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Abstract

Inspired by recent work of Islamov et al (2021),
we propose a family of Federated Newton Learn
(FedNL) methods, which we believe is a marked
step in the direction of making second-order meth-
ods applicable to FL. In contrast to the aforemen-
tioned work, FedNL employs a different Hessian
learning technique which i) enhances privacy as
it does not rely on the training data to be revealed
to the coordinating server, ii) makes it applica-
ble beyond generalized linear models, and iii)
provably works with general contractive compres-
sion operators for compressing the local Hessians,
such as Top-K or Rank-R, which are vastly supe-
rior in practice. Notably, we do not need to rely
on error feedback for our methods to work with
contractive compressors. Moreover, we develop
FedNL-PP, FedNL-CR and FedNL-LS, which
are variants of FedNL that support partial par-
ticipation, and globalization via cubic regulariza-
tion and line search, respectively, and FedNL-BC,
which is a variant that can further benefit from
bidirectional compression of gradients and mod-
els, i.e., smart uplink gradient and smart downlink
model compression. We prove local convergence
rates that are independent of the condition num-
ber, the number of training data points, and com-
pression variance. Our communication efficient
Hessian learning technique provably learns the
Hessian at the optimum. Finally, we perform a
variety of numerical experiments that show that
our FedNL methods have state-of-the-art com-
munication complexity when compared to key
baselines.

1KAUST, KSA 2MIPT, Russia. Correspondence to: Mher
Safaryan <mher.safaryan@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
We consider the cross-silo federated learning problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where d denotes dimension of the model x ∈ Rd we wish to
train, n is the total number of silos/machines/devices/clients
in the distributed system, fi(x) is the loss/risk associated
with the data stored on machine i ∈ [n] := {1, 2, . . . , n},
and f(x) is the empirical loss/risk.

1.1. First-order methods for FL. The prevalent paradigm
for training federated learning (FL) models (Konečný et al.,
2016b;a; McMahan et al., 2017) (see also the recent surveys
by Kairouz et al (2019); Li et al. (2020a)) is to use dis-
tributed first-order optimization methods employing one or
more tools for enhancing communication efficiency, which
is a key bottleneck in the federated setting.

These tools include communication compression (Konečný
et al., 2016b; Alistarh et al., 2017; Khirirat et al., 2018)
and techniques for progressively reducing the variance in-
troduced by compression (Mishchenko et al., 2019; Horváth
et al., 2019; Gorbunov et al., 2020a; Li et al., 2020b; Gor-
bunov et al., 2021a), local computation (McMahan et al.,
2017; Stich, 2020; Khaled et al., 2020; Mishchenko et al.,
2021a) and techniques for reducing the client drift intro-
duced by local computation (Karimireddy et al., 2020; Gor-
bunov et al., 2021b), and partial participation (McMahan
et al., 2017; Gower et al., 2019) and techniques for tam-
ing the slow-down introduced by partial participation (Gor-
bunov et al., 2020a; Chen et al., 2020).

Other useful techniques for further reducing the communica-
tion complexity of FL methods include the use of momentum
(Mishchenko et al., 2019; Li et al., 2020b), and adaptive
learning rates (Malitsky & Mishchenko, 2019; Xie et al.,
2019; Reddi et al., 2020; Xie et al., 2019; Mishchenko et al.,
2021b). In addition, aspiring FL methods need to protect
the privacy of the clients’ data, and need to be built with
data heterogeneity in mind (Kairouz et al, 2019).

1.2. Towards second-order methods for FL. While first-
order methods are the methods of choice in the context of FL
at the moment, their communication complexity necessarily
depends on (a suitable notion of) the condition number of
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the problem, which can be very large as it depends on the
structure of the model being trained, on the choice of the
loss function, and most importantly, on the properties of the
training data.

However, in many situations when algorithm design is not
constrained by the stringent requirements characterizing FL,
it is very well known that carefully designed second-order
methods can be vastly superior. On an intuitive level, this is
mainly because these methods make an extra computational
effort to estimate the local curvature of the loss landscape,
which is useful in generating more powerful and adaptive
update direction. However, in FL, it is often communication
and not computation which forms the key bottleneck, and
hence the idea of “going second order” looks attractive. The
theoretical benefits of using curvature information are well
know. For example, the classical Newton’s method, which
forms the basis for most efficient second-order method in
much the same way the gradient descent method forms
the basis for more elaborate first-order methods, enjoys a
fast condition-number-independent (local) convergence rate
(Beck, 2014), which is beyond the reach of all first-order
methods. However, Newton’s method does not admit an
efficient distributed implementation in the heterogeneous
data regime as it requires repeated communication of lo-
cal Hessian matrices ∇2fi ∈ Rd×d to the server, which
is prohibitive as this constitutes a massive burden on the
communication links.

