PRIME (Algo-
rithm 9) replaces the score with the MMW-based score pre-
sented in §2.3.1 and the filter with the adaptive DPTHRESH-
OLD. This reduces the number of iterations to T =
O((log d)2) achieving the following bound.
Theorem 6. PRIME is (ε, δ)-differentially private. Un-
der Assumption 1 there exists a universal constant c ∈
(0, 0.1) such that if α ≤ c and n = Ω̃((d/α2) +
(d3/2/(εα)) log(1/δ)), then PRIME achieves ‖µ̂− µ‖2 =
O(α

√
log(1/α)) with probability 0.9.

A proof is provided in Appendix G. The notation Ω̃(·) hides
logarithmic terms in d, R, and 1/α. To achieve an er-
ror of O(α

√
log(1/α)), the first term Ω̃(d/α2 log(1/α))

is necessary even if there is no corruption. The accuracy
of O(α

√
log(1/α)) matches the lower bound shown in (Di-

akonikolas et al., 2017) for any polynomial time statistical
query algorithm, and it nearly matches the information the-
oretical lower bound on robust estimation of Ω(α). On the
other hand, the second term of Ω̃(d3/2/(εα log(1/α))) has
an extra factor of d1/2 compared to the optimal one achieved
by exponential time Algorithm 3. It is an open question if
this gap can be closed by a polynomial time algorithm.

The bottleneck is the private matrix multiplicative weights.
Such spectral analyses are crucial in filter-based robust esti-
mators. Even for a special case of privately computing the
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top principal component, the best polynomial time algorithm
requires O(d3/2) samples (Dwork et al., 2014; Chaudhuri
et al., 2013; Wei et al., 2016), and this sample complexity
is also necessary as shown in Dwork et al. (2014, Corollary
25).

To boost the success probability to 1 − ζ for some small
ζ > 0, we need an extra log(1/ζ) factor in the sample
complexity to make sure the dataset satisfies the regularity
condition with probability ζ/2. Then we can run PRIME
log(1/ζ) times and choose the output of a run that satisfies
n(s) > n(1−10α) and λ(s) ≤ Cα log(1/α) at termination.
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Figure 1. Private mean estimators (e.g., DP mean (Kamath et al.,
2019)) are vulnerable to adversarial corruption especially in high
dimensions, while the proposed PRIME achieves robustness (and
privacy) regardless of the dimension of the samples.

Numerical experiments support our theoretical claims. The
left figure with (α, ε, δ, n) = (0.05, 20, 0.01, 106) is in the
large α regime where the DP Mean error is dominates by
α
√
d and PRIME error by α

√
log(1/α). Hence, PRIME

error is constant whereas DP Mean error increases with
the dimension d. The second figure with (α, ε, δ, n) =
(0.001, 20, 0.01, 106) is in the small α regime when DP
Mean error consists of α

√
d+

√
d/n and PRIME is domi-

nated by
√
d/n. Both increase with the dimension d, and

the gap can be made large by increasing α. Details of the
experiments are in Appendix K.

4. Conclusion
Differentially private mean estimation is brittle against a
small fraction of the samples being corrupted by an adver-
sary. We show that robustness can be achieves without any
increase in the sample complexity by introducing a novel
DP mean estimator, which requires run-time exponential
in the dimension of the samples. The technical contribu-
tion is in leveraging the resilience property of well-behaved
distributions in an innovative way to not only find robust
mean (which is the typical use case of resilience) but also
bound sensitivity for optimal privacy guarantee. To cope
with the computational challenge, we propose an efficient
algorithm, which we call PRIME, that achieves the optimal
target accuracy at the cost of an increased sample complex-
ity. The technical contributions are (i) a novel framework
for private iterative filtering and its tight analysis of the
end-to-end sensitivity and (ii) novel filtering algorithm of
DPTHRESHOLD which is critical in privately running matrix

multiplicative weights and hence significantly reducing the
number of accesses to the database. With appropriately cho-
sen parameters, we show that our exponential time approach
achieves near-optimal guarantees for both sub-Gaussian and
covariance bounded distributions and PRIME achieves the
same accuracy efficiently but at the cost of an increased
sample complexity by a d1/2 factor.
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with the unknown: Privacy-preserving learning of asso-
ciations and data dictionaries. Proceedings on Privacy
Enhancing Technologies, 2016(3):41–61, 2016.

Gao, C. et al. Robust regression via mutivariate regression
depth. Bernoulli, 26(2):1139–1170, 2020.

Hopkins, S., Li, J., and Zhang, F. Robust and heavy-tailed
mean estimation made simple, via regret minimization.
Advances in Neural Information Processing Systems, 33,
2020.

Hopkins, S. B. Mean estimation with sub-gaussian rates in
polynomial time. Annals of Statistics, 48(2):1193–1213,
2020.

Hopkins, S. B. and Li, J. Mixture models, robustness, and
sum of squares proofs. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1021–1034, 2018.

Hopkins, S. B. and Li, J. How hard is robust mean estima-
tion? In Conference on Learning Theory, pp. 1649–1682.
PMLR, 2019.

Huber, P. J. Robust Estimation of a Location Parameter. The
Annals of Mathematical Statistics, 35(1):73 – 101, 1964.

Jambulapati, A., Li, J., and Tian, K. Robust sub-gaussian
principal component analysis and width-independent
schatten packing. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Jia, H. and Vempala, S. Robustly clustering a mixture of
gaussians. arXiv preprint arXiv:1911.11838, 2019.

Kairouz, P., Oh, S., and Viswanath, P. The composition the-
orem for differential privacy. In International conference
on machine learning, pp. 1376–1385, 2015.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Kamath, G., Li, J., Singhal, V., and Ullman, J. Privately
learning high-dimensional distributions. In Conference
on Learning Theory, pp. 1853–1902, 2019.

Kamath, G., Sheffet, O., Singhal, V., and Ullman, J. Dif-
ferentially private algorithms for learning mixtures of
separated gaussians. In 2020 Information Theory and
Applications Workshop (ITA), pp. 1–62. IEEE, 2020a.

Kamath, G., Singhal, V., and Ullman, J. Private mean
estimation of heavy-tailed distributions. arXiv preprint
arXiv:2002.09464, 2020b.

Kaplan, H., Ligett, K., Mansour, Y., Naor, M., and Stemmer,
U. Privately learning thresholds: Closing the exponential
gap. In Conference on Learning Theory, pp. 2263–2285.
PMLR, 2020.

Karmalkar, S. and Price, E. Compressed sensing with adver-
sarial sparse noise via l1 regression. In 2nd Symposium
on Simplicity in Algorithms, 2019.

Karmalkar, S., Klivans, A., and Kothari, P. List-decodable
linear regression. In Advances in Neural Information
Processing Systems, pp. 7423–7432, 2019.

Karwa, V. and Vadhan, S. Finite sample differentially private
confidence intervals. arXiv preprint arXiv:1711.03908,
2017.

Klivans, A., Kothari, P. K., and Meka, R. Efficient algo-
rithms for outlier-robust regression. In Conference On
Learning Theory, pp. 1420–1430, 2018.

Kong, W., Somani, R., Kakade, S., and Oh, S. Robust meta-
learning for mixed linear regression with small batches.
Advances in Neural Information Processing Systems, 33,
2020.

Kothari, P. K., Steinhardt, J., and Steurer, D. Robust moment
estimation and improved clustering via sum of squares. In
Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1035–1046, 2018.

Lai, K. A., Rao, A. B., and Vempala, S. Agnostic estimation
of mean and covariance. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 665–674. IEEE, 2016.

Li, J. CSE 599-M, Lecture Notes: Robustness in Ma-
chine Learning , 2019. URL: https://jerryzli.
github.io/robust-ml-fall19/lec7.pdf.

Li, J. and Ye, G. Robust gaussian covariance estimation in
nearly-matrix multiplication time. Advances in Neural
Information Processing Systems, 33, 2020.

https://jerryzli.github.io/robust-ml-fall19/lec7.pdf
https://jerryzli.github.io/robust-ml-fall19/lec7.pdf


Robust and Differentially Private Mean Estimation

Liu, L., Shen, Y., Li, T., and Caramanis, C. High di-
mensional robust sparse regression. arXiv preprint
arXiv:1805.11643, 2018.

Lugosi, G., Mendelson, S., et al. Sub-gaussian estimators
of the mean of a random vector. Annals of Statistics, 47
(2):783–794, 2019.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pp. 94–
103. IEEE, 2007.

Mukhoty, B., Gopakumar, G., Jain, P., and Kar, P. Globally-
convergent iteratively reweighted least squares for robust
regression problems. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 313–322,
2019.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar,
P. Robust estimation via robust gradient estimation. arXiv
preprint arXiv:1802.06485, 2018.

Raghavendra, P. and Yau, M. List decodable learning via
sum of squares. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 161–
180. SIAM, 2020.

Steinhardt, J., Charikar, M., and Valiant, G. Resilience: A
criterion for learning in the presence of arbitrary outliers.
In 9th Innovations in Theoretical Computer Science Con-
ference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

Tang, J., Korolova, A., Bai, X., Wang, X., and Wang, X.
Privacy loss in apple’s implementation of differential pri-
vacy on macos 10.12. arXiv preprint arXiv:1709.02753,
2017.

Tukey, J. W. A survey of sampling from contaminated
distributions. Contributions to probability and statistics,
pp. 448–485, 1960.

Vadhan, S. The complexity of differential privacy. In Tuto-
rials on the Foundations of Cryptography, pp. 347–450.
Springer, 2017.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

Wei, L., Sarwate, A. D., Corander, J., Hero, A., and Tarokh,
V. Analysis of a privacy-preserving pca algorithm using
random matrix theory. In 2016 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pp.
1335–1339. IEEE, 2016.

Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C.,
and Roli, F. Is feature selection secure against training
data poisoning? In International Conference on Machine
Learning, pp. 1689–1698. PMLR, 2015.

Zhang, H., Kamath, G., Kulkarni, J., and Wu, Z. S. Pri-
vately learning markov random fields. arXiv preprint
arXiv:2002.09463, 2020.

Zhu, B., Jiao, J., and Steinhardt, J. Generalized resilience
and robust statistics. arXiv preprint arXiv:1909.08755,
2019.



Robust and Differentially Private Mean Estimation

We provide related work in Appendix A, the main results for heavy-tailed distributions in Appendix B, the non-private
robust mean estimation in Appendix D, a new framework for private iterative filtering in Appendix E, description of PRIME
in Appendix F, analysis of PRIME in Appendix G, technical lemmas in Appendix H, analysis of the exponential time
Algorithm 3 in Appendix I, the algorithm and analysis of PRIME-HT in Appendix J, and the experimental details in
Appendix K.

A. Related work
Private statistical analysis. Traditional private data analyses require bounded support of the samples to leverage the
resulting bounded sensitivity. For example, each entry is constrained to have finite `2 norm in standard private principal
component analysis (Chaudhuri et al., 2013), which does not apply to Gaussian samples. Fundamentally departing from these
approaches, (Karwa & Vadhan, 2017) first established an optimal mean estimation of Gaussian samples with unbounded
support. The breakthrough is in first adaptively estimating the range of the data using a private histogram, thus bounding the
support and the resulting sensitivity. This spurred the design of private algorithms for high-dimensional mean and covariance
estimation (Kamath et al., 2019; Biswas et al., 2020), heavy-tailed mean estimation (Kamath et al., 2020b), learning
mixture of Gaussian (Kamath et al., 2020a), learning Markov random fields (Zhang et al., 2020), and statistical testing
(Canonne et al., 2019). Under the Gaussian distribution with no adversary, (Aden-Ali et al., 2020) achieves an accuracy of
‖µ̂− µ‖2 ≤ α̃ with the best known sample complexity of n = Õ((d/α̃2) + (d/α̃ε) + (1/ε) log(1/δ)) while guaranteeing
(ε, δ)-differential privacy. This nearly matches the known lower bounds of Ω(d/α̃2) for non-private finite sample complexity,
Ω̃((1/ε) min{log(1/δ), log(R)}) for privately learning one-dimensional unit variance Gaussian (Karwa & Vadhan, 2017),
and Ω̃(d/α̃ε) for multi-dimensional Gaussian estimation (Kamath et al., 2019). However, this does not generalize to
sub-Gaussian distributions and (Aden-Ali et al., 2020) does not provide a tractable algorithm. A polynomial time algorithm
is proposed in (Kamath et al., 2019) that achieves a slightly worse sample complexity of Õ((d/α̃2) + (d log1/2(1/δ)/α̃ε)),
which can also seamlessly generalized to sub-Gaussian distributions.

(Cai et al., 2019) takes a different approach of deviating from standard definition of sub-Gaussianity to provide a larger
lower bound on the sample complexity scaling as n = Ω(d

√
log(1/δ)/(αε)) for mean estimation with a known covariance.

Concretely, they consider distributions satisfying Ex∼P [eλ〈x−µ,ek〉] ≤ eλ2σ2

for all k ∈ [d] where ek is the k-th standard
basis vector. Notice that this condition only requires sub-Gaussianity when projected onto standard bases. Standard definition
of high-dimensional sub-Gaussianity (which is assumed in this paper) requires sub-Gaussianity in all directions. Therefore,
their lower bound is not comparable with our achievable upper bounds. Further, the example they construct to show the
lower bound does not satisfy our sub-Gaussianity assumptions.

In an attempt to design efficient algorithms for robust and private mean estimation, (Dhar & Huang, 2020) proposed an
algorithm with a mis-calculated sensitivity, which can result in violating the privacy guarantee. This can be corrected by
pre-processing with our approach of checking the resilience (as in Algorithm 3), but this requires a run-time exponential in
the dimension.

For estimating the mean of a covariance bounded distributions up to an error of ‖µ̂ − µ‖2 = O(α̃1/2), (Kamath et al.,
2020b) shows that Ω(d/(α̃ε)) samples are necessary and provides an efficient algorithm matching this up to a factor of
log1/2(1/δ). For a more general family of distributions with bounded k-moment, (Kamath et al., 2020b) shows that an error
of ‖µ̂− µ‖2 = O(α̃(k−1)/k) can be achieved with n = Õ((d/α̃2(k−1)/k) + (d log1/2(1/δ)/(εα̃))) samples.

However, under α-corruption, (Hopkins & Li, 2019) shows that achieving an error better than O(α1/2) under k-th moment
bound is as computationally hard as the small-set expansion problem, even without requiring DP. Hence, under the
assumption of P 6= NP, no polynomial-time algorithm exists that can outperform our PRIME-HT even if we have stronger
assumptions of k-th moment bound. On the other hand, there exists an exponential time algorithm for non-private robust
mean estimation that achieves ‖µ− µ̂‖2 = O(α(k−1)/k) (Zhu et al., 2019). Combining it with the bound of (Hopkins & Li,
2019), an interesting open question is whether there is an (exponential time) algorithm that achieves ‖µ−µ̂‖2 = O(α(k−1)/k)

with sample complexity n = Õ((d/α2(k−1)/k) + (d log1/2(1/δ)/(εα))) under α-corruption and (ε, δ)-DP.

Robust estimation. Designing robust estimators under the presence of outliers has been considered by statistics community
since 1960s (Tukey, 1960; Anscombe, 1960; Huber, 1964). Recently, (Diakonikolas et al., 2019a; Lai et al., 2016) give the
first polynomial time algorithm for mean and covariance estimation with no (or very weak) dependency on the dimensionality
in the estimation error. Since then, there has been a flurry of research on robust estimation problems, including mean
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estimation (Diakonikolas et al., 2017; Dong et al., 2019; Hopkins et al., 2020; Hopkins, 2020; Diakonikolas et al., 2018a),
covariance estimation (Cheng et al., 2019b; Li & Ye, 2020), linear regression and sparse regression (Bhatia et al., 2015; 2017;
Balakrishnan et al., 2017; Gao et al., 2020; Prasad et al., 2018; Klivans et al., 2018; Diakonikolas et al., 2019b; Liu et al.,
2018; Karmalkar & Price, 2019; Dalalyan & Thompson, 2019; Mukhoty et al., 2019; Diakonikolas et al., 2019c; Karmalkar
et al., 2019), principal component analysis (Kong et al., 2020; Jambulapati et al., 2020), mixture models (Diakonikolas
et al., 2020; Jia & Vempala, 2019; Kothari et al., 2018; Hopkins & Li, 2018) and list-decodable learning (Diakonikolas
et al., 2018b; Raghavendra & Yau, 2020; Charikar et al., 2017; Bakshi & Kothari, 2020; Cherapanamjeri et al., 2020).
See (Diakonikolas & Kane, 2019) for a survey of recent work.

