
Decentralized federated learning of deep neural networks on non-iid data

Noa Onoszko * 1 2 Gustav Karlsson * 1 2 Olof Mogren 1 Edvin Listo Zec 1 3

Abstract

We tackle the non-convex problem of learning a
personalized deep learning model in a decentral-
ized setting. More specifically, we study decen-
tralized federated learning, a peer-to-peer setting
where data is distributed among many clients and
where there is no central server to orchestrate the
training. In real world scenarios, the data distri-
butions are often heterogeneous between clients.
Therefore, in this work we study the problem of
how to efficiently learn a model in a peer-to-peer
system with non-iid client data. We propose a
method named Performance-Based Neighbor Se-
lection (PENS) where clients with similar data
distributions detect each other and cooperate by
evaluating their training losses on each other’s
data to learn a model suitable for the local data dis-
tribution. Our experiments on benchmark datasets
show that our proposed method is able to achieve
higher accuracies as compared to strong baselines.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) is a frame-
work developed to enable learning when data is distributed
over several devices or across organizations, typically re-
ferred to as nodes or clients. In this framework, the training
data never leaves the client, and all computations using the
data are performed locally. This is especially useful when
data privacy is important, or when collecting and storing
data centrally is expensive.

Federated learning can be grouped into one of two cate-
gories: centralized and decentralized. In centralized FL,
a central server orchestrates the learning among clients and

*Equal contribution. Author ordering decided by a coin flip.
1RISE Research Institutes of Sweden 2Chalmers University of
Technology 3KTH Royal Institute of Technology. Correspon-
dence to: Edvin Listo Zec <edvin.listo.zec@ri.se>, Noa Onoszko
<noa.onoszko@gmail.com>.

Published at the International Workshop on Federated Learning for
User Privacy and Data Confidentiality at the 38 th International
Conference on Machine Learning, 2021. Copyright 2021 by the
author(s).

is responsible for parameter aggregation, after receiving pa-
rameter updates from clients. However, the central server in
an FL setup is a potential point of weakness: it could fail or
be maliciously attacked, which would make the distributed
learning fail. Decentralized (peer-to-peer) systems without
a central server are not vulnerable to this.

In decentralized federated learning, no global model state
exists. Instead, the participating clients follow a commu-
nication protocol to reach a consensus of a model during
training. Standard techniques for decentralized learning
include gradient-based algorithms based on gossip learn-
ing (Boyd et al., 2006; Jelasity et al., 2007; Ormándi et al.,
2013), where clients train their own model based on local
data and follow a communication protocol where they ran-
domly communicate (gossip) their model parameters with
their neighbors. The goal for the participating clients is to
reach a consensus on a good model. In this work, we focus
on gradient-based learning algorithms in a decentralized
federated setup.

Both centralized and decentralized federated learning ap-
proach the important question of how to learn a suitable
personalized model when client data distributions differ, i.e.
the setting of non-iid data. A lot of research is currently
being done regarding this topic in the centralized setting.
Meanwhile, this is a relatively understudied problem in the
decentralized setting (Kairouz et al., 2019).

The main contribution of this paper is a novel, completely
decentralized, federated algorithm for gradient-based meth-
ods when client data is non-iid: Performance-Based Neigh-
bor Selection (PENS). In PENS, clients with similar data
distributions have a higher probability of collaborating and
those with dissimilar data distributions have a lower prob-
ability of collaborating. We perform multiple experiments
over different non-convex optimization using deep neural
networks, and our results show that using PENS leads to a
higher performance as compared to all considered baselines.

2. Related work
Gossip learning. Gossip learning has been applied in many
different machine learning settings (Kempe et al., 2003;
Boyd et al., 2006; Ormándi et al., 2013). However, much
of the previous work on gossip learning has been limited

Decentralized federated learning of deep neural networks on non-iid data

to settings where each client only stores a single data point.
Further, it has been under-explored how non-convex opti-
mization of neural networks works under the gossip learning
protocol. In (Giaretta & Girdzijauskas, 2019), the authors
study the performance of SVMs and linear regression mod-
els on non-iid data in a decentralized gossip learning setup.
In (Hegedűs et al., 2019) the authors train and evaluate lo-
gistic regression models and compare gossip learning to
federated learning with a central server. A gossip-based
algorithm for strongly convex functions has been studied in
(Koloskova et al., 2019), where the authors prove that their
proposed algorithm is linearly convergent with quantized
communication.