1.3. Desiderata for second-order methods applicable to
FL. In this paper we take the stance that it would be highly
desirable to develop Newton-type methods for solving the
cross-silo federated learning problem (1) that would

[hd] work well in the truly heterogeneous data setting (i.e.,
we do not want to assume that the functions f1, . . . , fn
are “similar”),

[fs] apply to the general finite-sum problem (1), without
imparting strong structural assumptions on the local
functions f1, . . . , fn (e.g., we do not want to assume
that the functions f1, . . . , fn are quadratics, general-
ized linear models, and so on),

[as] benefits from Newton-like (matrix-valued) adaptive
stepsizes,

[pe] employ at least a rudimentary privacy enhancement
mechanism (in particular, we do not want the devices to
be sending/revealing their training data to the server),

[uc] enjoy, through ubiased communication compression
strategies applied to the Hessian, such as Rand-K, the
same low O(d) communication cost per communica-
tion round as gradient descent,

[cc] be able to benefit from the more aggressive contractive
communication compression strategies applied to the
Hessian, such as Top-K and Rank-R,

[fr] have fast local rates unattainable by first order methods
(e.g., rates independent of the condition number),

[pp] support partial participation (this is important when the
number n of devices is very large),

[gg] have global convergence guarantees, and superior
global empirical behavior, when combined with a suit-
able globalization strategy (e.g., line search or cubic
regularization),

[gc] optionally be able to use, for a more dramatic commu-
nication reduction, additional smart uplink (i..e, device
to server) gradient compression,

[mc] optionally be able to use, for a more dramatic com-
munication reduction, additional smart downlink (i.e.,
server to device) model compression,

[lc] perform provably useful local computation, even in
the heterogeneous data setting (it is known that local
computation via gradient-type steps, which form the
backbone of methods such as FedAvg and LocalSGD,
provably helps under some degree of data similarity
only).

However, to the best of our knowledge, existing Newton-
type methods are not applicable to FL as they are not com-
patible with most of the aforementioned desiderata.

It is therefore natural and pertinent to ask whether
it is possible to design theoretically well grounded
and empirically well performing Newton-type
methods that would be able to conform to the
FL-specific desiderata listed above.

In this work, we address this challenge in the affirmative.

2. Contributions
Before detailing our contributions, it will be very useful to
briefly outline the key elements of the recently proposed
Newton Learn (NL) framework of Islamov et al. (2021),
which served as the main inspiration for our work, and
which is also the closest work to ours.

2.1. The Newton Learn framework of Islamov et al.
(2021). The starting point of their work is the observation
that the Newton-like method

xk+1 = xk − (∇2f(x∗))−1∇f(xk),
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Table 1. Comparison of the main features of our family of FedNL algorithms and results with those of Islamov et al. (2021), which we
used as an inspiration. We have made numerous and significant modifications and improvements in order to obtain methods applicable to
federated learning.

# Feature Islamov et al.
[2/’21]

This Work
[5/’21]

[hd] supports heterogeneous data setting 3 3
[fs] applies to general finite-sum problems 7 3
[as] uses adaptive stepsizes 3 3
[pe] privacy is enhanced (training data is not sent to the server) 7 3
[uc] supports unbiased Hessian compression (e.g., Rand-K) 3 3
[cc] supports contractive Hessian compression (e.g., Top-K) 7 3
[fr] fast local rate: independent of the condition number 3 3
[fr] fast local rate: independent of the # of training data points 7 3
[fr] fast local rate: independent of the compressor variance 7 3
[pp] supports partial participation 7 3(Alg 2)
[gg] has global convergence guarantees via line search 7 3(Alg 3)
[gg] has global convergence guarantees via cubic regularization 3 3(Alg 4)
[gc] supports smart uplink gradient compression at the devices 7 3(Alg 5)
[mc] supports smart downlink model compression by the master 7 3(Alg 5)
[lc] performs useful local computation 3 3

called Newton Star (NS), where x∗ is the (unique) solution
of (1), converges to x∗ locally quadratically under suitable
assumptions, which is a desirable property it inherits from
the classical Newton method. Clearly, this method is not
practical, as it relies on the knowledge of the Hessian at the
optimum.