One line of work that is particularly related to our algorithm PRIME is (Cheng et al., 2019a; Dong et al., 2019; Depersin &
Lecué, 2019; Cheng et al., 2019b; Cherapanamjeri et al., 2020), which leverage the ideas from matrix multiplicative weight
and fast SDP solver to achieve faster, sometimes nearly linear time, algorithms for mean and covariance estimation. In
PRIME, we use a matrix multiplicative weight approach similar to (Dong et al., 2019) to reduce the iteration complexity to
logarithmic, which enables us to achieve the d3/2 dependency in the sample complexity.

The concept of resilience is introduced in (Steinhardt et al., 2018) as a sufficient condition such that learning in the presence
of adversarial corruption is information-theoretically possible. The idea of resilience is later generalized in (Zhu et al.,
2019) for a wider range of adversarial corruption models. While there exists simple exponential time robust estimation
algorithm under resilience condition, it is challenging to achieve differential privacy due to high sensitivity. We propose
a novel approach to leverage the resilience property in our exponential time algorithm for sub-gaussian and heavy-tailed
distributions.

B. Main results under heavy-tailed distributions
We consider distributions with bounded covariance as defined as follows.

Assumption 2. An uncorrupted dataset Sgood consists of n i.i.d. samples from a distribution with mean µ ∈ [−R,R]d and
covariance Σ � I. For some α ∈ (0, 1/2), we are given a corrupted dataset S = {xi}ni=1 where an adversary adaptively
inspects all samples in Sgood, removes αn of them and replaces them with Sbad that are αn arbitrary points in Rd.

Under these assumptions, Algorithm 3 achieves near optimal guarantees but takes exponential time. The dominant term
in the sample complexity Ω̃(d/(εα)) cannot be improved as it matches that of the optimal non-robust private estimation
(Kamath et al., 2020b). The accuracy O(

√
α) cannot be improved as it matches that of the optimal non-private robust

estimation (Dong et al., 2019). We provide a proof in Appendix I.1.

Theorem 7 (Exponential time algorithm for covariance bounded distributions). Algorithm 3 is (ε, δ)-differentially private.
Under Assumption 2, if

n = Ω
(d log(dR/α) + d1/2 log(1/δ)

εα
+
d1/2 log3/2(1/δ) min{log(dR), log(d/δ)}

ε

)
,

this algorithm achieves ‖µ̂− µ‖2 = O(
√
α) with probability 0.9.

We propose an efficient algorithm PRIME-HT and show that it achieves the same optimal accuracy but at the cost of
increased sample complexity ofO(d3/2 log(1/δ)/(εα)). In the first step, we need increase the radius of the ball toO(

√
d/α)

to include a 1 − α fraction of the clean samples, where qrange−ht returns B = O(1/
√
α) and B√dB/2(x̄) is a `2-ball of

radius
√
dB/2 centered at x̄. This is followed by a matrix multiplicative weight filter similar to DPMMWFILTERR but the

parameter choices are tailored for covariance bounded distributions. We provide a proof in Appendix J.2.

Theorem 8 (Efficient algorithm for covariance bounded distributions). PRIME-HT is (ε, δ)-differentially private. Under
Assumption 2 there exists a universal constant c ∈ (0, 0.1) such that if α ≤ c, and n = Ω̃((d3/2/(εα)) log(1/δ)), then
PRIME-HT achieves ‖µ̂− µ‖2 = O(α1/2) with probability 0.9. The notation Ω̃(·) hides logarithmic terms in d, R, and
1/α.

Remark 1. To boost the success probability to 1− ζ for some small ζ > 0, we will randomly split the data into O(log(1/ζ))
subsets of equal sizes, and run Algorithm 2 to obtain a mean estimation from each of the subset. Then we can apply
multivariate “mean-of-means” type estimator (Lugosi et al., 2019) to get ‖µ̂− µ‖2 = O(α1/2) with probability 1− ζ . This
is efficient as we only have O(log 1/ζ) trials and run-time of mean-of-means is dominated by the time it takes to find all
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pairwise distances, which is only O(d (log(1/ζ))2). There are (log(1/ζ))2 pairs, and for each pair we compute the distance
between means in d operations.

Algorithm 2: PRIvate and robust Mean Estimation for covariance bounded distributions (PRIME-HT)

Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1/2), number of iterations
T1 = O(log(d/α)), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← qrange−ht(R, 0.01ε, 0.01δ) [Algorithm 14 in Appendix J]
2 Project the data onto the ball: x̃i ← PB√dB/2(x̄)(xi), for all i ∈ [n]

3 µ̂← DPMMWFILTER-HT({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 15 in Appendix J]
Output: µ̂
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C. Exponential time algorithm with near-optimal sample complexity
Novelty. An existing exponential time algorithm for robust and private mean estimation in (Bun et al., 2019) strictly requires
the uncorrupted samples to be drawn from a Gaussian distribution. We introduce a novel estimator that achieves near-optimal
guarantees for more general sub-Gaussian distributions (and also covariance bounded distributions) but takes an exponential
run-time. Its innovation is in leveraging on the resilience property of well-behaved distributions not only to estimate the
mean robustly (which is the standard use of the property) but also to adaptively bound the sensitivity of the estimator, thus
achieving optimal privacy-accuracy tradeoff.

Definition C.1 (Resilience from Definition 1 in (Steinhardt et al., 2018)). A set of points {xi}i∈S lying in Rd is (σ, α)-
resilient around a point µ if ‖(1/|T |)

∑
i∈T (xi − µ)‖2 ≤ σ for all subsets T ⊂ S of size (1− α)|S|.

Algorithm. As data is corrupted, we define R(S) as a surrogate for resilience of the uncorrupted part of the set. If S indeed
consists of a 1− α fraction of independent samples from the promised class of distributions, the goodness score R(S) will
be close to the resilience property of the good data.

Definition C.2 (Goodness of a set). For µ(S) = (1/|S|)
∑
i∈S xi, let us define

R(S) , min
S′⊂S,|S′|=(1−2α)|S|.

max
T⊂S′,|T |=(1−α)|S′|.

‖µ(T )− µ(S′)‖2 .

Algorithm 3 first checks if the resilience matches that of the promised distribution. The data is pre-processed with qrange to
ensure we can check R(S) privately. Once resilience is cleared, we can safely use the exponential mechanism based on
the score function d(µ̂, S) in Definition C.3 to select an approximate robust mean µ̂ privately. The choice of the sensitivity
critically relies on the fact that resilient datasets have small sensitivity of O((1/n)

√
log(1/α)). Without the resilience

check, the sensitivity is O(d1/2/n) resulting in an extra factor of
√
d in the sample complexity.

Algorithm 3: Exponential-time private and robust mean estimation
Input: S = {xi}i∈[n], α ∈ (0, 1/2), R, (ε, δ)

1 if n < cd1/2 log(1/δ)/ (εα
√

log(1/α)) then Output: ∅ [ cd1/2 log(1/δ)/ (εα) for hevay-tail]
2 (x̄, B)← qrange(R, (1/3)ε, (1/3)δ) [ qrange−ht(·) for hevay-tail]
3 Project the data points onto the ball: xi ← PB√dB/2(x̄)(xi), for all i ∈ [n]

4 R̂(S)← R(S) + Lap(3Bd1/2/(nε))

5 if R̂(S) > 2α
√

log(1/α) then Output: ∅ [R̂(S) > 2cζ
√
α for hevay-tail]

6 else Output: a randomly drawn point µ̂ ∈ [−2R, 2R]d sampled from a density

7 r(µ̂) ∝ e−(1/(24
√

log(1/α)))ε n d(µ̂,S) [e−(εn
√
α/(24cζ))d(µ̂,S) for heavy-tail]

We propose the score function d(µ̂, S) in the following definition, which is a robust estimator of the distance between the
mean and the candidate µ̂.

Definition C.3. For a set of data {xi}i∈S lying in Rd, for any v ∈ Sd−1, define T v to be the 3α|S| points with the largest
v>xi value, Bv to be the 3α|S| points with the smallest v>xi value, and Mv = S \ (T v ∪ Bv). Define d(µ̂, S) ,
maxv∈Sd−1

∣∣v> (µ(Mv)− µ̂)
∣∣ .

Analysis. For any direction v, the truncated mean estimator µ(Mv) provides a robust estimation of the true mean along the
direction v, thus the distance can be simply defined by taking the maximum over all directions v. We show the sensitivity
of this simple estimator is bounded by the resilience property σ divided by n, which is O((1/n)

√
log(1/α)) once the

resilience check is passed. This leads to the following near-optimal sample complexity. We provide a proof in Appendix I.2.

Theorem 9 (Exponential time algorithm for sub-Gaussian distributions). Algorithm 3 is (ε, δ)-DP. Under Assumption 1,
this algorithm achieves ‖µ̂− µ‖2 = O(α

√
log(1/α)) with probability 1− ζ if

n = Ω̃
( d+ log 1

ζ

α2 log 1
α

+
d log dR

α + d1/2 log 1
δ + log 1

ζ

εα
+

√
d log 1

δ min{log dR
ζ , log d

ζδ}}
ε

)
.



Robust and Differentially Private Mean Estimation

Run-time. Computing R(S) exactly can take O(deΘ(n)) operations. The exponential mechanism implemented with
α-covering for µ̂ and a constant covering for v can take O(nd(R/α)d) operations.
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D. Background on (non-private) robust mean estimation
The following tie-breaking rule is not essential for robust estimation, but is critical for proving differential privacy, as shown
later in Appendix G.1.
Definition D.1 (Subset of the largest α fraction). Given a set of scalar values {τi = 〈V, (xi − µ)(xi − µ)>〉}i∈S′ for a
subset S′ ⊆ [n], define the sorted list π of S′ such that τπ(i) ≥ τπ(i+1) for all i ∈ [|S′| − 1]. When there is a tie such
that τi = τj , it is broken by π−1(i) ≤ π−1(j) ⇔ xi,1 ≥ xj,1. Further ties are broken by comparing the remaining
entries of xi and xj , in an increasing order of the coordinate. If xi = xj ,then the tie is broken arbitrarily. We define
Tα = {π(1), . . . , π(dnαe)} to be the set of largest dnαe valued samples.

With this definition of α-tail, we can now provide a complete description of the robust mean estimation that achieves the
guarantee provided in Proposition 2.1.

Algorithm 4: Non-private robust mean estimation (Li, 2019)
Input: S = {xi}ni=1, α ∈ (0, 1), S0 = [n]

1 for t = 1, . . . do
2 if ‖

∑
i∈St−1

(xi − µt−1)(xi − µt−1)> − I‖2 < Cα log(1/α) then
Output: µ̂ =

∑
i∈St−1

xi

3 else
4 µt ← (1/|St−1|)

∑
i∈St−1

xi

5 vt ← 1st principal direction of ( {(xi − µt)}i∈St−1)
6 Zt ← Unif([0, 1])

7 St ← St−1\ {i | i ∈ T2α for {τj = (v>t (xj − µt))2}j∈St−1
and τi ≥ Zt maxj∈St−1

(v>t (xj − µt))2},
where T2α is defined in Definition D.1.

E. A new framework for private iterative filtering
We provide complete descriptions of all algorithms used in private iterative filtering. We present the interactive version first,
followed by the centralized version.

E.1. Interactive version of the algorithm

Adaptive estimation of the range of the dataset is essential in computing private statistics of data. We use the following
algorithm proposed in (Karwa & Vadhan, 2017). It computes a private histogram of a set of 1-dimensional points and select
the largest bin as the one potentially containing the mean of the data. Note that B does not need not be chosen adaptively to
include all the uncorrupted data with a high probability.

Algorithm 5: Differentially private range estimation (qrange) (?)Algorithm 1]KV17

Input: Dn = {xi}ni=1, R, ε, δ, σ = 1
1 for j ← 1 to d do
2 Run the histogram learner of Lemma E.1 with privacy parameters

(
min{ε, 0.9}/2

√
2d log(2/δ), δ/(2d)

)
and

bins Bl = (2σ`, 2σ(`+ 1)] for all ` ∈ {−dR/2σe − 1, . . . , dR/2σe} on input Dn to obtain noisy estimates
{h̃j,l}dR/2σel=−dR/2σe−1

3 x̄j ← 2σ · arg max`∈{−dR/2σe−1,...,dR/2σe} h̃j,`

Output: (x̄, B = 8σ
√

log(dn/ζ))

The following guarantee (and the algorithm description) is used in the analysis (and the implementation) of the query qrange.
Lemma E.1 (Histogram Learner, Lemma 2.3 in (Karwa & Vadhan, 2017)). For every K ∈ N ∪∞, domain Ω, for every
collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε, δ ∈ (0, 1/n), β > 0 and α ∈ (0, 1) there exists an
(ε, δ)-differentially private algorithm M : Ωn → RK such that for any set of data X1, . . . , Xn ∈ Ωn
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1. p̂k = 1
n

∑
Xi∈Bk 1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}

then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

Proof. This is an intermediate result in the proof of Lemma 2.3 in (Karwa & Vadhan, 2017).

The rest of the queries (qsize, qmean, qPCA, and qnorm) are provided below. The most innovative part is the repeated
application of filtering that is run every time one of the queries is called. In the Filter query below, because we choose (i)
to use the sampling version of robust mean estimation as opposed to weighting version which assigned a weight on each
sample between zero and one measuring how good (i.e., score one) or bad (i.e., score zero) each sample point is, and (ii)
we switched the threshold to be dB2Z`, we can show that this filtering with fixed parameters {µ`, v`, Z`}`∈[t−1] preserves
sensitivity in Lemma 2.2. This justifies the choice of noise in each output perturbation mechanism, satisfying the desired
level of (ε, δ)-DP. We provide the complete privacy analysis in Appendix E.3 and also the analysis of the utility of the
algorithm as measure by the accuracy.

Algorithm 6: Interactive private queries used in Algorithm 1

1 Filter ({(µ`, v`, Z`)}`∈[t−1], x̄, B):
2 S0 ← [n]
3 Clip the data points: xi ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]

4 for ` = 1, . . . , t− 1 do
5 S` ← S`−1\ {i ∈ S`−1 : i ∈ T2α for {τj = (v>` (xj − µ`))2}j∈S`−1

and τi ≥ dB2 Z`}

6 qmean({(µ`, v`, Z`)}`∈[t−1], ε, x̄, B):
7 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
8 return µt ← (1/|St−1|)

(∑
i∈St−1

xi
)

+ Lap(2B/(nε))

9 qPCA({(µ`, v`, Z`)}`∈[t−1], µt, ε, δ, x̄, B):
10 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
11 return vt ← top singular vector of Σt−1 =

12 (1/n)
∑
i∈St−1

(xi − µt)(xi − µt)> +N (0, (B2d
√

2 log(1.25/δ)/(nε))2Id2×d2)

13 qnorm({(µ`, v`, Z`)}`∈[t−1], µt, ε, x̄, B):
14 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
15 return λt ← ‖(1/n)

∑
i∈St−1

(xi − µt)(xi − µt)>‖2 + Lap(2B2d/(nε))

16 qsize({(µ`, v`, Z`)}`∈[t−1], ε, x̄, B):
17 Filter({(µ`, v`, Z`)}`∈[t−1], x̄, B)
18 return nt ← |St−1|+ Lap(1/ε)

E.2. Centralized version of the algorithm

In practice, one should run the centralized version of the private iterative filtering, in order to avoid multiple redundant
computations of the interactive version. The main difference is that the redundant filtering repeated every time a query is
called in the interactive version is now merged into a single run. The resulting estimation and the privacy loss are exactly the
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same.

Algorithm 7: Private iterative filtering (centralized version)

Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1), target probability η ∈ (0, 1), number of
iterations T = Θ̃(d), target privacy (ε, δ)

1 (x̄, B)← qrange(R, 0.01ε, 0.01δ) [Algorithm 5]
2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]

3 µ̂← DPFILTER({x̃i}ni=1, α, T, 0.99ε, 0.99δ) [Algorithm 8]
Output: µ̂

First, qrange introduced in (Karwa & Vadhan, 2017), returns a hypercube x̄ + [−B,B]d that is guaranteed to include all
uncorrupted samples, while preserving privacy. It is followed by a private filtering DPFILTER in Algorithm 8.