The first decentralized work on gossip-based optimization
for non-convex deep learning studied CNNs and experi-
mentally showed that an asynchronous and decentralized
framework achieved high accuracies with low communica-
tion costs (Blot et al., 2016). Training CNNs in a decen-
tralized federated learning setting has also been applied for
segmentation of brain images (Roy et al., 2019).

Some recent work study communication costs (peer-to-peer
communication) in non-convex optimization for different
types of network topologies (Assran et al., 2019; Wang et al.,
2019a).

In (Kong et al., 2021), the authors identify the changing
consensus distance between clients as key to explain the gap
between centralized and decentralized training and focus on
non-convex optimization.

Non-iid data. All aforementioned works solve important
problems. However, a key assumption is made in the studies:
that data is independently and identically distributed (iid)
over clients. The problem of non-iid is becoming more
studied in the case of centralized federated learning. In
this setting, solutions for skewed data distributions have
been explored in many different ways including fine-tuning
a global model locally (Wang et al., 2019b), posing the
personalization problem in FL as a meta-learning objective
(Jiang et al., 2019), using knowledge distillation techniques
(Jeong et al., 2018), by mixing local and global models
(Deng et al., 2020; Listo Zec et al., 2020) and with data-
sharing methods (Zhao et al., 2018). Meanwhile, similar
techniques have not yet been widely applied and researched
in decentralized federated learning.

In (Ghosh et al., 2020) they study the problem of covariate
shift, similar to us, but in a centralized federated learning
setup. In their paper, the authors develop a client clustering
framework to learn one global model per cluster with a
central parameter server.

Label distribution shift for decentralized deep learning has
been studied in (Niwa et al., 2020). In this work, the authors
propose to solve a dual problem that seeks to minimize a

linearly constrained cost function. By solving a constrained
optimization problem, their method achieves similar models
among clients in the non-iid data setting.

In this work, we continue the research on the effectiveness
of deep neural networks in decentralized peer-to-peer net-
works where data is non-iid. More specifically, we study
the problem of covariate shift where Di(x) varies, but the
conditional distributions Di(y|x) = Dj(y|x) for all clients
i 6= j.

3. Problem formulation
We formulate the problem as an empirical risk minimization
(ERM) problem, as commonly used in statistical learning
setups. The goal is to learn weights w for a model by op-
timizing some loss over data. In a decentralized setting,
we have k clients that are able to communicate with neigh-
boring clients in a communication network. We assume
that each client i has a data distribution Di(x, y) over input
features x and labels y.

Let `(w; z) : Rd → R be the loss as a function of the model
parameters w and data points z = (x, y). Thus, the aim of
the optimization is to minimize

Li(w) := Ez∼Di
[`(w; z)] ∀i = 1, . . . , k (1)

In this work, we study the problem of covariate-shift. To do
this, we create different distributions Dr(x) for each image
dataset by rotating the images with r degrees. D0(x) is
defined as a dataset where images have been rotated with
0 degrees of rotation, and D180(x) with 180 degrees of
rotation.

We perform experiments on two and four different data
distributions, where r ∈ {0, 180} or r ∈ {0, 90, 180, 270}.
The train and test sets for the studied datasets are randomly
split into one equally large partition for each value of r,
and a rotation of r is applied on each partition thus creating
Dr(x). Then each client is populated with training samples
uniformly from one such data distribution. Since the labels
are unchanged after rotation, this means that the marginal
distributions over input features differ between these groups,
but the conditional distributions D(y|x) are the same for all
clients. This way of creating different client distributions has
previously been used in (Ghosh et al., 2020) for centralized
federated learning.

The main challenge of this paper is that we assume the client
distributions Dr

i are unknown for each client i, and our goal
is to design an algorithm that can both identify Dr

i and at
the same time perform distributed optimization.

Decentralized federated learning of deep neural networks on non-iid data

4. Algorithm
In our decentralized peer-to-peer network, we use the gos-
sip protocol for communication between clients. Below
we describe the random gossip baseline, and our proposed
extension PENS.

4.1. Random gossip communication

In this framework, each client starts with a randomly initial-
ized model that is updated using stochastic gradient descent
(SGD) on the local client data for E local epochs. The
model parameters wi of client i are then at a random time
communicated to a randomly chosen neighboring client j in
the network. This action is denoted as Sendi→j(·). Client j
then waits for npeers number of models before it aggregates
its own current model with the received ones with a simple
average: w̄t+1

j ← 1
n

∑
i w

t
i . This is the same aggregation

method as commonly used in centralized federated learn-
ing. The new aggregated model w̄t+1

j is then trained for E
epochs before it is ready to be gossiped again. A summary
of the gossip learning protocol is presented in algorithm 1.