However, under the assumption that the matrix ∇2f(x∗)
is known to the server, NS can be implemented with O(d)
cost in each communication round. Indeed, NS can simply
be treated as gradient descent, albeit with a matrix-valued
stepsize equal to (∇2f(x∗))−1.

The first key contribution of Islamov et al. (2021)
is the design of a strategy, for which they coined
the term Newton Learn, which learns the Hessians
∇2f1(x∗), . . . ,∇2fn(x∗), and hence their average,
∇2f(x∗), progressively throughout the iterative process,
and does so in a communication efficient manner, using
unbiased compression [uc] of Hessian information. In
particular, the compression level can be adjusted so that
in each communication round, O(d) floats need to be
communicated between each device and the server only. In
each iteration, the master uses the average of the current
learned local Hessian matrices in place of the Hessian at
the optimum, and subsequently performs a step similar to
that of NS. So, their method uses adaptive matrix-valued
stepsizes [as].

Islamov et al. (2021) prove that their learning procedure
indeed works in the sense that the sequences of the learned
local matrices converge to the local optimal Hessians
∇2fi(x

∗). This property leads to a Newton-like acceler-
ation, and as a result, their NL methods enjoy a local linear
convergence rate (for a Lyapunov function that includes
Hessian convergence) and local superlinear convergence

rate (for distance to the optimum) that is independent of the
condition number, which is a property beyond the reach of
any first-order method [fr]. Moreover, all of this provably
works in the heterogeneous data setting [hd].

Finally, they develop a practical and theoretically grounded
globalization strategy [gg] based on cubic regularization,
called Cubic Newton Learn (CNL).

2.2. Issues with the Newton Learn framework. While the
above development is clearly very promising in the context
of distributed optimization, the results suffer from several
limitations which prevent the methods from being applicable
to FL. First, the Newton Learn strategy of Islamov et al.
(2021) critically depends on the assumption that the local
functions are of the form

fi(x) = 1
m

m∑
j=1

ϕij(a
>
ijx), (2)

where ϕij : R→ R are sufficiently well behaved functions,
and ai1, . . . , aim ∈ Rd are the training data points owned
by device i. As a result, their approach is limited to gen-
eralized linear models only, which violates [fs] from the
aforementioned wish list. Second their communication strat-
egy critically relies on each device i sending a small subset
of their private training data {ai1, . . . , aim} to the server
in each communication round, which violates [pe]. Fur-
ther, while their approach supports O(d) communication, it
does not support more general contractive compressors [cc],
such as Top-K and Rank-R, which have been found very
useful in the context of first order methods with gradient
compression. Finally, the methods of Islamov et al. (2021)
do not support bidirectional compression [bc] of gradients
and models, and do not support partial participation [pp].

2.3. Our FedNL framework. We propose a family of
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Table 2. Summary of algorithms proposed and convergence results proved in this paper.
Convergence Rate independent of

Method result † type rate
the condition # (left)

# training data (middle)
compressor (right)

Theorem

Newton Zero
N0 (Equation (9)) rk ≤ 1

2k
r0 local linear 3 3 3 3.6

FedNL (Algorithm 1)
rk ≤ 1

2k
r0 local linear 3 3 3 3.6

Φk1 ≤ θ
kΦ0

1 local linear 3 3 7 3.6
rk+1 ≤ cθkrk local superlinear 3 3 7 3.6

Partial Participation
FedNL-PP (Algorithm 2)

Wk ≤ θkW0 local linear 3 3 3 C.1
Φk2 ≤ θ

kΦ0
2 local linear 3 3 7 C.1

rk+1 ≤ cθkWk local linear 3 3 7 C.1
Line Search

FedNL-LS (Algorithm 3) ∆k ≤ θk∆0 global linear 7 3 3 D.1

Cubic Regularization
FedNL-CR (Algorithm 4)

∆k ≤ c/k global sublinear 7 3 3 E.1
∆k ≤ θk∆0 global linear 7 3 3 E.1
Φk1 ≤ θ

kΦ0
1 local linear 3 3 7 E.1

rk+1 ≤ cθkrk local superlinear 3 3 7 E.1
Bidirectional Compression
FedNL-BC (Algorithm 5) Φk3 ≤ θ

kΦ0
3 local linear 3 3 7 F.4

Newton Star
NS (Equation (55)) rk+1 ≤ cr2k local quadratic 3 3 3 G.1

Quantities for which we prove convergence: (i) distance to solution rk := ‖xk − x∗‖2;Wk := 1
n