Algorithm 8: Differentially private filtering (DPFILTER)

Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2), T = Õ(dB2 log(dB2/(α log(1/α)))), (ε, δ)
1 S0 ← [n], ε1 ← min{ε, 0.9}/(4

√
2T log(2/δ)), δ1 ← δ/(8T )

2 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
3 for t = 1, . . . , T do
4 nt ← |St−1|+ Lap(1/ε1)
5 if nt < 3n/4 then
6 Output: ∅
7 µt ← (1/|St−1|)

∑
i∈St−1

xi + Lap(2B/(n ε1))

8 λt ← ‖(1/n)
∑
i∈St−1

(xi − µt)(xi − µt)> − I‖2 + Lap(2B2d/(nε1))

9 if λt ≤ (C − 0.01)α log(1/α) then
Output: µt

10 vt ← top singular vector of Σt−1 ,
1
n

∑
i∈St−1

(xi − µt)(xi − µt)> +N (0, (B2d
√

2 log(1.25/δ)/(nε1))2Id2×d2)

11 Zt ← Unif([0, 1])

12 St ← St−1\ {i | i ∈ T2α for {τj = (v>t (xj − µt))2}j∈St−1 and τi ≥ dB2 Zt}, where T2α is defined in
Definition D.1.

E.3. The analysis of private iterative filtering (Algorithms 1 and 7) and a proof of Theorem 5

qrange, introduced in (Karwa & Vadhan, 2017), returns a hypercube x̄+[−B,B]d that is guaranteed to include all uncorrupted
samples, while preserving privacy. In the following lemma, we show that qrange is also robust to adversarial corruption. Such
adaptive bounding of the support is critical in privacy analysis of the subsequent steps. We clip all data points by projecting
all the points with Px̄+[−B/2,B/2]d(x) = arg miny∈x̄+[−B/2,B/2]d ‖y − x‖2 to lie inside the hypercube and pass them to
DPFILTER for filtering. The algorithm and a proof are provided in §E.3.1. Perhaps surprisingly, there is no dependence in R
for R > 1/δ, which is achieved by utilizing the private histogram mechanism from (Vadhan, 2017; Bun et al., 2016).

Lemma E.2. qrange(S,R, ε, δ) (Algorithm 5) is (ε, δ)-differentially private. Under Assumption 1, qrange(S,R, ε, δ) returns

(x̄, B) such that if n = Ω
(

(
√
d log(1/δ)/ε) min (log(dR/ζ), log(d/ζδ))

)
and α < 0.1, then all uncorrupted samples in

S are in x̄+ [−B,B]d with probability 1− ζ.

In DPFILTER, we make only the mean µt and the top principal direction vt private to decrease sensitivity. The analysis
is now more challenging since (µt, vt) depends on all past iterates {(µj , vj)}t−1

j=1 and internal randomness {Zj}t−1
j=1. To

decrease the sensitivity, we modify the filter in line 12 to use the maximum support dB2 (which is data independent)
instead of the maximum contribution maxi(v

>
t (xi − µt))2 (which is data dependent and sensitive). While one data point

can significantly change maxi(v
>
t (xi − µt))2 and the output of one step of the filter in Algorithm 4, the sensitivity of

the proposed filter is bounded conditioned on all past {(µj , vj)}t−1
j=1, as we show in the following lemma. This follows

from the fact that conditioned on (µj , vj), the proposed filter is a contraction. We provide a proof in Appendix E.3.3 and
Appendix E.3.4. Putting together Lemmas E.2 and E.3, we get the desired result in Theorem 5.
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Lemma E.3. DPFILTER(S, α, T, ε, δ) is (ε, δ)-differentially private. Under the hypotheses of Theorem 5,
DPFILTER(S, α, T = Θ̃(B2d), ε, δ) achieves ‖µ̂ − µ‖2 = O(α

√
log(1/α)) with probability 0.9, if n = Ω̃(d/α2 +

B3d2 log(1/δ)/(εα)) and B is large enough such that the original uncorrupted samples are inside the hypercube
x̄+ [−B/2, B/2]d.

Differential privacy guarantee. To achieve (ε0, δ0) end-to-end target privacy guarantee, Algorithm 7 separates the privacy
budget into two. The (0.01ε0, 0.01δ0)-DP guarantee of qrange follows from Lemma E.2. The (0.99ε0, 0.99δ0)-DP guarantee
of DPFILTER follows from Lemma E.3.

Accuracy. From Lemma E.2 qrange is guaranteed to return a hypercube that includes all clean data in the dataset. It follows
from Lemma E.3 that when n = Ω̃(d/α2 + d2 log(1/δ)/(εα)), we have ‖µ− µ̂‖2 = O(α

√
log(1/α)).

E.3.1. PROOF OF LEMMA E.2 AND THE ANALYSIS OF qrange IN ALGORITHM 5

Assuming the distribution is σ2 sub-Gaussian, we useP to denote the sub-Gaussian distribution. Denote Il = [2σl, 2σ(l+1)]
as the interval of the l’th bin. Denote the population probability in the l’th bin hj,l = Px∼P [xj ∈ Il], empirical probability
in the l’th bin h̃j,l = 1

n

∑
xi∈D 1{xi,j ∈ Il}, and the noisy version ĥj,l computed by the histogram learner of Lemma E.1.

Notice that Lemma E.1 with d compositions (Lemma H.13) immediately implies that our algorithm is (ε, δ)-differentially
private.

For the utility of the algorithm, we will first show that for all dimension j ∈ [d], the output |x̄j − µj | = O(σ). Note that by
the definition of σ2-subgaussian, it holds that for all i ∈ [d], P[|xi − µi| ≥ z] ≤ 2 exp(−z2/σ2) where x is drawn from
distribution P . This implies that P[|xi−µi| ≥ 2σ] ≤ 2 exp(−4) ≤ 0.04. Suppose the k’th bin contains µj , namely µj ∈ Ik.
Then it is clear that [µj − 2σ, µj + 2σ] ⊂ (Ik−1 ∪ Ik ∪ Ik+1). This implies hj,k−1 + hj,k + hj,k+1 ≥ 1 − 0.04 = 0.96,
hence min(hj,k−1, hj,k, hj,k+1) ≥ 0.32.

Recall that G is the set of clean data drawn from distribution P . By Dvoretzky-Kiefer-Wolfowitz inequality and

an union bound over j ∈ [d], we have that with probability 1 − ζ, maxj,l(|hj,l − 1
n

∑
x∈G xj |) ≤

√
log(d/ζ)

n .

The deviation due to corruption is at most α on each bin, hence we have maxj,l(|hj,l − ĥj,l) ≤
√

log(d/ζ)
n + α.

Lemma E.1 and a union bound over j ∈ [d] implies that with probability 1 − ζ , maxj,l(|h̃j,l − ĥj,l|) ≤ β when

n ≥ Ω(min

{√
d log(1/δ)

εβ log(dR/ζ),

√
d log(1/δ)

εβ log(d/ζδ)

}
).

Assuming that n = Ω

(√
d log(1/δ)

ε min {log(dR/ζ), log(d/ζδ)}
)

, we have that with probability 1 − ζ, maxj,l(|hj,l −

ĥj,l|) ≤ 0.01 + α. Using the assumption that α ≤ 0.1, since min(hj,k−1, hj,k, hj,k+1) − 0.11 ≥ 0.31 ≥ 0.04 + 0.11 ≥
maxl 6=k−1,k,k+1 hj,l + 0.11. This implies that with probability 1− ζ, the algorithm choose the bin from k − 1, k, k + 1,
which means the estimate |x̄j − µ| ≤ 4σ. By the tail bound of sub-Gaussian distribution and a union bound over n, d, we
have that with probability 1− ζ, for all xi ∈ D and j ∈ [d], xi,j ∈ [x̄j − 8σ

√
log(nd/ζ), x̄j + 8σ

√
log(nd/ζ)].

E.3.2. PROOFS OF THE SENSITIVITY OF THE FILTERING IN LEMMA 2.2 AND LEMMA G.1

Proof of Lemma 2.2. We only need to show that one step of the proposed filter is a contraction. To this end, we only
need to show contraction for two datasets at distance 1, i.e., d4(D,D′) = 1. For fixed (µ, v) and Z, we apply filter to set
of scalars (v>(D − µ))2 and (v>(D′ − µ))2, whose distance is also one. If the entries that are different (say a ∈ D and
a′ ∈ D′) are both below the subset of the top 2nα points (as in Definition D.1), then the same set of points will be removed
for both and the distance is preserved d4(S(D), S(D′)) = 1. If they are both above the top 2nα subset, then either both are
removed, one of them is removed, or both remain. The rest of the points that are removed coincide in both sets. Hence,
d4(S(D), S(D′)) ≤ 1. If a is below and a′ is above the top 2nα subset of respective datasets, then either a′ is not removed
(in which case d4(S(D), S(D′)) = 1) or a′ is removed (in which case S(D) = S(D′) ∪ {a} and the distance remains one).

Note that when there are ties, it is critical to resolve them in a consistent manner in both datasets D and D′. The tie breaking
rule of Definition D.1 is critical in sorting those samples with the same score τi’s in a consistent manner.

Proof of Lemma G.1. The analysis of contraction of the filtering step in DPMMWFILTER is analogous to that of private
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iterative filtering in Lemma 2.2.

E.3.3. PROOF OF PART 1 OF LEMMA E.3 ON DIFFERENTIAL PRIVACY OF DPFILTER

We explicitly write out how many times we access the database and how much privacy is lost each time in an interactive
version of DPFILTER in Algorithm 1, which performs the same operations as DPFILTER. In order to apply Lemma H.13,
we cap ε at 0.9 in initializing ε1. We call qmean, qPCA, qnorm and qsize T times, each with (ε1, δ1) guarantee. In total this
accounts for (ε, δ) privacy loss, using Lemma H.13 and our choice of ε1 and δ1.

This proof is analogous to the proof of DP for DPMMWFILTER in Appendix G.1, and we omit the details here. We will
assume for now that |Sr| ≥ n/2 for all r ∈ [t] and prove privacy. This happens with probability larger than 1− δ1, hence
ensuring the privacy guarantee. In all sub-routines, we run Filter(·) in Algorithm 1 to simulate the filtering process so far
and get the current set of samples St. Lemma 2.2 allows us to prove privacy of all interactive mechanisms. This shows
that the two data datasets St and S′t are neighboring, if they are resulting from the identical filtering but starting from two
neighboring datasets Dn and D′n. As all four sub-routines are output perturbation mechanisms with appropriately chosen
sensitivities, they satisfy the desired (ε1, δ1)-DP guarantees. Further, the probability that nt > 3/4n and |St| ≤ n/2 is less
than δ1 for n = Ω̃((1/ε1) log(1/δ1)).

E.3.4. PROOF OF PART 2 OF LEMMA E.3 ON ACCURACY OF DPFILTER

The following theorem analyzing DPFILTER implies the desired Lemma E.3 when the good set is α-subgaussian good,
which follows from H.3 and the assumption that n = Ω̃(d/α2).
Theorem 10 (Anlaysis of DPFILTER). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1, where α ≤ c
for some universal constant c ∈ (0, 1/2). Let Sgood be α-subgaussian good with respect to µ ∈ Rd. Suppose D = {xi ∈
x̄+ [−B/2, B/2]d}ni=1 be the projected dataset where all of the uncorrupted samples are contained in x̄+ [−B/2, B/2]d.
If n = Ω̃

(
d2B3 log(1/δ)/(εα)

)
, then DPFILTER terminates after at most O

(
dB2

)
iterations and outputs St such that with

probability 0.9, we have |St ∩ Sgood| ≥ (1− 10α)n and

‖µ(St)− µ‖2 . α
√

log 1/α .

To prove this theorem, we use the following lemma to first show that we do not remove too many uncorrupted samples. The
upper bound on the accuracy follows immediately from Lemma H.7 and the stopping criteria of the algorithm.

Lemma E.4. If n & B2d3/2

ε1α log 1/α log(1/δ), λt ≥ (C − 0.01) · α log 1/α and |St ∩ Sgood| ≥ (1− 10α)n, then there exists
constant C > 0 such that for each iteration t, with probability 1−O(1/d), we have Eq. (4) holds. If this condition holds,
we have

E |(St \ St+1) ∩ Sgood| ≤ E |St \ St+1 ∩ Sbad| .

We measure the progress by by summing the number of clean samples removed up to iteration t and the number of remaining
corrupted samples, defined as dt , |(Sgood ∩ S) \ St| + |St \ (Sgood ∩ S)|. Note that d1 = αn, and dt ≥ 0. At each
iteration, we have

E[dt+1 − dt|d1, d2, · · · , dt] = E [|Sgood ∩ (St \ St+1)| − |Sbad ∩ (St \ St+1)|] ≤ 0,

from the Lemma E.4. Hence, dt is a non-negative super-martingale. By optional stopping theorem, at stopping time, we
have E[dt] ≤ d1 = αn. By Markov inequality, dt is less than 10αn with probability 0.9, i.e. |St ∩ Sgood| ≥ (1− 10α)n.
The desired bound follows from induction and Lemma H.7.

Now we bound the number of iterations under the conditions of Lemma E.5. Let Wt = |St \ St−1|/n. Since Eq. (5), we
have

E[Wt] ≥
1

n

∑
i∈T2α

τi
dB2

≥ 0.7‖M(St−1)− I‖2
αdB2

≥ 0.7Cα log(1/α)

dB2
.

Let T be the stopping time. We know
∑T
t=1Wt ≤ 10α. By Wald’s equation, we have

E[

T∑
t=1

Wt] = E[

T∑
t=1

E[Wt]] ≥ E[T ]
0.7Cα log(1/α)

dB2
.
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This means E[T ] ≤ (15dB2)/(C log(1/α)). By Markov inequality we know with probability 0.9, we have T =
O(dB2/ log(1/α)).

E.3.5. PROOF OF LEMMA E.4

The expected number of removed good points and bad points are proportional to the
∑
i∈Sgood∩T2α τi and

∑
i∈Sbad∩T2α τi.

It suffices to show ∑
i∈Sgood∩T2α

τi ≤
∑

i∈Sbad∩T2α

τi .

Assuming we have ‖M(St−1)− I‖2 ≥ Cα log 1/α for some C > 0 sufficiently large, it suffices to show

1

n

∑
i∈Sbad∩T2α

τi ≥
1

1000
‖M(St−1)− I‖2 .

First of all, we have

1

n

∑
i∈St−1

τi − 1 = v>t M(St−1)vt − 1

= v>t (M(St−1)− I) vt

Lemma H.6 shows that the magnitude of the largest eigenvalue of M(St−1)− I is positive since the magnitudes negative
eigenvalues are all less than cα log 1/α. So we have

1

n

∑
i∈St−1

τi − 1 ≥ ‖M(St−1)− I‖2 −O(α log 1/α) (2)

≥ 0.9‖M(St−1)− I‖2 , (3)

where the first inequality follows from Lemma E.6, and the second inequality follows from our choice of large constant C.
The next lemma regularity conditions for τi’s for each iteration is satisfied.

Lemma E.5. If n & B2d3/2

ε1α log 1/α log(1/δ), then there exists a large constant C > 0 such that, with probability 1−O(1/d),
we have

1.

1

n

∑
i∈Sgood∩T2α∩St−1

τi ≤
1

1000
‖M(St−1)− I‖2 . (4)

2. For all i /∈ T2α,

ατi ≤
1

1000
‖M(St−1)− I‖2 .

3.

1

n

∑
i∈Sgood∩St−1

(τi − 1) ≤ 1

1000
‖M(St−1)− I‖2 .

Thus, by combining with Lemma E.5, we have

1

n

∑
i∈St−1∩Sbad

τi ≥ 0.8‖M(St−1)− I‖2 .



Robust and Differentially Private Mean Estimation

We now have

1

n

∑
i∈Sbad∩T2α

τi ≥ 0.8‖M(St−1)− I‖2 −
∑

i∈Sbad∩St−1\T2α

τi

≥ 0.8‖M(St−1)− I‖2 − max
i∈Sbad∩St−1\T2α

ατi

≥ 0.8‖M(St−1)− I‖2 −
1

1000
‖M(St−1)− I‖2 (5)

≥ 1

n

∑
i∈Sgood∩T2α

τi ,

which completes the proof.

E.3.6. PROOF OF LEMMA E.5

By our choice of sample complexity n, with probability 1 − O(1/dB2), we have ‖µ(St−1) − µt‖22 . α log 1/α,
v>t (M(St−1)− I) vt & ‖M(St−1) − I‖2 − α log 1/α (Lemma E.6), and ‖M(St−1) − I‖2 ≥ Cα log 1/α simultane-
ously hold before stopping.