4.2. PENS: Performance-based neighbor selection

A problem that arises with random gossip when we have dif-
ferent distributions Dr

i (x) for clients i is that if two clients
with dissimilar distributions (i.e. r = 0 for client i and
r = 180 for client j) communicate, the performance of
the learned model is usually negatively effected when their
models are aggregated.

To solve this problem, we introduce PENS: Performance-
based neighbor selection. PENS consists of two main
steps. In the first step, the algorithm finds clients of similar
marginal distributions Di(x) to communicate with. In the
second step, the random gossip protocol is followed for the
subset of clients selected from the first step. Clients of simi-
lar distributions are found by evaluating sent models on the
receiving client’s training data. The main idea of the pro-
posed method is that the training loss of a sent client model
wi is expected to be lower on the training set of a receiving
client j that has a similar data distribution, and a higher loss
for those clients that have dissimilar distributions.

First, each client communicates randomly in the network
for a pre-defined number of neighbor selection communi-
cation rounds T . At a random time, a client performs the
Sendi→j(·) operation, after which Lj(wi; z) is calculated,
where z ∼ Dj . This is the loss of client model wi on the
training set of client j. Each client waits for nsampled num-
ber of models and saves a list of the losses. The top m
best performing (lowest loss) clients are selected as poten-
tial neighbors with similar data distributions. Then their
model parameters are aggregated into a new model. This
is repeated for T rounds, after which the clients that were

selected more than the expected amount of times (if the
sampling of clients would have been uniform) are identified
as neighbors with similar data distributions.

A set of neighbors with similar data distributions are now
identified for every client and this constitutes step 1 of PENS.
This is summarized in algorithm 2. In step 2 of PENS, the
gossip learning protocol (algorithm 1) is used for the set of
selected neighbors for each client.

Algorithm 1 Gossip learning protocol

1: function MAIN
2: while stopping criterion not met do
3: WAIT(∆)
4: j ← RANDOMPEER() // select random peer
5: SENDi→j(wi, j)
6: end while
7: end function
8: function ONRECEIVEMODEL(wi)
9: SAVE(wi)

10: if no. of received models ≥ npeers then
11: wj ←MERGE SAVED MODELS()
12: wj ←TRAIN(x;wj) //update on local data x
13: end if
14: end function

Algorithm 2 PENS step 1: find peers with similar data
distributions Dr

i (x)

1: function MAIN
2: while stopping criterion not met do
3: WAIT(∆)
4: j ← RANDOMPEER() // select random peer
5: SENDi→j(wi, j)
6: end while
7: SELECTNEIGHBORS()
8: end function
9: function ONRECEIVEMODEL(wi)

10: `i ← CALCULATELOSS(wi)
11: SAVE(wi, `i)
12: if no. of received models ≥ nsampled then
13: wj ←MERGE(SELECT TOP M(wi,`i))
14: wj ←TRAIN(x;wj) //update on local data x
15: no. of received models← 0 //reset
16: end if
17: end function
18: function SELECTNEIGHBORS
19: for all peers i do
20: if merged with i more than expected then
21: NEIGHBORLIST.append(i)
22: end if
23: end for
24: return: NEIGHBORLIST
25: end function

Decentralized federated learning of deep neural networks on non-iid data

5. Experimental setup
In this work, we set out to develop an algorithm to solve the
problem of non-iid data for gradient-based algorithms in a
peer-to-peer network. To do this, we limit the experiments to
a peer-to-peer network that is fully connected (i.e. all nodes
in the network can communicate with each other). Further,
we assume that all clients are able to communicate at any
time. We simulated the peer-to-peer network on a computer,
and all experiments were performed with a NVIDIA Tesla
V100-SXM2-32GB GPU. Our code is available at github 1.

5.1. Datasets

Our experiments are performed on two datasets for vi-
sual classification, CIFAR-10 (Krizhevsky et al., 2009) and
Fashion-MNIST (Xiao et al., 2017). The CIFAR-10 dataset
consists of 60 000 32x32 color images in 10 classes, with
6000 images per class. The dataset is split into 50 000 train-
ing images and 10 000 test images. The Fashion-MNIST
dataset contains 70 000 28x28 gray-scale images of Zalando
clothing in 10 classes. It is split into 60 000 training images
and 10 000 test images.

5.2. Models and hyperparameters

The CNN used in our experiments consists of three convo-
lutional layers and ReLU activations (with 32 channels in
the first layer and 64 channels in the last two layers), each
with a kernel size of 3 and each followed by max pooling.
This is followed by one fully connected layer of 64 units
with a ReLU activation and an output layer with a softmax
activation. The size and architecture of this network is not
state-of-the-art for visual classification tasks but has suffi-
cient capacity for the comparison that we perform in our
experiments. We use SGD as our optimizer with a learning
rate η = 10−3 for PENS. For the random gossip protocol
we use npeers = 20 and for PENS nsampled = 10 and m = 2,
if not explicitly otherwise stated. All hyperparameters were
tuned for all baselines and the best ones were chosen with
respect to a local validation set on each client.

5.3. Baselines

We compare our proposed algorithm PENS with two base-
lines: random gossip (Random) and locally trained models
without communication (Local) for each client. We also
report results for an Oracle, that for each client is given
the information of which neighbors have the same distribu-
tions Dr

i (x) for all i = 1, . . . , k, and only communicates
with these neighbors. Accuracy for a centrally trained model
is also presented, denoted by Central, where we train one
model on all data non-distributed.

1https://github.com/guskarls/dfl-pens

5.4. Evaluation

For testing of all algorithms, we measure test accuracy for
each client i on test data from the client’s own distribution
Dr

i (x). All reported accuracies are averaged over clients for
each distribution. We run 4 experiments for each algorithm,
with different random seeds, and report the average and a
95% confidence interval. For step 1 of PENS, we let clients
communicate T = 200 communication rounds. During step
2 of PENS, Random and Oracle, we set T = 333 and
we perform early stopping on local validation data for each
client between client communication rounds. The communi-
cation is stopped when the validation loss has converged or
when we reach T . The validation sets consist of 100 sample
points from Dr

i per client in all experiments.

6. Results and discussion
In table 1, results on CIFAR-10 are shown for r = {0, 180}.
Accuracies are reported both for independent and common
weight initialization for the client models. In centralized
federated learning, it is known that a common initialization
of client models is important for federated averaging to work
(McMahan et al., 2017). Meanwhile, our results suggest
that a common initialization is not necessary in order for
the different algorithms to reach a high accuracy in decen-
tralized federated learning. Further, the proposed method
PENS achieves an accuracy that is higher than all baselines
and close to the performance of Oracle with perfect in-
formation of client data distributions Dr

i (x). In table 2 we
see that PENS outperforms the baselines also in the case of
r = {0, 90, 180, 270}.

In table 3, accuracies for all algorithms on Fashion-MNIST
with r = {0, 180} are presented for 100 and 500 training
samples per client, with the number of clients set to 100. Al-
though the difference of test accuracy between the baselines
is smaller as compared to CIFAR-10 (since Fashion-MNIST
is an easier problem), our proposed method PENS outper-
forms both baselines in this setting as well.

6.1. Impact of training set size

In figure 1a we compare PENS to the baseline algorithms on
the CIFAR-10 dataset in a setting where we fix the number
of clients to 100 while at the same time varying the size
of the local train sets. The results show that by increasing
the size of the local train set on each client, performance
increases for all compared algorithms. We further see that
PENS consistently outperforms both baselines. In a low
data setting, with 100 training samples per client, PENS is
closer to Random in performance as compared to Oracle.
However, when the training size increases, the difference
between Random and PENS increases, as PENS manages
to find the correct neighbors with similar data distributions

https://github.com/guskarls/dfl-pens

Decentralized federated learning of deep neural networks on non-iid data

(a) Number of clients fixed to 100. Training set size per client
varying.

(b) Train set size per client fixed to 150. Number of clients
varying.

Figure 1. Test accuracy on CIFAR-10 with r = {0, 180} as a function of (a) training samples per client and (b) number of clients, while
fixing the other. Oracle has perfect information of client distributions, as opposed to the other methods.

for each client. This is further visualized in figure 2, where
a heatmap over the communication pattern is plotted for
Oracle, PENS, and Random. Here we see that for each
client, PENS manages to find almost all clients with similar
data distributions.

In table 5 we report for precision (the fraction of clients
with the same distribution Dr among the selected clients)
and recall (the fraction of clients with the same distribution
Dr) for the peers that PENS selects for each client. Here
we report experiments for 100 clients for a different number
of training samples per client. We note that the precision of
our method is very high and robust to the number of training
samples per client. The recall is lower than the precision,
but also robust to the number of training samples.