Lemma E.6. If

n &
d3/2B2

ηε1

√
2 ln

1.25

δ
log

1

ζ
,

then with probability 1− ζ, we have

v>t (M(St−1)− I) vt ≥ ‖M(St−1)− I‖2 − 2η − 2|St−1|
n
‖µt − µ(St−1)‖22

We first consider the upper bound of the good points.

1

n

∑
i∈Sgood∩T2α∩St−1

τi =
1

n

∑
i∈Sgood∩T2α∩St−1

〈xi − µt, vt〉2

(a)

≤ 2

n

∑
i∈Sgood∩T2α∩St−1

〈xi − µ, vt〉2 +
2

n
|Sgood ∩ T2α ∩ St−1| 〈µ− µt, vt〉2

≤ O(α log 1/α) + α (‖µ− µ(St−1)‖2 + ‖µt − µ(St−1)‖2)
2

(b)

≤ O(α log 1/α) + α
(
O(α

√
log 1/α) +

√
α (‖M(St−1)− I‖2 +O(α log 1/α)) +O(

√
α log 1/α)

)2

≤ O(α log 1/α) + α2‖M(St−1)− I‖2
(c)

≤ 1

1000
‖M(St−1)− I‖2

where the (a) is implied by the fact that for any vector x, y, z, we have (x−y)(x−y)> � 2(x−z)(x−z)>+2(y−z)(y−z)>,
(b) follows from Lemma H.7 and c follows from our choice of large constant C.

Since |Sbad ∩ T2α| ≤ αn, we know |Sgood ∩ T2α| ≥ αn, so we have for i /∈ T2α,

ατi ≤
α

|Sgood ∩ T2α ∩ St−1|
∑

i∈Sgood∩T2α∩St−1

τi ≤
1

1000
‖M(St−1)− I‖2 .
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Since |Sgood ∩ St−1| ≥ (1− 10α)n, we have

1

n

∑
i∈Sgood∩St−1

τi =
1

n

∑
i∈Sgood∩St−1

〈xi − µ(St−1), vt〉2 (6)

=
1

n

∑
i∈Sgood∩St−1

〈xi − µ(Sgood ∩ St−1), vt〉2 +
|Sgood ∩ St−1|

n
〈µ(Sgood ∩ St−1)− µ(St−1), vt〉2 (7)

(a)

≤ cα log 1/α+ 1 + ‖µ(Sgood ∩ St−1)− µ(St−1)‖22 (8)

≤ cα log 1/α+ 1 + (‖µ(Sgood ∩ St−1)− µ‖2 + ‖µ− µ(St−1)‖2)
2 (9)

(b)

≤ cα log 1/α+ 1 + α‖M(St−1)− I‖2 +O(α log 1/α) (10)
(c)

≤ 1

1000
‖M(St−1)− I‖2 , (11)

where (a) follows from Lemma H.6, and (b) follows from Lemma H.7, and (c) follows from our choice of large constant C.

E.3.7. PROOF OF LEMMA E.6

Proof. We have following identity.

1

n

∑
i∈St−1

(xi − µt)(xi − µt)>

=
1

n

∑
i∈St−1

(xi − µ(St−1))(xi − µ(St−1))> +
|St−1|
n

(µ(St−1)− µt)(µ(St−1)− µt)> .

So we have,

v>t (M(St−1)− I) vt

≥ v>t

 1

n

∑
i∈St−1

(xi − µt)(xi − µt)> − I

 vt −
|St−1|
n
‖µt − µ(St−1)‖22

≥ ‖M(St−1)− I‖2 − 2η − 2|St−1|
n
‖µt − µ(St−1)‖22

where the last inequality follows from Lemma H.6, which shows that the magnitude of the largest eigenvalue ofM(St−1)−I
must be positive.

F. PRIME: efficient algorithm for private and robust mean estimation
We provide our main algorithms, Algorithm 9 and Algorithm 10, in Appendix F.1 and the corresponding proof in Appendix G.
We provide our novel DPTHRESHOLD and its anlysis in Appendix F.2.

We define Sgood as the original set of n clean samples (as defined in Assumption 1 and 2) and Sbad as the set of corrupted
samples that replace αn of the clean samples. The (rescaled) covariance is denoted by M(S(s)) , (1/n)

∑
i∈S(s)(xi −

µ(S(s)))(xi − µ(S(s)))>, where µ(S(s)) , (1/|S(s)|)
∑
i∈S(s) xi denotes the mean.
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F.1. PRIvate and robust Mean Estimation (PRIME)

Algorithm 9: PRIvate and robust Mean Estimation (PRIME)

Input: S = {xi ∈ Rd}ni=1, range [−R,R]d, adversarial fraction α ∈ (0, 1/2), number of iterations
T1 = O(log d), T2 = O(log d), target privacy (ε, δ)

1 (x̄, B)← qrange({xi}ni=1, R, 0.01ε, 0.01δ) [Algorithm 5 in Appendix E.3.1]
2 Clip the data points: x̃i ← Px̄+[−B/2,B/2]d(xi), for all i ∈ [n]

3 µ̂← DPMMWFILTER({x̃i}ni=1, α, T1, T2, 0.99ε, 0.99δ) [Algorithm 10]
Output: µ̂

Algorithm 10: Differentially private filtering with matrix multiplicative weights (DPMMWFILTER)

Input: S = {xi ∈ x̄+ [−B/2, B/2]d}ni=1, α ∈ (0, 1/2), T1 = O(log(B
√
d)), T2 = O(log d), privacy (ε, δ)

1 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4
√

10T1T2 log(4/δ)),
δ2 ← δ/(20T1T2), a large enough constant C > 0

2 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
3 for epoch s = 1, 2, . . . , T1 do
4 λ(s) ← ‖M(S(s))− I‖2 + Lap(2B2d/(nε1))

5 n(s) ← |S(s)|+ Lap(1/ε1)

6 if n(s) ≤ 3n/4 then Output: ∅
7 if λ(s) ≤ C α log(1/α) then

Output: µ(s) ← (1/|S(s)|)
(∑

i∈S(s) xi
)

+N (0, (2B
√

2d log(1.25/δ1)/(n ε1))2Id×d)

8 α(s) ← 1/(100(0.1/C + 1.01)λ(s))

9 S
(s)
1 ← S(s)

10 for t = 1, 2, . . . , T2 do
11 λ

(s)
t ← ‖M(S

(s)
t )− I‖2 + Lap(2B2d/(nε2))

12 if λ(s)
t ≤ 0.5λ

(s)
0 then

13 terminate epoch
14 else
15 Σ

(s)
t ←M(S

(s)
t ) +N (0, (4B2d

√
2 log(1.25/δ2)/(nε2))2Id2×d2)

16 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r − I)))) exp(α(s)

∑t
r=1(Σ

(s)
r − I))

17 ψ
(s)
t ←

〈
M(S

(s)
t )− I, Ut

(s)
〉

+ Lap(2B2d/(nε2))

18 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

19 S
(s)
t+1 ← S

(s)
t

20 else
21 Z

(s)
t ← Unif([0, 1])

22 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St xi
)

+N (0, (2B
√

2d log(1.25/δ2)/(n ε2)Id×d)
2)

23 ρ
(s)
t ← DPTHRESHOLD(µ

(s)
t , U

(s)
t , α, ε2, δ2, S

(s)
t ) [Algorithm 11]

24 S
(s)
t+1 ← S

(s)
t \ {i | i ∈ T2α for {τj = (xj − µ(s)

t )>U
(s)
t (xj − µ(s)

t )}
j∈S(s)

t
and τi ≥ ρ(s)

t Z
(s)
t },

where T2α is defined in Definition D.1.

25 S(s+1) ← S
(s)
t

Output: µ(T1)
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F.2. Algorithm and analysis of DPTHRESHOLD

Algorithm 11: Differentially private estimation of the threshold (DPTHRESHOLD)

Input: µ, U , α ∈ (0, 1/2), target privacy (ε, δ), S = {xi ∈ x̄+ [−B/2, B/2]d}
1 Set τi ← (xi − µ)>U(xi − µ) for all i ∈ S
2 Set ψ̃ ← (1/n)

∑
i∈S(τi − 1) + Lap(2B2d/nε))

3 Compute a histogram over geometrically sized bins
I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B2d)−1, 2log(B2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j , 2−2+j)}| , for all j = 1, . . . , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (4
√

2 log(1.25/δ)/(nε))2), for all j ∈ [2 + log(B2d)]
5 Set τ̃j ← 2−3+j , for all j ∈ [2 + log(B2d)]

6 Find the largest ` ∈ [2 + log(B2d)] satisfying
∑
j≥`(τ̃j − τ̃`) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃`

Lemma F.1 (DPTHRESHOLD: picking threshold privately). Algorithm DPTHRESHOLD(µ,U, α, ε, δ, S) running on a
dataset {τi = (xi − µ)>U(xi − µ)}i∈S is (ε, δ)-DP. Define ψ , 1

n

∑
i∈S(τi − 1). If τi’s satisfy

1

n

∑
i∈Sgood∩T2α∩S

τi ≤ ψ/1000

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000 ,

and n ≥ Ω̃

(
B2d
√

log(1/δ)

εα

)
, then DPTHRESHOLD outputs a threshold ρ such that with probability 1−O(1/ log3 d),

1

n

∑
τi<ρ

(τi − 1) ≤ 0.75ψ and (12)

2(
∑

i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}) ≤
∑

i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} . (13)

F.3. Proof of Lemma F.1

1. Threshold ρ sufficiently reduces the total score.

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of the interval of the bin that τi belongs to.
It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥ 1

n

∑
τ̂i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(
B2d

εn
)

(c)

≥ 0.3ψ − Õ(
B2d

εn
) ,
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where (a) holds due to the accuracy of the private histogram (Lemma H.12), (b) holds by the definition of ρ in our algorithm,
and (c) holds due to the accuracy of ψ̃. This implies if ρ < 1, then 1

n

∑
τi<ρ

(τi − 1) is negative and if ρ ≥ 1, then

1

n

∑
τi<ρ

(τi − 1) = ψ − 1

n

∑
τi≥ρ

(τi − 1) ≤ ψ − 1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

By Lemma F.2, it holds that

1

n

∑
i∈S\T2α

(τi − 1) = ψ − 1

n

∑
i∈Sgood∩T2α

(τi − 1)− 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ ψ − 1

n

∑
i∈Sbad∩T2α

(τi − 1)

≤ (2/1000)ψ

And we conclude that

1

n

∑
τi<ρ or i/∈T2α

(τi − 1) ≤ 0.71ψ + Õ(B2d/εn) ≤ 0.75ψ

2. Threshold ρ removes more bad data points than good data points.

DefineC2 to be the threshold such that 1
n

∑
τi>C2

(τi−C2) = (2/3)ψ. Suppose 2b ≤ C2 ≤ 2b+1, 1
n

∑
τ̂i≥2b−1(τ̂i−2b−1) ≥

(1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1
2 (τi − C2). Trivially C2 ≥ 1 due to the fact that 1

n

∑
τi≥1 τi − 1 ≥ ψ. Then we

have the threshold picked by the algorithm ρ ≥ 2b−1, which implies ρ ≥ 1
4C2. Suppose ρ < C2, since ρ ≥ 1

4C2, we have

(
∑

i∈Sbad∩T2α,τi<ρ
τi +

∑
i∈Sbad∩T2α,τi≥ρ

ρ) ≥ 1

4
(

∑
i∈Sbad∩T2α,τi<C2

τi +
∑

i∈Sbad∩T2α,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<C2

τi +
∑

i∈Sgood∩T2α,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩T2α,τi<ρ

τi +
∑

i∈Sgood∩T2α,τi>=ρ

ρ),

where (a) holds by Lemma F.3, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement of the Lemma F.3 directly implies
Equation (13).

Lemma F.2. [Conditions for τi’s] Suppose

1

n

∑
i∈Sgood∩S

(τi − 1) ≤ ψ/1000

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000

then, we have

ατ2αn ≤ ψ/1000

1

n

∑
i∈Sbad∩T2α

(τi − 1) ≥ (998/1000)ψ

Proof. Since |Sgood ∩ T2α| ≥ αn, it holds

ατ2αn ≤ ψ/1000.
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1

n

∑
i∈Sbad∩T2α

(τi − 1) =
1

n

∑
i∈Sbad∩S

(τi − 1)− 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − 1

n

∑
i∈Sbad∩S\T2α

(τi − 1)

≥ (999/1000)ψ − (1/1000)ψ

= (998/1000)ψ

Lemma F.3. Assuming that the conditions in Lemma F.2 holds, and for any C such that

1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1) ≥ (1/3)ψ ,

we have ∑
i∈Sbad∩T2α,τi<C

τi +
∑

i∈Sbad∩T2α,τi≥C

C ≥ 10(
∑

i∈Sgood∩T2α,τi<C
τi +

∑
i∈Sgood∩T2α,τi≥C

C)

Proof. First we show an upper bound on Sgood ∩ T2α:

1

n

∑
i∈Sgood∩T2α,τi<C

τi +
1

n

∑
i∈Sgood∩T2α,τi≥C

C ≤ 1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000.

Then we show an lower bound on Sbad ∩ T2α:

1

n

∑
i∈Sbad∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

=
1

n

∑
i∈S,τi<C

(τi − 1) +
1

n

∑
i∈S,τi≥C

(C − 1)

−(
1

n

∑
i∈Sgood∩S,τi<C

(τi − 1) +
1

n

∑
i∈Sgood∩S,τi≥C

(C − 1))

≥ (1/3− 1/1000)ψ .

We have

1

n

∑
i∈Sbad∩T2α,τi<C

τi +
1

n

∑
i∈Sbad∩T2α,τi>C

C ≥ 1

n

∑
i∈Sbad∩T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩T2α,τi>C

(C − 1)

=
1

n

∑
i∈Sbad∩S,τi<ρ

(τi − 1) +
1

n

∑
i∈Sbad∩S,τi>C

(C − 1)

−

 1

n

∑
i∈Sbad∩S\T2α,τi<C

(τi − 1) +
1

n

∑
i∈Sbad∩S\T2α,τi>C

(C − 1)


≥ (1/3− 1/1000)ψ − ατ2αn
≥ (1/3− 2/1000)ψ

Combing the lower bound and the upper bound yields the desired statement
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G. The analysis of PRIME and the proof of Theorem 6
G.1. Proof of part 1 of Theorem 6 on differential privacy

Let (ε0, δ0) be the end-to-end target privacy guarantee. The (0.01ε0, 0.01δ0)-DP guarantee of qrange follows from
Lemma E.2. We are left to show that DPMMWFILTER in Algorithm 10 satisfy (0.99ε0, 0.99δ0)-DP. To this end, we
explicitly write out how many times we access the database and how much privacy is lost each time in an interactive version
of DPMMWFILTER in Algorithm 13, which performs the same operations as DPMMWFILTER.

In order to apply Lemma H.13, we cap ε at 0.9 in initializing ε2. We call qspectral and qsize T1 times, each with (ε1, δ1)
guarantee. In total this accounts for (0.5ε, 0.5δ) privacy loss. The rest of the mechanisms are called 5T1T2 times (qspectral(·)
and qMMW(·) each call two DP mechanisms internally), each with (ε2, δ2) guarantee. In total this accounts for (0.5ε, 0.5δ)
privacy loss. Altogether, this is within the privacy budget of (ε = 0.99ε0, δ = 0.99δ0).

We are left to show privacy of qspectral, qMMW, and q1Dfilter, and qsize in Algorithm 12. We will assume for now that
|S(`)
r | ≥ n/2 for all ` ∈ [T1] and r ∈ [T2] and prove privacy. We show in the end that this happens with probability larger

than 1− δ1. In all sub-routines, we run Filter(·) in Algorithm 12 to simulate the filtering process so far and get the current
set of samples S(s)

ts . The following main technical lemma allows us to prove privacy of all interactive mechanisms. This is a
counterpart of Lemma 2.2 used for DPFILTER. We provide a proof in Appendix E.3.2.
Lemma G.1. Let S(Dn) ⊆ Dn denote the output of the simulated filtering process Filter(·) on Dn for a given set of
parameters ({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s]) in Algorithm 12. Then we have d4(S(Dn), S(D′)n) ≤ d4(Dn,D′n),
where d4(D,D′) , max{|D \ D′|, |D′ \ D|}.

This is a powerful tool for designing private mechanisms, as it guarantees that we can safely simulate the filtering
process with privatized parameters and preserve the neighborhood of the dataset; if Dn ∼ D′n are neighboring (i.e.,
d∆(Dn,D′n) ≤ 1) then so are the filtered pair S(Dn) and S(D′n) (i.e., d∆(S(Dn), S(D′n)) ≤ 1). Note that in all the
interactive mechanisms in Algorithm 12, the noise we need to add is proportional to the set sensitivity of Filter(·) defined
as ∆set , maxDn∼D′n d∆(S(Dn), S(D′n)). If the repeated application of the Filter(·) is not a contraction in d∆(·, ·), this
results in a sensitivity blow-up. Fortunately, the above lemma ensures contraction of the filtering, proving that ∆set = 1.
Hence, it is sufficient for us to prove privacy for two neighboring filtered sets S ∼ S′ (as opposed to proving privacy for two
neighboring original datasets before filtering Dn ∼ D′n).

In qspectral, λ satisfy (ε, 0)-DP as the L1 sensitivity is ∆1 = (1/n)B2d (Definition 1.2) and we add Lap(∆1/ε). The
release of µ also satisfy (ε, δ)-DP as the L2 sensitivity is ∆2 = 2B

√
d/n, assuming |S| ≥ n/2 as ensured by the stopping

criteria, and we add N (0,∆2(2 log(1.25/δ))/ε)2I). Note that in the outer loop call of qspectral, we only release µ once in
the end, and hence we count qspectral as one access. On the other hand, in the inner loop, we use both µ and λ from qspectral

so we count it as two accesses.

In qsize, the returned set size (ε, 0)-DP as the L1 sensitivity is ∆1 = 1 and we add Lap(∆1/ε). One caveat is that we need
to ensure that the stopping criteria of checking n(s) > 3n/4 ensures that |S(s)

t | > n/2 with probability at least 1− δ1. This
guarantees that the rest of the private mechanisms can assume |S(s)

t | > n/2 in analyzing the sensitivity. Since Laplace
distribution follows f(z) = (ε/2)e−ε|z|, we have P(n(s) > 3n/4 and |S(s)

t | < n/2) ≤ (1/2)e−nε/4. Hence, the desired
privacy is ensured for (1/2)e−nε/4 ≤ δ1 (i.e., n ≥ (4/ε1) log(1/(2δ1))).

In qMMW, Σ is (ε, δ)-DP as the L2 sensitivity is ∆2 = B2d/n, and we add N (0,∆2(2 log(1.25/δ))/ε)2I). ψ is (ε, 0)-DP
as the L1 sensitivity is ∆1 = 2B2d/n and we add Lap(∆1/ε). This is made formal in the following theorem with a proof.
in Appendix G.1.1. This algorithm is identical to the MOD-SULQ algorithm introduced in (Blum et al., 2005) and analyzed
in (?)Theorem 5]PPCA, up to the choice of the noise variance. But a tighter analysis improves over the MOD-SULQ
analysis from (Chaudhuri et al., 2013) by a factor of d in the variance of added Gaussian noise as noted in (Dwork et al.,
2014).
Lemma G.2 (Differentially Private PCA). Consider a dataset {xi ∈ Rd}ni=1. If ‖xi‖2 ≤ 1 for all i ∈ [n], the following
privatized second moment matrix satisfies (ε, δ)-differential privacy:

1

n

n∑
i=1

xix
>
i + Z ,

with Zi,j ∼ N (0, ( (1/(nε))
√

2 log(1.25/δ) )2) for i ≥ j and Zi,j = Zj,i for i < j.
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In q1Dfilter, the (ε, δ) differential privacy follows from that of DPTHRESHOLD proved in Lemma F.1.

G.1.1. PROOF OF LEMMA G.2

Consider neighboring two databases D = {xi}ni=1 and D̃ = D ∪ {x̃n} \ {xn}, and let A = (1/n)
∑
xi∈D xix

>
i and

Ã = (1/n)
∑
xi∈D̃ xix

>
i . Let B and B̃ be the Gaussian noise matrix with β2 as variance. Let G = A+B and G̃ = Ã+ B̃.

At point H , we have

`D,D̃ = log
fG(H)

fG̃(H)
=

∑
1≤i≤j≤d

(
− 1

2β2
(Hij −Aij)2

+
1

2β2

(
Hij − Âij

)2
)

=
1

2β2

∑
1≤i≤j≤d

(
2

n
(Hij −Aij) (xn,ixn,j − x̂n,ix̂n,j) +

1

n2
(x̂n,ix̂n,j − xn,ixn,j)2

)
.

Since ‖xn‖2 ≤ 1 and ‖x̃n‖2 ≤ 1, we have
∑

1≤i≤j≤d (x̂n,ix̂n,j − xn,ixn,j)2
= 1/2‖x̃nx̃>n − xnx>n ‖2F ≤ 2.

Now we bound the first term,

2
∑

1≤i≤j≤d

(Hij −Aij) (xn,ixn,j − x̂n,ix̂n,j) =
〈
H −A, xnx>n − x̃nx̃>n

〉
= x>nBxn − x̃>nBx̃n
≤ 2‖B‖2 .

So we have |`D,D̃| ≤ ε whenever ‖B‖2 ≤ nεβ2 − 1/n.

For any fixed unit vector ‖v‖2 = 1, we have

v>Bv = 2
∑

1≤i≤j≤d

Bijvivj ∼ N (0, 2
∑

1≤i≤j≤d

v2
i v

2
j ) = N (0, 1) .

Then we have

P
(
|`D,D̃| ≥ ε

)
≤ P

(
‖B‖2 ≥ nεβ2 − 1/n

)
= P

(
N (0, 1) ≥ nεβ2 − 1

n

)
= Φ

(
1

n
− nεβ2

)
,

where Φ is CDF of standard Gaussian. According to Gaussian mechanism, if β = (1/(nε))
√

2 log(1.25/δ), we have
Φ
(

1
n − nεβ

2
)
≤ δ.

G.2. Proof of part 2 of Theorem 6 on accuracy

The accuracy of PRIME follows from the fact that qrange returns a hypercube that contains all the clean data with high
probability (Lemma E.2) and that DPMMWFILTER achieves the desired accuracy (Theorem 11) if the original uncorrupted
dataset Sgood is α-subgaussian good. Sgood is α-subgaussian good if we have n = Ω̃(d/α2) as shown in Lemma H.3. We
present the proof of Theorem 11 below.

Theorem 11 (Analysis of accuracy of DPMMWFILTER). Let S be an α-corrupted sub-Gaussian dataset, where α ≤ c
for some universal constant c ∈ (0, 1/2). Let Sgood be α-subgaussian good with respect to µ ∈ Rd. Suppose D = {xi ∈
x̄ + [−B/2, B/2]d}ni=1 be the projected dataset. If n ≥ Ω̃

(
d3/2B2 log(2/δ)
εα log 1/α

)
, then DPMMWFILTER terminates after at

most O(log dB2) epochs and outputs S(s) such that with probability 0.9, we have |S(s)
t ∩ Sgood| ≥ (1− 10α)n and

‖µ(S(s))− µ‖2 . α
√

log 1/α .

Moreover, each epoch runs for at most O(log d) iterations.
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Algorithm 12: Interactive differentially private mechanisms for DPMMWFILTER

1 qspectral({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ):

2 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

3 µ← (1/|S|)
(∑

i∈S xi
)

+N (0, (2B
√

2d log(1.25/δ)/(nε))2I)
4 λ← ‖M(S)− I‖2 + Lap(2B2d/(nε))
5 return (µ, λ)

6 qsize({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ):

7 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

8 return |S|+ Lap(1/ε)

9 qMMW({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], α

(s), µ
(s)
t , ε, δ):

10 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

11 Σ
(s)
ts+1 ←M(S) +N (0, (4B2d

√
2 log(1.25/δ)/(nε))2I)

12 U ← (1/Tr(exp(α(s)
∑ts+1
r=1 (Σ

(s)
r − I)))) exp(α(s)

∑ts+1
r=1 (Σ

(s)
r − I))

13 ψ ← 〈M(S)− I, U〉+ Lap(2B2d/(nε))

14 return (Σ
(s)
ts+1, U, ψ)

15 q1Dfilter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], µ, U, α, ε, δ):

16 S ← Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε, δ)

17 return ρ← DPTHRESHOLD(µ,U, α, ε, δ, S)

18 Filter({{Ψ(`)
r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s]):

19 S(1) ← [n]
20 for epoch ` = 1, . . . , s do
21 α(`) ← 1/(100(0.1/C + 1.01)λ(`))

22 S
(`)
1 ← S(`)

23 for r = 1, . . . , ts do
24 S

(`)
r+1 ← S

(`)
r \ {i | i ∈ T2α for {τj = (xj − µ(`)

r )>U
(`)
r (xj − µ(`)

r )}
j∈S(`)

r
and τi ≥ ρ(`)

r Z
(`)
r }, where

T2α is defined in Definition D.1.

Output: S(s)
ts

Proof. In s = O(log0.98((Cα log(1/α))/‖M(S(1)) − I‖2)) epochs, following Lemma G.3 guarantees that we find a
candidate set S(s) of samples with ‖M(S(s) − I‖2 ≤ Cα log(1/α). We provide proof of Lemma G.3 in the Appendix G.3.

Lemma G.3. Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. For an epoch s ∈ [T1] and an iteration
t ∈ [T2], under the hypotheses of Lemma G.4, if Sgood is α-subgaussian good with respect to µ ∈ Rd as in Definition H.2,
n = Ω̃(d3/2 log(1/δ)/(εα)), and |S(s)

t ∩ Sgood| ≥ (1 − 10α)n then with probability 1 − O(1/ log3 d) the conditions in
Eqs. (14) and (15) hold. When these two conditions hold, more corrupted samples are removed in expectation than the
uncorrupted samples, i.e., E|(S(s)

t \ S
(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1] there exists

a constant C > 0 such that if ‖M(S(s)) − I‖2 ≥ C α log(1/α), then with probability 1 − O(1/ log2 d), the s-th epoch
terminates after O(log d) iterations and outputs S(s+1) such that ‖M(S(s+1))− I‖2 ≤ 0.98‖M(S(s))− I‖2.

Lemma H.7 ensures that we get the desired bound of ‖µ(S(s))− µ‖2 = O(α
√

log(1/α)) as long as S(s) has enough clean
data, i.e., |S(s) ∩ Sgood| ≥ n(1 − α). Since Lemma G.3 gets invoked at most O((log d)2) times, we can take a union
bound, and the following argument conditions on the good events in Lemma G.3 holding, which happens with probability at
least 0.99. To turn the average case guarantee of Lemma G.3 into a constant probability guarantee, we apply the optional
stopping theorem. Recall that the s-th epoch starts with a set S(s) and outputs a filtered set S(s)

t at the t-th inner iteration.
We measure the progress by by summing the number of clean samples removed up to epoch s and iteration t and the number
of remaining corrupted samples, defined as d(s)

t , |(Sgood ∩ S(1)) \ S(s)
t |+ |S

(s)
t \ (Sgood ∩ S(1))|. Note that d(1)

1 = αn,
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Algorithm 13: Interactive version of DPMMWFILTER

Input: α ∈ (0, 1), T1, T2, ε1 = ε/(4T1) , δ1 = δ/(4T1), ε2 = min{0.9, ε}/(4
√

10T1T2 log(4/δ)),
δ2 = δ/(20T1T2)

1 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
2 for epoch s = 1, 2, . . . , T1 do
3 (µ(s), λ(s))← qspectral({{Ψ(`)

r }r∈[t`]}`∈[s−1], {(µ(`), λ(`))}`∈[s−1], ε1, δ1)

4 n(s) ← qsize({{Ψ(`)
r }r∈[t`]}`∈[s−1], {(µ(`), λ(`))}`∈[s−1], ε1, δ1)

5 if n(s) ≤ 3n/4 then terminate
6 if λ(s) ≤ Cα log(1/α) then

Output: µ(s)

7 α(s) ← 1/(100(0.1/C + 1.01)λ(s))
8 ts ← 0
9

10 for t = 1, 2, . . . , T2 do
11 (µ

(s)
t , λ

(s)
t )← qspectral({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], ε2, δ2)

12 if λ(s)
t ≤ 0.5λ(s) then

13 terminate epoch
14 else
15 (Σ

(s)
t , U

(s)
t , ψ

(s)
t )← qPMMW({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], α
(s), µ

(s)
t , ε2, δ2)

16 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

17 α
(s)
t ← 0

18 else
19 Z

(s)
t ← Unif([0, 1])

20 ρ
(s)
t ← q1Dfilter({{Ψ(`)

r }r∈[t`]}`∈[s], {(µ(`), λ(`))}`∈[s], µ
(s)
t , U

(s)
t , α, ε2, δ2)

21 α
(s)
t ← α

22 Ψ
(s)
t ← (µ

(s)
t , λ

(s)
t ,Σ

(s)
t , U

(s)
t , ψ

(s)
t , Z

(s)
t , ρ

(s)
t , α

(s)
t )

23 ts ← t

Output: µ(T1)
tT1

and d(s)
t ≥ 0. At each epoch and iteration, we have

E[d
(s)
t+1 − d

(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)

t ] = E
[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from part 1 of Lemma G.3. Hence, d(s)
t is a non-negative super-martingale. By the optional stopping theorem, at

stopping time, we have E[d
(s)
t ] ≤ d

(1)
1 = αn. By the Markov inequality, d(s)

t is less than 10αn with probability 0.9, i.e.,
|S(s)
t ∩ Sgood| ≥ (1− 10α)n. The desired bound in Theorem 11 follows from Lemma H.7.

G.3. Proof of Lemma G.3

Lemma G.3 is a combination of Lemma G.4 and Lemma G.5. We state the technical lemmas and subsequently provide the
proofs.

Lemma G.4. For an epoch s and an iteration t such that λ(s) > Cα log(1/α), λ(s)
t > 0.5λ

(s)
0 , and n(s) > 3n/4, if

n & B2(logB)d3/2 log(1/δ)
εα and |S(s)

t ∩ Sgood| ≥ (1 − 10α)n then with probability 1 − O(1/ log3 d), the conditions in
Eqs. (14) and (15) hold. When these two conditions hold we have E|S(s)

t \ S(s)
t+1 ∩ Sgood| ≤ E|S(s)

t \ S(s)
t+1 ∩ Sbad|.

If n & B2(logB)d3/2 log(1/δ)
εα , ψ(s)

t > 1
5.5λ

(s)
t , and n(s) > 3n/4, then we have with probability 1 − O(1/ log3 d),
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M(S

(s)
t+1)− I, U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t )− I, U

(s)
t

〉
.

Lemma G.5. For an epoch s and for all t = 0, 1, · · · , T2 = O(log d) if Lemma G.4 holds, n(s) > 3n/4, and n &
B2(logB)d3/2 log(1/δ)

εα , then we have ‖M(S(s+1))− I‖2 ≤ 0.98‖M(S(s))− I‖2 with probability 1−O(1/ log2 d).

G.3.1. PROOF OF LEMMA G.4

Proof of Lemma G.4. To prove that we make progress for each iteration, we first show our dataset satisfies regularity
conditions in Eqs. (14) and (15) that we need for DPTHRESHOLD. Following Lemma G.6 implies with probability
1− 1/(log3 d), our scores satisfies the regularity conditions needed in Lemma F.1.

Lemma G.6. For each epoch s and iteration t, under the hypotheses of Lemma G.4, with probability 1−O(1/ log3 d), we
have

1

n

∑
i∈Sgood∩T2α

τi ≤ ψ/1000 (14)

1

n

∑
i∈Sgood∩S(s)

t

(τi − 1) ≤ ψ/1000 , (15)

where ψ , 1
n

∑
i∈S(s)

t
(τi − 1).

Then by Lemma F.1 our DPTHRESHOLD gives us a threshold ρ such that∑
i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} ≤
∑

i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

Conditioned on the hypotheses and the claims of Lemma F.1, according to our filter rule from Algorithm 10, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}

and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩T2α

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

This implies E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|. At the same time, Lemma F.1 gives us a ρ such that with

probability 1−O(log3 d)

1

n

∑
i∈S(s)

t+1

(τi − 1)− 2α ≤ 1

n

∑
τi≤ρ

(τi − 1) ≤ 3

4
· 1

n

∑
i∈S(s)

t

(τi − 1) .