6.2. Impact of number of clients

Figure 1b shows results for experiments for CIFAR-10
where the number of samples per client is fixed to 250
(150 train and 100 validation samples), but with a varying
number of clients in the peer-to-peer network. Since no
communication is allowed for the local baseline, the per-
formance is constant with respect to the number of clients.
Meanwhile, for the other methods, we see that by adding
more clients (and therefore also the total amount of data
in the system) the performance increases. Further, our pro-
posed method PENS consistently outperforms the random
baseline.

6.3. Impact of nsampled and top m performers

The parameter nsampled in step 1 of PENS decides for each
client how many other client models to sample at every

Table 1. Test accuracy reported on CIFAR-10. Independent and
common model weight initialization. 100 clients, 400 training
samples.

Method Acc. (independent) % Acc. (common) %
Central 65.5± 0.3 65.5± 0.3
Oracle 58.1± 0.4 57.7± 0.6
PENS 57.8± 0.4 57.2± 1.3

Random 54.7± 0.8 54.1± 0.8
Local 33.4± 0.2 33.3± 0.7

communication round, and m decides how many of the top-
performing (lowest loss) to merge with. Experiments were
carried out to study how sensitive PENS is to the choice
of these hyperparameters. In table 4 we summarize the
results for varying values of these hyperparameters in the
setting of 100 clients and 400 training samples per client for
CIFAR-10. We note that the test accuracies are relatively
stable for different values of nsampled and m. Further, our
results suggest that the ratio nsampled

m should not be too large,
i.e. if nsampled is increased m should be higher as well. We
have noticed in our experiments that if m is set too low
relative to nsampled, PENS will collapse into always choosing
the same few clients and miss to find other peers of the same
distribution.

7. Future work
There are several interesting research directions left to ex-
plore which we had to limit ourselves from including in this
paper. First, we assumed that all clients were able to commu-
nicate equally fast and at all times. This is a strong assump-
tion that is not always true in many real world applications,

Decentralized federated learning of deep neural networks on non-iid data

(a) Oracle (b) PENS (c) Random

Figure 2. Heatmaps over the communication pattern between clients on CIFAR-10 with two rotated Dr for (a) Oracle (b) PENS and (c)
random. The reported values are normalized counts: a value close to 1 means that client j received a model from client i frequently. The
clients are sorted so that clients with ID 0-99 have data distributions D0(x) and clients with ID 100-199 have D180(x).

Table 2. Test accuracies on CIFAR-10 with 4 rotated distributions
Dr(x), r = {0, 90, 180, 270}. 100 clients and 400 training sam-
ples per client.

Method Accuracy (%)
Central 60.3± 0.8
Oracle 53.2± 1.1

PENS 53.4± 0.7
Random 49.3± 1.0
Local 33.4± 0.7

Table 3. Test accuracy reported on Fashion-MNIST for 100 clients
with 100 and 500 training samples per client and r = {0, 180}.

Method 100 500
Central 85.3± 0.3 87.3± 0.3
Oracle 79.4± 0.4 84.9± 0.2

PENS 78.8± 0.4 84.7± 0.3
Random 77.5± 0.5 83.7± 0.2
Local 63.9± 0.6 74.4± 0.5

and it would therefore be interesting to study system het-
erogeneity in a decentralized network where clients have
different hardware and computational budgets. Second, we
assumed that the decentralized network topology was fully
connected. As future work, it would be interesting to study
how PENS performs on other types of network topologies
and how these effect the learning among clients.

8. Conclusions
In this work we have studied non-convex optimization of
decentralized federated learning using deep neural networks
in a non-iid data setting. Our experiments show that our
proposed method PENS is able to efficiently aid clients to
identify neighboring peers with similar data distributions

Table 4. Accuracies for varying nsampled and mselected on CIFAR-10
for 100 clients with 150 training samples per client, r = {0, 180}.

nsampled m nsampled/m Accuracy (%)
20 6 3.3 48.4± 0.5
50 15 3.3 47.8± 1.0
10 2 5.0 47.7± 1.4
10 3 3.3 47.2± 1.1
50 10 5.0 46.9± 1.4
20 4 5.0 46.9± 0.8
10 5 2.0 46.4± 0.9
5 2 2.5 46.2± 0.8
10 1 10.0 46.1± 0.7
5 1 5.0 45.4± 0.7
20 10 2.0 45.4± 1.8
20 2 10.0 45.4± 2.0
5 3 1.7 45.2± 2.0
50 25 2.0 45.1± 2.5
50 5 10.0 44.5± 2.0

Table 5. Precision and recall for 100 clients for different number
of training samples and r = {0, 180}.