Hence, we have 〈
M(S

(s)
t )− I, U

(s)
t

〉
−
〈
M(S

(s)
t+1)− I, U

(s)
t

〉
=

1

n

∑
i∈S(s)

t \S
(s)
t+1

(τi − 1)

≥ 1

4n

∑
i∈S(s)

t

(τi − 1)− 2α

(a)

≥ 1

4
· 998

1000

〈
M(S

(s)
t )− I, U

(s)
t

〉
,

where (a) follows from our assumption on λt and stopping criteria. Rearranging the terms completes the proof.
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G.3.2. PROOF OF LEMMA G.6

Proof of Lemma G.6. First of all, Lemma H.9, Lemma H.10 and Lemma H.11 gives us following Lemma G.7, which
basically shows with enough samples, we can make sure the noises added for privacy guarantees are small enough with
probability 1−O(1/ log3 d).

Lemma G.7. For α ∈ (0, 0.5), if n & B2(logB)d3/2 log(1/δ)
εα and n(s) > 3n/4 then we have with probability 1−O(1/ log3 d),

following conditions simultaneously hold:

1. ‖µ(s)
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Now under above conditions, since λ(s)
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Thus, from the first and the second claims in Lemma G.7, we have

|ψ − ψ(s)
t | ≤ 0.002 α log 1/α . (16)
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For an epoch s and an iteration t, since αn ≤ Sgood ∩ T2α ∩ S(s)
t ≤ 2αn, we have
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where (a) follows from the fact that for any vector x, y, z, we have (x−y)(x−y)> � 2(x−z)(x−z)>+2(y−z)(y−z)>,
(b) follows from Lemma H.4, (c) follows from Lemma H.7, (d) follows from our choice of large constant C, and in the last
inequality we used Eq. (16).
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Similarly we have
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where (a) follows from Lemma H.4, (b) follows from Lemma H.5 and Lemma H.7 and (c) follows from our choice of large
constant C.

G.3.3. PROOF OF LEMMA G.5

Proof of Lemma G.5. Under the conditions of Lemma G.7, we have picked n large enough such that with probability
1−O(1/ log3 d), we have
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Since λ(s)
1 > Cα log 1/α, we have ‖M(S
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By Lemma H.1, we have M(S
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where the last inequality follows from our assumption that λ(s)
0 > Cα log 1/α, and conditions of Lemma G.7 hold and we

have ‖M(S
(s)
t )− I‖2 > 0.5(C − 0.002)α log 1/α.
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H. Technical lemmas
H.1. Lemmata for sub-Gaussian regularity from (Dong et al., 2019)

Lemma H.1 ((?)Lemma 3.4]dong2019quantum ). If S′ ⊂ S, then M(S′) �M(S).

Definition H.2 ((?)Definition 4.1]dong2019quantum ). Let D be a distribution with mean µ ∈ Rd and covariance I. For
0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-subgaussian good with respect to µ ∈ Rd if following
inequalities are satisfied:

• ‖µ(S)− µ‖2 . α
√

log 1/α and
∥∥∥ 1
|S|
∑
i∈S (Xi − µ(S)) (Xi − µ(S))

> − I
∥∥∥

2
. α log 1/α.

• for any subset T ⊂ S so that |T | = 2α|S|, we have∥∥∥∥∥ 1

|T |
∑
i∈T
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∥∥∥∥∥
2

.
√
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∥∥∥∥∥ 1

|T |
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i∈T

(Xi − µ(S)) (Xi − µ(S))
> − I

∥∥∥∥∥
2

. log 1/α .

Lemma H.3 ((?)Lemma 4.1]dong2019quantum ). A set of i.i.d. samples from an identity covariance sub-Gaussian
distribution of size n = Ω

(
d+log 1/δ
α2 log 1/α

)
is α-subgaussian good with respect to µ with probability 1− δ.

Lemma H.4 ((?)Fact 4.2]dong2019quantum ). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. If
Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T | ≤ 2α|S|, we have for any unit
vector v ∈ Rd

1

|S|
∑
Xi∈T

〈(Xi − µ) , v〉2 . α log 1/α .

For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ)(xi − µ)> − I

∥∥∥∥∥
2

. α log 1/α and ,∥∥∥∥∥ 1

|S|
∑
i∈T

(xi − µ(T ))(xi − µ(T ))> − I

∥∥∥∥∥
2

. α log 1/α

Lemma H.5 ((?)Corollary 4.3]dong2019quantum ). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. If
Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T | ≤ 2α|S|, we have∥∥∥∥∥ 1

|S|
∑
Xi∈T

(Xi − µ)

∥∥∥∥∥
2

. α
√

log 1/α .

For any subset T ⊂ S such that |T | ≥ (1− 2α)|S|, we have

‖µ(T )− µ‖2 . α
√

log 1/α .

Lemma H.6 ((?)Lemma 4.5]dong2019quantum ). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. If
Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T ∩ Sgood| ≥ (1− 2α)|S|, then there
is some universal constant c1 such that

1

|S|
∑
i∈T

(xi − µ(T )) (xi − µ(T ))
> � (1− c1α log 1/α)I .

Lemma H.7 ((Dong et al., 2019) Lemma 4.6 ). Let S be an α-corrupted sub-Gaussian dataset under Assumption 1. If
Sgood is α-subgaussian good with respect to µ ∈ Rd, then for any T ⊂ S such that |T ∩ Sgood| ≥ (1− 2α)|S|, we have

‖µ(T )− µ‖2 ≤
1

1− α
·
(√

α (‖M(T )− I‖2 +O (α log 1/α)) +O
(
α
√

log 1/α
))

.
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H.2. Auxiliary Lemmas on Laplace and Gaussian mechanism

Lemma H.8 (Theorem A.1 in (Dwork & Roth, 2014)). Let ε ∈ (0, 1) be arbitrary. For c2 ≥ 2 ln(1.25/δ), the Gaussian
Mechanism with parameter σ2 ≥ c2∆2f/ε is (ε, δ)-differentially private.

Lemma H.9. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.

Lemma H.10 (Tail bound of χ-square distribution (Wainwright, 2019)). Let xi ∼ N (0, σ2) for i = 1, 2, · · · , d. Then for
all ζ ∈ (0, 1), we have P(‖X‖2 ≥ σ

√
d log(1/ζ)) ≤ ζ.

Lemma H.11 ((?)Corollary 2.3.6]tao2012topics ). Let Z ∈ Rd×d be a matrix such that Zi,j ∼ N (0, σ2) for i ≥ j and
Zi,j = Zj,i for i < j. For ∀ζ ∈ (0, 1), then with probability 1− ζ we have ‖Z‖2 ≤ σ

√
d log(1/ζ).

Lemma H.12 (Accuracy of the histogram using Gaussian Mechanism). Let f : Xn → RS be a histogram over K bins. For
any dataset D ∈ Xn and ε, Gaussian Mechanism is an (ε, δ)-differentially private algorithm M(D) such that given

with probability 1− ζ we have

‖M(D)− f(D)‖∞ ≤ O(

√
log(K/ζ) log(1/δ)

εn
) .

Proof. First notice that the `2 sensitivity of histogram function f is
√

2/n. Thus, by Lemma H.8, by adding noise

N (0, (
2
√

2 log(1.25/δ)

nε )2) to each entry of f , we have a (ε, δ) differentially private algorithm. Since Gaussian tail bound
implies that Px∼N (0,σ2)[x ≥ Ω(

√
log(K/η)σ)] ≤ η/K, we have that with probability 1 − η, the `∞ norm of the added

noise is bounded by O(

√
log(1/δ) log(K/η)

nε ). This concludes the proof.

Lemma H.13 (Composition theorem of (?)Theorem 3.4]composition). For ε ≤ 0.9, an end-to-end guarantee of (ε, δ)-
differential privacy is satisfied if a dataset is accessed k times, each with a (ε/2

√
2k log(2/δ), δ/2k)-differential private

mechanism.

H.3. Analysis of ‖M(S
(s)
t )− I‖2 shrinking

For any symmetric matrix A =
∑d
i=1 λiviv

>
i , we let |A| denote |A| =

∑d
i=1 |λi|viv>i .

Lemma H.14 (Regret bound, Special case of (?)Theorem 3.1]allen2015spectral). Let

Ut =
exp(α

∑t−1
k=1(Σk − I))

Tr(exp(α
∑t−1
k=1(Σk − I)))

,

and α satisfies α(Σt − I) � I for all k ∈ [T ], then for all U � 0, Tr(U) = 1, it holds that

T∑
t=1

〈(Σt − I), U − Ut〉 ≤ α
T∑
t=1

〈|(Σt − I), Ut|〉 · ‖(Σt − I)‖2 +
log d

α
.

Rearranging terms, and taking a supremum over U , we obtain that

‖
T∑
t=1

(Σt − I)‖2 ≤
T∑
t=1

〈Ut, (Σt − I)〉+ α

T∑
t=1

〈|(Σt − I), Ut|〉 · ‖(Σt − I)‖2 +
log d

α
.
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I. Exponential time DP robust mean estimation of sub-Gaussian and heavy tailed distributions
(Algorithm 3)

In this section, we give a self-contained proof of the privacy and utility of our exponential time robust mean estimation
algorithm for sub-Gaussian and heavy tailed distributions. The proof relies on the resilience property of the uncorrupted
data as shown in the following lemmas.
Lemma I.1 (Lemma 10 in (Steinhardt et al., 2018)). If a set of points {xi}i∈S lying in Rd is (σ, α)-resilient around a point
µ, then

‖ 1

|T ′|
∑
i∈T ′

(xi − µ)‖2 ≤
2− α
α

σ.

for all sets T ′ of size at least α|S|.
Lemma I.2 (Finite sample resilience of sub-Gaussian distributions (?)Theorem G.1]zhu2019generalized). Let Sgood

be a set of i.i.d. points from a sub-Gaussian distribution D with a parameter Id. Given that |Sgood| = Ω((d +

log(1/ζ))/(α2 log 1/α) ), Sgood is (α
√

log(1/α), α)-resilient around its mean µ with probability 1− ζ.

Lemma I.3 (Finite sample resilience of heavy-tailed distributions (?)Theorem G.2]zhu2019generalized). Let Sgood be a set
of i.i.d. samples drawn from distribution D whose mean and covariance are µ,Σ respectively, and that Σ � I . Given that
|S| = Ω(d/(ζα)), there exists a constant cζ that only depends on ζ such that Sgood is (cζ

√
α, α)-resilient around µ with

probability 1− ζ.

I.1. Case of heavy-tailed distributions and a proof of Theorem 7

Lemma J.1 ensures that qrange−ht returns samples in a bounded support of Euclidean distance
√
dB/2 with B = 50/

√
α

where (1− 2α)n samples are uncorrupted (αn is corrupted by adversary and αn can be corrupted by the pre-processing
step). For a (cζ

√
3α, 3α)-resilient dataset, we first show that R(S) is robust against corruption.

Lemma I.4 (α-corrupted data has small R(S)). Let S be the set of 2α-corrupted data. Given that n = Ω(d/(ζα)), with
probability 1− ζ, R(S) ≤ cζ

√
3α.

This follows immediately by selecting S′ to be the uncorrupted (1− 2α) fraction of the dataset and applying (cζ
√

3α, 3α)-
resilience. After pre-processing, we have that ‖xi − x̄‖2 ≤ B

√
d/2, and then clearly R(·) has sensitivity ∆R ≤ B

√
d/n.

Lemma I.5 (Sensitivity and Privacy of R̂(S)). Given that R̂(S) = R(S) + Lap( 3B
√
d

nε ), R̂(S) is (ε/3, 0)-differentially

private. Further, with probability 1− δ/3, |R̂(S)−R(S)| ≤ 3B
√
d log(3/δ)
nε .

In the algorithm, we first compute R̂(S). If R̂(S) ≥ 2cζ
√
α, we stop and output ∅. Otherwise, we use exponential

mechanism with score function d(µ̂, S) to find an estimate µ̂. We prove the privacy guarantee of our algorithm as follows.
Lemma I.6 (Privacy). Algorithm 3 is (ε, δ)-differentially private if n ≥ 6B

√
d log(3/δ)/(cζε

√
α).

Proof. We consider neighboring datasets S, S′ under the following two scenario

1. R(S) > 3cζ
√
α

In this case, given that n ≥ 6B
√
d log(3/δ)
cζ
√
αε

, we have R̂(S) > 2cζ
√
α and the output of the algorithm A(S) = ∅ with

probability at least 1− δ/3, and A(S′) = ∅ with probability at least 1− δ/3. Thus, for any set Q, P[A(S) ∈ Q] ≤
P[A(S′) ∈ Q] + δ/3.

2. R(S) ≤ 3cζ
√
α

Lemma I.7 (Sensitivity of d(µ̂, S)). Given thatR(S) ≤ 3cζ
√
α, for any neighboring dataset S′, |d(µ̂, S)−d(µ̂, S′)| ≤

12cζ/(n
√
α).

In this case, the privacy guarantee of R̂(S) yields that P[R̂(S) ∈ Q] ≤ exp(ε/3) · P[R̂(S′) ∈ Q]. Lemma I.7 yields
that P[µ̂(S) ∈ Q] ≤ exp(ε) · P[µ̂(S′) ∈ Q]. A simple composition of the privacy guarantee with qrange−ht(·) and the
exponential mechanism gives that

P[(R̂(S), µ̂(S)) ∈ Q] ≤ exp(ε) · P[(R̂(S′), µ̂(S′)) ∈ Q] + δ/3
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This implies that P[A(S) ∈ Q] ≤ exp(ε) · P[A(S′) ∈ Q] + δ/3.

Lemma I.8 (Utility of the algorithm). For an 2α-corrupted dataset S, Algorithm 3 achieves ‖µ̂ − µ∗‖2 ≤ cζ
√
α with

probability 1− ζ, if n = Ω(d/(αζ) + (d log(dR/α) + log(1/ζ)/(εα)).

Proof of Lemma I.8. We use the following lemma showing that d(µ̂, S) is a good approximation of ‖µ̂− µ∗‖2.

Lemma I.9 (d(µ, S) approximates ‖µ − µ∗‖). Let S be the set of 2α-corrupted data. Given that n = Ω(d/(ζα)), with
probability 1− ζ, ∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2

∣∣ ≤ 7cζ
√
α .

This implies that the exponential mechanism achieves the following bounds.

P(‖µ̂− µ∗‖ ≤ cζ
√
α) ≥ 1

A
e−

εαn
3 Vol(cζ

√
α, d), and

P(‖µ̂− µ∗‖ ≥ 22cζ
√
α) ≤ 1

A
e−

5εαn
8 (4R)d ,

where A denotes the normalizing factor for the exponential mechanism and Vol(r, d) is the volume of a ball of radius r in d
dimensions. It follows that

log
( P(‖µ̂− µ∗‖2 ≤ cζ

√
α)

P(‖µ̂− µ∗‖2 ≥ 22cζ
√
α)

)
≥ 7

24
εαn− C d log(dR/α)

≥ log(1/ζ) ,

for n = Ω((d log(dR/α) + log(1/ζ))/(εα)).

I.1.1. PROOF OF LEMMA I.7

Since R(S) ≤ 3cζ
√
α, define Sgood as the minimizing subset in Definition C.2 such that

R(S) = max
T⊂Sgood,|T |=(1−α)|Sgood|

‖µ(T )− µ(Sgood)‖2 .

By this definition of Sgood and Lemma I.1,

|v>(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ
√

1/α, and

|v>(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ
√

1/α.

Therefore,
min

i∈Sgood∩T v
|v>(xi − µ(Sgood))| ≤ |v>(µ(Sgood ∩ T v)− µ(Sgood))| ≤ 6cζ

√
1/α,

and similarly
min

i∈Sgood∩Bv
|v>(xi − µ(Sgood))| ≤ |v>(µ(Sgood ∩ Bv)− µ(Sgood))| ≤ 6cζ

√
1/α

This implies

min
i∈Sgood∩T v

v>xi − max
i∈Sgood∩Bv

v>xi ≤ 12cζ
√

1/α . (18)

This implies that distribution of one-dimensional points S(v) = {v>xi} is dense at the boundary of top and bot-
tom α quantiles, and hence cannot be changed much by changing one entry. Formally, consider a neighboring
dataset S′ (and the corresponding S′(v)) where one point xi in M(v)(S) is replaced by another point x̃i. If v>x̃i ∈
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[ maxi∈Sgood∩Bv v
>xi , mini∈Sgood∩T v v

>xi ], then Eq. (18) implies that this only changes the mean by 6cζ/(
√
αn). Other-

wise,Mv(S′) will have xi replaced by either arg mini∈Sgood∩T v v
>xi or arg maxi∈Sgood∩Bv v

>xi. In both cases, Eq. (18)
implies that this only changes the mean by 12cζ/(

√
αn). The other case of when the replaced sample xi ∈ S is not in

Mv(S) follows similarly. From this, we upper bounds the maximum difference between S and S′ when projected on v, that
is ∣∣v> (µ(Mv(S))− µ(Mv(S′)))

∣∣ ≤ 12cζ√
αn

.