Train set size Precision (%) Recall (%)
400 99.7± 0.1 70.8± 0.8
300 99.7± 0.1 71.1± 0.9
200 99.7± 0.1 70.1± 0.7
100 95.8± 1.5 67.9± 1.5

in a fully decentralized FL setting and in that way guide
the learning of the clients to achieve high performance in
a non-iid data setting. PENS works by using the training
loss to find clients in the network that share similar data
distributions, which then focus on communicating with each
other instead of random neighbors. Our results (figures 1
and 2) suggest that given enough training data per client,

Decentralized federated learning of deep neural networks on non-iid data

PENS will reach the same accuracy as an oracle that is given
perfect information of the client data distributions. We have
limited ourselves to the non-iid setting of covariate shift in
this work. Meanwhile, we hypothesize that our proposed
method also works well on other types of non-iid data, such
as label distribution skew, concept shift or concept drift.

References
Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-

tic gradient push for distributed deep learning. In Inter-
national Conference on Machine Learning, pp. 344–353.
PMLR, 2019.

Blot, M., Picard, D., Cord, M., and Thome, N. Gossip train-
ing for deep learning. arXiv preprint arXiv:1611.09726,
2016.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Random-
ized gossip algorithms. IEEE transactions on information
theory, 52(6):2508–2530, 2006.

Deng, Y., Kamani, M. M., and Mahdavi, M. Adap-
tive personalized federated learning. arXiv preprint
arXiv:2003.13461, 2020.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. An ef-
ficient framework for clustered federated learning. arXiv
preprint arXiv:2006.04088, 2020.

Giaretta, L. and Girdzijauskas, Š. Gossip learning: Off the
beaten path. In 2019 IEEE International Conference on
Big Data (Big Data), pp. 1117–1124. IEEE, 2019.

Hegedűs, I., Danner, G., and Jelasity, M. Gossip learning as
a decentralized alternative to federated learning. In IFIP
International Conference on Distributed Applications and
Interoperable Systems, pp. 74–90. Springer, 2019.

Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M.,
and Van Steen, M. Gossip-based peer sampling. ACM
Transactions on Computer Systems (TOCS), 25(3):8–es,
2007.

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-
L. Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid
private data. arXiv preprint arXiv:1811.11479, 2018.

Jiang, Y., Konečnỳ, J., Rush, K., and Kannan, S. Improving
federated learning personalization via model agnostic
meta learning. arXiv preprint arXiv:1909.12488, 2019.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Kempe, D., Dobra, A., and Gehrke, J. Gossip-based com-
putation of aggregate information. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003.
Proceedings., pp. 482–491. IEEE, 2003.

Koloskova, A., Stich, S., and Jaggi, M. Decentralized
stochastic optimization and gossip algorithms with com-
pressed communication. In International Conference on
Machine Learning, pp. 3478–3487. PMLR, 2019.

Kong, L., Lin, T., Koloskova, A., Jaggi, M., and Stich, S. U.
Consensus control for decentralized deep learning. arXiv
preprint arXiv:2102.04828, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Listo Zec, E., Mogren, O., Martinsson, J., Sütfeld, L. R.,
and Gillblad, D. Specialized federated learning using
a mixture of experts. arXiv preprint arXiv:2010.02056,
2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Niwa, K., Harada, N., Zhang, G., and Kleijn, W. B. Edge-
consensus learning: Deep learning on p2p networks with
nonhomogeneous data. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 668–678, 2020.

Ormándi, R., Hegedűs, I., and Jelasity, M. Gossip learning
with linear models on fully distributed data. Concurrency
and Computation: Practice and Experience, 25(4):556–
571, 2013.

Roy, A. G., Siddiqui, S., Pölsterl, S., Navab, N., and
Wachinger, C. Braintorrent: A peer-to-peer environ-
ment for decentralized federated learning. arXiv preprint
arXiv:1905.06731, 2019.

Wang, J., Sahu, A. K., Yang, Z., Joshi, G., and Kar, S.
Matcha: Speeding up decentralized sgd via matching
decomposition sampling. In 2019 Sixth Indian Control
Conference (ICC), pp. 299–300. IEEE, 2019a.

Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays,
F., and Ramage, D. Federated evaluation of on-device per-
sonalization. arXiv preprint arXiv:1910.10252, 2019b.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