This implies the sensitivity of d(µ, S) is bounded by 6cζ/(
√
αn):

|d(µ, S)− d(µ, S′)| =
∣∣∣ max
v∈Sd−1

v>µ(Mv(S)) − max
ṽ∈Sd−1

ṽ>µ(Mv(S′))
∣∣∣

≤ max
v∈Sd−1

∣∣ v>(µ(Mv(S)) − µ(Mv(S′)) )
∣∣ ≤ 12cζ√

αn

I.1.2. PROOF OF LEMMA I.9

First we show |v> (µ(Mv)− µ∗) | ≤ 7cζ
√
α. Notice that |Sgood ∩ T v| ≤ 3α|S|, and |Sgood ∩ Bv| ≤ 3α|S|. By the

(cζ
√

3α, 3α)-resilience property, we have |v>(µ(Sgood∩T v)−µ∗)| ≤ cζ
√

3/α, and |v>(µ(Sgood∩Bv)−µ∗)| ≤ cζ
√

3/α.
Since |Sgood ∩Mv| ≥ (1− 8α)|Sgood|, by the (cζ

√
8α, 8α)-resilience property,

|v>(µ(Sgood ∩Mv)− µ∗)| ≤ cζ
√

8α .

Since T v , Bv are the largest and smallest 3αn points respectively and |Sbad| ≤ 2αn, we get

|v>(µ(Sbad ∩Mv)− µ∗)| ≤ 2cζ
√

3/α.

Combining Sgood ∩Mv and Sbad ∩Mv we get

|v>(µ(Mv)− µ∗)|

≤ |Sbad ∩M
v|

|Mv|
|v>(µ(Sbad ∩Mv)− µ∗)|+ |µ(Sgood ∩Mv|

|Mv|
|v>(µ(Sgood ∩Mv)− µ∗)|

≤ 7cζ
√
α.

Finally we get that

∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2
∣∣ (a)

=

∣∣∣∣ max
v∈Sd−1

∣∣∣v> (µ(M(v))− µ̂
)∣∣∣− max

v∈Sd−1
|v>(µ̂− µ∗)|

∣∣∣∣
(b)

≤ max
v∈Sd−1

∣∣∣v> (µ(M(v))− µ∗
)∣∣∣

≤ 7cζ
√
α,

where (a) holds by the definition of the distance :

‖µ− µ∗‖2 = max
v∈Sd−1

|v>(µ− µ∗)|,

and (b) holds by triangle inequality.

I.2. Case of sub-Gaussian distributions and a proof of Theorem 9

Th proof is analogous to the previous section, we only state the lemmas that differ. qrange returns a hypercube x̄ +
[−B/2, B/2]d that includes all uncorrupted data points with a high probability.

Lemma I.10 (α-corrupted data has small R(S)). Let S be the set of α-corrupted data. Given that n = Ω(d+log(1/ζ)
α2 log 1/α ), with

probability 1− ζ, R(S) ≤ 3α
√

log(1/3α).
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Lemma I.11 (Privacy). Algorithm 3 is (ε, δ)-differentially private if n ≥ 3B
√
d log(3/δ)/(εα

√
log(1/α)).

This follows from the following lemma.

Lemma I.12 (Sensitivity of d(µ̂, S)). Given that R(S) ≤ 3α
√

log(1/α), for any neighboring dataset S′, |d(µ̂, S) −
d(µ̂, S′)| ≤ 12

√
log 1/α/n.

Lemma I.13 (d(µ̂, S) approximates ‖µ̂− µ∗‖). Let S be the set of α-corrupted data. Given that n = Ω(d+log(1/ζ)
α2 log 1/α ), with

probability 1− ζ, ∣∣ d(µ̂, S)− ‖µ̂− µ∗‖2
∣∣ ≤ 14α

√
log 1/α .

This implies the following utility bound.

Lemma I.14 (Utility of the algorithm). For an α-corrupted dataset S, Algorithm 3 achieves ‖µ̂−µ∗‖2 ≤ α
√

log 1/α with
probability 1− ζ, if n = Ω((d+ log(1/ζ))/(α2 log(1/α)) + (d log(dR/α) + log(1/ζ)/(εα)).
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J. The algorithmic details and the analysis of PRIME-HT for covariance bounded distributions
We provide the algorithm and the analysis for the range estimation query qrange−ht, and then prove the result on analyzing
PRIME-HT.

J.1. Range estimation with qrange−ht

Algorithm 14: Differentially private range estimation for covariance bounded distributions (qrange−ht) (?)Algo-
rithm 2]kamath2020private

Input: S = {xi}ni=1, R, ε, δ, ζ
1 Randomly partition the dataset S = ∪`∈[m]S

(`) with m = 200 log(2/ζ)

2 x̄(`) ← qrange(S(`), R, ε/m, δ/m, σ = 40) for all ` ∈ [m]

3 x̂j ← median({x̄(`)
j }`∈[m]) for all j ∈ [d]

Output: (x̂, B = 50/
√
α)

Lemma J.1. qrange−ht is (ε, δ)-differentially private. Under Assumption 2 and for α ∈ (0, 0.01), if n = Ω((1/α) log(1/ζ)+

(
√
d log(1/δ) log(1/ζ)/ε) min{log(dR), log(d/δ)}), qrange−ht returns a ball B√dB/2(x̄) of radius

√
dB/2 centered at x̄

that includes (1− 2α)n uncorrupted samples where B = 50/
√
α with probability 1− ζ.

We first show that applying the private histogram to each coordinate provides a robust estimate of the range, but with a
constant probability 0.9.

Lemma J.2 (Robustness of a single private histogram). Under the α-corruption model of Assumption 2, if n =
Ω((
√
d log(1/δ)/ε) min{log(dR), log(d/δ}}), for α ∈ (0, 0.01), qrange in Algorithm 5 with a choice of σ = 40 and

B = 120 returns intervals {Ij}dj=1 of size |Ij | = 240 such that µj ∈ Ij with probability 0.9 for each j ∈ [d].

Proof of Lemma J.2. The proof is analogous to Appendix E.1 and we only highlight the differences here. By Lemma E.1
we know that |p̃k − p̂k| ≤ 0.01 with the assumption on n. The corruption can change the normalized count in each
bin by α ≤ 0.01 by assumption. It follows from Chebyshev inequality that P(|xi,j − µj |2 > σ2) ≤ 1/σ2. It follows
from (e.g. (?)Lemma A.3]kamath2020private) that P(|{i : xi,j /∈ [µ − σ, µ + σ]}| > (100/σ2)n) < 0.05. Hence the
maximum bin has p̃k ≥ 0.5(1− 100/σ2)− 0.02 and the true mean is in the maximum bin or in an adjacent bin. The largest
non-adjacent bucket is at most 100/σ2 + 0.02. Hence, the choice of σ = 40 ensures that we find the µ within 3σ = 120.

Following (?)Algorithm 2]kamath2020private, we partition the dataset into m = 200 log(2/ζ) subsets of an equal size n/m
and apply the median-of-means approach. Applying Lemma J.2, it is ensured (e.g., by (?)Lemma A.4]kamath2020private)
that more than half of the partitions satisfy that the center of the interval is within 240 away from µ, with probability 1− ζ.
Therefore the median of those m centers is within 240 from the true mean in each coordinate. This requires the total sample
size larger only by a factor of log(d/ζ).

To choose a radius
√
dB/2 ball around this estimated mean that includes 1−α fraction of the points, we chooseB = 25/

√
α.

Since ‖µ̂ − µ‖2 ≤ 120
√
d �

√
dB/2 for α ≤ 0.01, this implies that we can choose

√
dB/2-ball around the estimated

mean with B = 50/
√
α.

Let zi = I(‖xi−µ‖2 >
√
dB/2). We know that E[zi] = P[(‖xi−µ‖2 >

√
dB/2)] ≤ E[‖xi−µ‖22(2/dB2)] = (1/1250)α.

Applying multiplicative Chernoff bound (e.g., in (?)Lemma A.3]kamath2020private), we get |{i : ‖xi−µ‖2 ≤
√
dB/2}| ≥

1− (3/2500)α with probability 1− ζ, if n = Ω((1/α) log(1/ζ)). This ensures that with high probability, (1− α) fraction
of the original uncorrupted points are included in the ball. Since the adversary can corrupt αn samples, at least (1− 2α)n
of the remaining good points will be inside the ball.

J.2. Proof of Theorem 8

The proof of the privacy guarantee of Algorithm 15 follows analogously from the proof of the privacy of PRIME and is
omitted here. The accuracy guarantee follows form the following theorem and Lemma J.1.
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Theorem 12 (Analysis of accuracy of DPMMWFILTER-HT). Let S be an α-corrupted covariance bounded dataset under
Assumption 2, where α ≤ c for some universal constant c ∈ (0, 1/2). Let Sgood be α-good with respect to µ ∈ Rd. Suppose

D = {xi ∈ B√dB/2(x̄)}ni=1 be the projected dataset. If n ≥ Ω̃
(
d3/2B2 log(1/δ)

ε

)
, then DPMMWFILTER-HT terminates

after at most O(log dB2) epochs and outputs S(s) such that with probability 0.9, we have |S(s)
t ∩Sgood| ≥ (1− 10α)n and

‖µ(S(s))− µ‖2 .
√
α .

Moreover, each epoch runs for at most O(log d) iterations.

Algorithm 15: Differentially private filtering with matrix multiplicative weights (DPMMWFILTER-HT) for
distributions with bounded covariance

Input: S = {xi ∈ B√dB/2(x̄)}ni=1, α ∈ (0, 1), T1 = O(logB
√
d), T2 = O(log d), B ∈ R+, (ε, δ)

1 if n < (4/ε1) log(1/(2δ1)) then Output: ∅
2 Initialize S(1) ← [n], ε1 ← ε/(4T1), δ1 ← δ/(4T1), ε2 ← min{0.9, ε}/(4

√
10T1T2 log(4/δ)),

δ2 ← δ/(20T1T2), a large enough constant C > 0
3 for epoch s = 1, 2, . . . , T1 do
4 λ(s) ← ‖M(S(s))‖2 + Lap(2B2d/(nε1))

5 n(s) ← |S(s)|+ Lap(1/ε1)

6 if n(s) ≤ 3n/4 then terminate
7 if λ(s) ≤ C then

Output: µ(s) ← (1/|S(s)|)
(∑

i∈S(s) xi
)

+N (0, (2B
√

2d log(1.25/δ1)/(n ε1))2Id×d)

8 α(s) ← 1/(100(0.1/C + 1.05)λ(s))

9 S
(s)
1 ← S(s)

10 for t = 1, 2, . . . , T2 do
11 λ

(s)
t ← ‖M(S

(s)
t )‖2 + Lap(2B2d/(nε2))

12 if λ(s)
t ≤ 2/3λ

(s)
0 then

13 terminate epoch
14 else
15 Σ

(s)
t ←M(S

(s)
t ) +N (0, (4B2d

√
2 log(1.25/δ2)/(nε2))2Id2×d2)

16 U
(s)
t ← (1/Tr(exp(α(s)

∑t
r=1(Σ

(s)
r )))) exp(α(s)

∑t
r=1(Σ

(s)
r ))

17 ψ
(s)
t ←

〈
M(S

(s)
t ), Ut

(s)
〉

+ Lap(2B2d/(nε2))

18 if ψ(s)
t ≤ (1/5.5)λ

(s)
t then

19 S
(s)
t+1 ← S

(s)
t

20 else
21 Z

(s)
t ← Unif([0, 1])

22 µ
(s)
t ← (1/|S(s)

t |)
(∑

i∈St xi
)

+N (0, (2B
√

2d log(1.25/δ2)/(n ε2)Id×d)
2)

23 ρ
(s)
t ← DPTHRESHOLD-HT(µ

(s)
t , U

(s)
t , α, ε2, δ2, S

(s)
t ) [Algorithm 16]

24 S
(s)
t+1 ← S

(s)
t \ {i | {τj = (xj − µ(s)

t )>U
(s)
t (xj − µ(s)

t )}
j∈S(s)

t
and τi ≥ ρ(s)

t Z
(s)
t }.

25 S(s+1) ← S
(s)
t

Output: µ(T1)

J.2.1. ANALYSIS OF DPMMWFILTER-HT AND A PROOF OF THEOREM 12

Algorithm 15 is a similar matrix multiplicative weights based filter algorithm for distributions with bounded covariance.
Similarly, we first state following Lemma J.3 and prove Theorem 12 given Lemma J.3
Lemma J.3. Let S be an α-corrupted bounded covariance dataset under Assumption 2. For an epoch s and an iteration
t such that λ(s) > C, λ(s)

t > 2/3λ
(s)
0 , and n(s) > 3n/4, if n & B2(logB)d3/2 log(1/δ)

ε and |S(s)
t ∩ Sgood| ≥ (1 − 10α)n,
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Algorithm 16: Differentially private estimation of the threshold for bounded covariance DPTHRESHOLD-HT

Input: µ, U , α ∈ (0, 1), target privacy (ε, δ), S = {xi ∈ BB√d/2(x̄)}
1 Set τi ← (xi − µ)>U(xi − µ) for all i ∈ S
2 Set ψ̃ ← (1/n)

∑
i∈S τi + Lap(2B2d/nε))

3 Compute a histogram over geometrically sized bins
I1 = [1/4, 1/2), I2 = [1/2, 1), . . . , I2+log(B2d) = [2log(B2d)−1, 2log(B2d)]

hj ←
1

n
· |{i ∈ S | τi ∈ [2−3+j , 2−2+j)}| , for all j = 1, · · · , 2 + log(B2d)

4 Compute a privatized histogram h̃j ← hj +N (0, (4
√

2d log(1.25/δ)/(nε))2), for all j ∈ [2 + log(B2d)]
5 Set τ̃j ← 2−3+j , for all j ∈ [2 + log(B2d)]

6 Find the largest ` ∈ [2 + log(B2d)] satisfying
∑
j≥`(τ̃j − τ̃`) h̃j ≥ 0.31ψ̃

Output: ρ = τ̃`

then with probability 1 − O(1/ log(d)3), we have the condition in Eq. (19) holds. When this condition holds, we have
more corrupted samples are removed in expectation than the uncorrupted samples, i.e., E|(S(s)

t \ S(s)
t+1) ∩ Sgood| ≤

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad|. Further, for an epoch s ∈ [T1] there exists a constant C > 0 such that if ‖M(S(s))‖2 ≥ C,

then with probability 1− O(1/ log2 d), the s-th epoch terminates after O(log d) iterations and outputs S(s+1) such that
‖M(S(s+1))‖2 ≤ 0.98‖M(S(s))‖2.

Now we define d(s)
t , |(Sgood ∩ S(1)) \ S(s)

t |+ |S
(s)
t \ (Sgood ∩ S(1))|. Note that d(1)

1 = αn, and d(s)
t ≥ 0. At each epoch

and iteration, we have

E[d
(s)
t+1 − d

(s)
t |d

(1)
1 , d

(1)
2 , · · · , d(s)

t ] = E
[
|Sgood ∩ (S

(s)
t \ S

(s)
t+1)| − |Sbad ∩ (S

(s)
t \ S

(s)
t+1)|

]
≤ 0,

from the part 1 of Lemma J.3. Hence, d(s)
t is a non-negative super-martingale. By optional stopping theorem, at stopping

time, we have E[d
(s)
t ] ≤ d(1)

1 = αn. By Markov inequality, d(s)
t is less than 10αn with probability 0.9, i.e. |S(s)

t ∩Sgood| ≥
(1− 10α)n. The desired bound in Theorem 12 follows from Lemma J.11.

J.2.2. PROOF OF LEMMA J.3

Lemma J.3 is a combination of Lemma J.4, Lemma J.5 and Lemma J.6. We state the technical lemmas and subsequently
provide the proofs.

Lemma J.4. For each epoch s and iteration t, under the hypotheses of Lemma J.3 then with probability 1−O(1/ log3 d),
we have

1

n

∑
i∈Sgood∩S(s)

t

τi ≤ ψ/1000 , (19)

where ψ , 1
n

∑
i∈S(s)

t
τi.

Lemma J.5. For each epoch s and iteration t, under the hypotheses of Lemma J.3, if condition Eq. (19) holds, then we
have E|S(s)

t \ S
(s)
t+1 ∩ Sgood| ≤ E|S(s)

t \ S
(s)
t+1 ∩ Sbad| and with probability 1 − O(1/ log3 d), and

〈
M(S

(s)
t+1), U

(s)
t

〉
≤

0.76
〈
M(S

(s)
t ), U

(s)
t

〉
.

Lemma J.6. For epoch s, suppose for t = 0, 1, · · · , T2 where T2 = O(log d), if Lemma J.5 holds, n & B2(logB)d3/2 log(1/δ)
εα ,

and n(s) > 3n/4, then we have ‖M(S(s+1))‖2 ≤ 0.98‖M(S(s))‖2 with probability 1−O(1/ log2 d).
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J.2.3. PROOF OF LEMMA J.4

Proof. By Lemma H.9, Lemma H.10 and Lemma H.11, we can pick n = Ω̃
(
B2d3/2 log

ε

)
such that with probability

1−O(1/ log3 d), following conditions simultaneously hold:

1. ‖µ(s)
t − µ(S

(s)
t )‖22 ≤ 0.001

2. |ψ(s)
t −

〈
M(S

(s)
t ), U

(s)
t

〉
| ≤ 0.001

3.
∣∣∣λ(s)
t − ‖M(S

(s)
t )‖2

∣∣∣ ≤ 0.001

4.
∣∣λ(s) − ‖M(S(s))‖2

∣∣ ≤ 0.001

5.
∥∥∥M(S

(s)
t+1)− Σ

(s)
t

∥∥∥
2
≤ 0.001

6. ‖µ(s) − µ(S(s))‖22 ≤ 0.001 .

Then we have

1

n

∑
i∈Sgood∩S(s)

t

τi =
1

n

∑
i∈Sgood∩S(s)

t

〈
(xi − µ(s)

t )(xi − µ(s)
t )>, U

(s)
t

〉
(a)

≤ 2

n

∑
i∈Sgood∩S(s)

t

〈
(xi − µ(Sgood ∩ S(s)

t ))(xi − µ(Sgood ∩ S(s)
t ))>, U

(s)
t

〉

+
2|Sgood ∩ S(s)

t |
n

〈
(µ(Sgood ∩ S(s)

t )− µ(s)
t )(µ(Sgood ∩ S(s)

t )− µ(s)
t )>, U

(s)
t

〉
≤ 2

〈
M((Sgood ∩ S(s)

t ), U
(s)
t

〉
+ 2‖µ(s)

t − µ(Sgood ∩ S(s)
t )‖22

(b)

≤ 2 + 2
(
‖µ(s)

t − µ‖2 + ‖µ(Sgood ∩ S(s)
t )− µ‖2

)2

(c)

≤ 2 + 2

(
0.01 + 2

√
α‖M(S

(s)
t )‖2 + 3

√
α

)2

≤ 3 + 8α‖M(S
(s)
t )‖2 + 32α

(d)

≤ ψ
(s)
t − 0.002

1000

≤ ψ

1000
,

where (a) follows from the fact that for any vector x, y, z, we have (x−y)(x−y)> � 2(x−z)(x−z)>+2(y−z)(y−z)>,
(b) follows from α-goodness of Sgood, (c) follows from Lemma J.11 and (d) follows from our choice of large constant C
and sample complexity n.

J.2.4. PROOF OF LEMMA J.5

Proof. Lemma J.4 implies with probability 1 − O(1/ log3 d), our scores satisfies the condition in Eq. (19). Then by
Lemma J.7 our DPTHRESHOLD-HT gives us a threshold ρ such that∑

i∈Sgood∩S(s)
t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} ≤
∑

i∈Sbad∩S(s)
t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .
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According to our filter rule from Algorithm 16, we have

E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| =

∑
i∈Sgood∩S(s)

t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ}

and

E|(S(s)
t \ S

(s)
t+1) ∩ Sbad| =

∑
i∈Sbad∩S(s)

t

1{τi ≤ ρ}
τi
ρ

+ 1{τi > ρ} .

This implies E|(S(s)
t \ S

(s)
t+1) ∩ Sgood| ≤ E|(S(s)

t \ S
(s)
t+1) ∩ Sbad|.

At the same time, Lemma J.7 gives us a ρ such that with probability 1−O(log3 d), we have

1

n

∑
i∈S(s)

t+1

τi ≤
1

n

∑
τi≤ρ,i∈S(s)

t

τi ≤
3

4
· 1

n

∑
i∈S(s)

t

τi .

Hence, we have 〈
M(S

(s)
t+1), U

(s)
t

〉
=

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S
(s)
t+1))(xi − µ(S

(s)
t+1))>, U

(s)
t

〉

≤

〈
1

n

∑
i∈S(s)

t+1

(xi − µ(S
(s)
t ))(xi − µ(S

(s)
t ))>, U

(s)
t

〉

≤ 1

n

∑
i∈S(s)

t+1

τi + ‖µ(s)
t − µ(S

(s)
t )‖22

≤ 3

4n

∑
i∈S(s)

t

τi + 0.01

(a)

≤ 0.76
〈
M(S

(s)
t ), U

(s)
t

〉
,

where (a) follows from our assumption that ψ(s)
t > 1

5.5λ
(s)
t > 2

16.5C.

J.2.5. PROOF OF LEMMA J.6

Proof. If Lemma J.5 holds, we have 〈
M(S

(s)
t ), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
t−1), U

(s)
t

〉
≤ 0.76

〈
M(S

(s)
1 ), U

(s)
t

〉
≤ 0.76‖M(S

(s)
1 )‖2

We pick n large enough such that with probability 1−O(log3 d),

‖Σ(s)
t ‖2 ≈0.05 ‖M(S

(s)
t )‖2 .

Thus, we have 〈
Σ

(s)
t , U

(s)
t

〉
≤ 0.81‖M(S

(s)
1 )‖2 .



Robust and Differentially Private Mean Estimation

By Lemma H.1, we have M(S
(s)
t ) �M(S

(s)
1 ). by our choice of α(s), we have α(s)M(S

(s)
t+1) � 1

100I and α(s)Σ
(s)
t � 1

100I.
Therefore, by Lemma H.14 we have∥∥∥∥∥

T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+ α(s)

T2∑
t=0

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉 ‖Σ(s)
t ‖2 +

log(d)

α(s)

(a)

≤
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉+ 200 log(d)‖M(S
(s)
1 )‖2

where (a) follows from our choice of α(s), C, and n.

Meanwhile, we have

|Σ(s)
t | �M(S

(s)
t ) + 0.15 I .

Thus we have 〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉 ≤ 0.91
∥∥∥M(S

(s)
1 )
∥∥∥

2

Then we have∥∥∥M(S
(s)
T2

)
∥∥∥

2
≤ 1

T2

∥∥∥∥∥
T2∑
i=1

M(S
(s)
t )

∥∥∥∥∥
2

≤ 1

T2

∥∥∥∥∥
T2∑
i=1

Σ
(s)
t

∥∥∥∥∥
2

+ 0.05 ‖M(S
(s)
1 )‖2

≤ 1

T2

(
T2∑
t=1

〈
Σ

(s)
t , U

(s)
t

〉
+

1

100

T2∑
t=1

〈
U

(s)
t ,

∣∣∣Σ(s)
t

∣∣∣〉+ 200 log(d)‖M(S
(s)
1 )‖2

)
+ 0.05 ‖M(S

(s)
1 )‖2

≤ 0.91‖M(S
(s)
1 )‖2 +

200 log(d)

T2
‖M(S

(s)
1 )‖2 + 0.05 ‖M(S

(s)
1 )‖2

≤ 0.98 ‖M(S
(s)
1 )‖2

J.2.6. PROOF OF DPTHRESHOLD-HT FOR DISTRIBUTIONS WITH BOUNDED COVARIANCE

Lemma J.7 (DPTHRESHOLD-HT: picking threshold privately for distributions with bounded covariance). Algorithm
DPTHRESHOLD-HT(µ,U, α, ε, δ, S) running on a dataset {τi = (xi − µ)>U(xi − µ)}i∈S is (ε, δ)-DP. Define ψ ,
1
n

∑
i∈S τi. If τi’s satisfy

1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000 ,

and n ≥ Ω̃
(
B2d
ε

)
then DPTHRESHOLD-HT outputs a threshold ρ such that

2(
∑

i∈Sgood∩S
1{τi ≤ ρ}

τi
ρ

+ 1{τi > ρ}) ≤
∑

i∈Sbad∩S
1{τi ≤ ρ}

τi
ρ

+ 1{τi > ρ} , (20)

and with probability 1−O(1/ log3 d),

1

n

∑
τi<ρ

τi ≤ 0.75ψ .
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Proof. 1. ρ cuts enough

Let ρ be the threshold picked by the algorithm. Let τ̂i denote the minimum value of the interval of the bin that τi belongs to.
It holds that

1

n

∑
τi≥ρ,i∈[n]

(τi − ρ) ≥ 1

n

∑
τ̃i≥ρ,i∈[n]

(τ̂i − ρ)

=
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)hj

(a)

≥
∑

τ̃j≥ρ,j∈[2+log(B2d)]

(τ̃j − ρ)h̃j −O

(
log(B2d) ·B2d ·

√
log(log(B2d) log d) log(1/δ)

εn

)
(b)

≥ 0.31ψ̃ − Õ(
B2d

εn
)

(c)

≥ 0.3ψ − Õ(
B2d

εn
) ,

where (a) holds due to the accuracy of the private histogram (Lemma H.12), (b) holds by the definition of ρ in our algorithm,
and (c) holds due to the accuracy of ψ̃. This implies

1

n

∑
τi<ρ

τi ≤ ψ −
1

n

∑
τi≥ρ

(τi − ρ) ≤ 0.7ψ + Õ(B2d/εn).

2. ρ doesn’t cut too much

Define C2 to be the threshold such that 1
n

∑
τi>C2

(τi−C2) = (2/3)ψ. Suppose 2b ≤ C2 ≤ 2b+1, we have
∑
τ̂i≥2b−1(τ̂i−

2b−1) ≥ (1/3)ψ because ∀τi ≥ C2, (τ̂i − 2b−1) ≥ 1
2 (τi − C2). Then the threshold picked by the algorithm ρ ≥ 2b−1,

which implies ρ ≥ 1
4C2. Suppose ρ < C2, since ρ ≥ 1

4C2∑
i∈Sbad∩S,τi<ρ

τi +
∑

i∈Sbad∩S,τi≥ρ

ρ ≥ 1

4
(

∑
i∈Sbad∩S,τi<C2

τi +
∑

i∈Sbad∩S,τi≥C2

C2)

(a)

≥ 10

4
(

∑
i∈Sgood∩S,τi<C2

τi +
∑

i∈Sgood∩S,τi≥C2

C2)

(b)

≥ 10

4
(

∑
i∈Sgood∩S,τi<ρ

τi +
∑

i∈Sgood∩S,τi≥ρ

ρ),

where (a) holds by Lemma J.8, and (b) holds since ρ ≤ C2. If ρ ≥ C2, the statement of the Lemma J.8 directly implies
Equation (20).

Lemma J.8. Assuming that the condition in Eq.(19) holds, then for any C such that

1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C ≥ (1/3)ψ ,

we have ∑
i∈Sbad∩S,τi<C

τi +
∑

i∈Sbad∩S,τi≥C

C ≥ 10(
∑

i∈Sgood∩S,τi<C
τi +

∑
i∈Sgood∩S,τi≥C

C)

Proof. First we show an upper bound on Sgood:

1

n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C ≤ 1

n

∑
i∈Sgood∩S

τi ≤ ψ/1000.
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Then we show an lower bound on Sbad:

1

n

∑
i∈Sbad∩S,τi<C

τi +
1

n

∑
i∈Sbad∩S,τi>C

C

=
1

n

∑
i∈S,τi<C

τi +
1

n

∑
i∈S,τi≥C

C

−(
1

n

∑
i∈Sgood∩S,τi<C

τi +
1

n

∑
i∈Sgood∩S,τi≥C

C)

≥ (1/3− 1/1000)ψ .

Combing the lower bound and the upper bound yields the desired statement

J.2.7. REGULARITY LEMMAS FOR DISTRIBUTIONS WITH BOUNDED COVARIANCE

Definition J.9 ((?)Definition 3.1]dong2019quantum ). Let D be a distribution with mean µ ∈ Rd and covariance Σ � I.
For 0 < α < 1/2, we say a set of points S = {X1, X2, · · · , Xn} is α-good with respect to µ ∈ Rd if following inequalities
are satisfied:

• ‖µ(S)− µ‖2 ≤
√
α

•
∥∥∥ 1
|S|
∑
i∈S (Xi − µ(S)) (Xi − µ(S))

>
∥∥∥

2
≤ 1.

Lemma J.10 ((?)Lemma 3.1]dong2019quantum ). Let D be a distribution with mean µ ∈ Rd and covariance Σ � I. Let
S = {X1, X2, · · · , Xn} be a set of i.i.d. samples of D. If n = Ω(d log(d)/α), then with probability 1−O(1), there exists
a set Sgood ⊆ S such that Sgood is α-good with respect to µ and |Sgood| ≥ (1− α)n.

Lemma J.11 ((?)Lemma 3.2]dong2019quantum ). Let S be an α-corrupted bounded covariance dataset under Assumption 2.
If Sgood is α-good with respect to µ, then for any T ⊂ S such that |T ∩ Sgood| ≥ (1− α)|S|, we have

‖µ(T )− µ‖2 ≤
1

1− 2α
·
(

2
√
α ‖M(T )‖2 + 3

√
α

)
.
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K. Experiments
We evaluate PRIME and compare with a DP mean estimator of (Kamath et al., 2019) on synthetic dataset in Figure 1
and Figure 2, which consists of samples from (1 − α)N (0, I) + αN (µbad, I). The main focus of this evaluation is to
compare the estimation error and demonstrate the robustness of PRIME under differential privacy guarantees. Our choice
of experimental settings and hyper parameters are as follows: 1 ≤ d ≤ 100, µbad = (1.5, 1.5, · · · , 1.5)d, 0.001 ≤ ε ≤ 100,
0.01 ≤ α ≤ 0.1 , R = 10, C = 1. When the algorithm returns ∅, we simply return the boundary vector i.e. (R, · · · , R)d.

Figure 2 shows additional experiments including the regime where we do not have enough number of samples. When
n ≤ cd1.5/αε, the utility guarantee (Theorem 5) does not hold. The noise we add on the final output becomes large
as n decreases and dominates the estimation error. The DP Mean (Kamath et al., 2019) has lower error compared to
PRIME when n is small because PRIME spends some privacy budget to perform operations other than those in DP Mean
in the Algorithm 10. In practice, we can check whether there are enough number of samples based on known parameters
(ε, δ, n, α), and choose to use DP Mean (or adjust how the privacy budget is distributed in PRIME).

The right figure with (α, δ, d, n) = (0.1, 0.01, 10, 106) is when DP Mean error is dominated by α
√
d and PRIME by

α
√

log(1/α) when ε > cd1.5/(αn). Below this threshold, which happens in this example around ε = 0.05, the added noise
in the private mechanism starts to dominate with decreasing ε. Both algorithms have respective thresholds below which the
error increases with decreasing ε. This threshold is larger for PRIME because it uses the privacy budget to perform multiple
operations and hence the noise added to the final output is larger compared to DP Mean. Below this threshold, which can be
easily determined based on the known parameters (ε, δ, n, α), we should either collect more data (which will decrease the
threshold) or give up filtering and spend all privacy budget on qrange and the empirical mean (which will reduce the error).
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Figure 2. Estimation error achieved by PRIME significantly improves upon that of DP Mean in the large sample regime where our
theoretical guarantees apply. In the small sample regime, the noise from the DP mechanisms dominate the error, which increases with
decreasing n. We choose (α, ε, δ, d) = (0.1, 100, 0.01, 50). Each data point is repeated 50 runs and standard error is shown in the error
bar.

Our implementation is based on Python with basic Numpy library. We run on a 2018 Macbook Pro machine. For each
choice of d in our settings, it takes less than 2 minutes and PRIME stops after at most 3 epochs. We have attached our code
as supplementary materials.