∑n
i=1 ‖w

k
i − x

∗‖2 (ii) Lya-
punov functions Φk1 := c‖xk − x∗‖2 + 1

n

∑n
i=1 ‖H

k
i −∇

2fi(x
∗)‖2F; Φk2 := cWk + 1

n

∑n
i=1 ‖H

k
i −∇

2fi(x
∗)‖2F;

Φk3 := ‖zk − x∗‖2 + c‖wk − x∗‖2. (iii) Function value suboptimality ∆k := f(xk) − f(x∗)
† constants c > 0 and θ ∈ (0, 1) are possibly different each time they appear in this table. Refer to the precise statements of the
theorems for the exact values.

five Federated Newton Learn methods (Algorithms 1–5),
which we believe constitutes a marked step in the direction
of making second-order methods applicable to FL.

In contrast to the work of Islamov et al. (2021) (see Table 1),
our vanilla method FedNL (Algorithm 1) employs a differ-
ent Hessian learning technique, which makes it applicable
beyond generalized linear models (2) to general finite-sum
problems [fs], enhances privacy as it does not rely on the
training data to be revealed to the coordinating server [pe],
and provably works with general contractive compression
operators for compressing the local Hessians, such as Top-
K or Rank-R, which are vastly superior in practice [cc].
Notably, we do not need to rely on error feedback (Seide
et al., 2014; Stich et al., 2018; Karimireddy et al., 2019;
Gorbunov et al., 2020b), which is essential to prevent diver-
gence in first-order methods employing such compressors
(Beznosikov et al., 2020), for our methods to work with
contractive compressors. We prove that our communica-
tion efficient Hessian learning technique provably learns the
Hessians at the optimum.

Like Islamov et al. (2021), we prove local convergence rates
that are independent of the condition number [fr]. However,
unlike their rates, some of our rates are also independent of
number training data points, and of compression variance
[fr]. All our complexity results are summarized in Table 2.

Moreover, we show that our approach works in the partial
participation [pp] regime by developing the FedNL-PP
method (Algorithm 2), and devise methods employing glob-
alization strategies: FedNL-LS (Algorithm 3), based on

backtracking line search, and FedNL-CR (Algorithm 4),
based on cubic regularization [gg]. We show through exper-
iments that the former is much more powerful in practice
than the latter. Hence, the proposed line search globalization
is superior to the cubic regularization approach employed
by Islamov et al. (2021).

Our approach can further benefit from smart uplink gradient
compression [gc] and smart downlink model compression
[mc] – see FedNL-BC (Algorithm 5).

Finally, we perform a variety of numerical experiments that
show that our FedNL methods have state-of-the-art commu-
nication complexity when compared to key baselines.

3. The Vanilla Federated Newton Learn
Method

We start the presentation of our algorithms with the vanilla
FedNL, commenting on the intuitions and technical nov-
elties. The method is formally described1 in Algorithm
1.

3.1. New Hessian learning technique. The first key techni-
cal novelty in FedNL is the new mechanism for learning the
Hessian ∇2f(x∗) at the (unique) solution x∗ in a commu-
nication efficient manner. This is achieved by maintaining
and progressively updating local Hessian estimates Hk

i of
∇2fi(x

∗) for all devices i ∈ [n] and the global Hessian esti-

1For all our methods, we describe the steps constituting a single
communication round only. To get an iterative method, one simply
needs to repeat provided steps in an iterative fashion.
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mate Hk = 1
n

∑n
i=1 H

k
i of ∇2f(x∗) for the central server.

Thus, the goal is to induce Hk
i → ∇2fi(x

∗) for all i ∈ [n],
and as a consequence, Hk → ∇2f(x∗), throughout the
training process.

Algorithm 1 FedNL (Federated Newton Learn)
1: Parameters: Hessian learning rate α ≥ 0; compres-

sion operators {Ck1 , . . . , Ckn}
2: Initialization: x0 ∈ Rd; H0

1, . . . ,H
0
n ∈ Rd×d and

H0 := 1
n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server and compute local gradient

∇fi(xk) and local Hessian∇2fi(x
k)

5: Send ∇fi(xk), Ski := Cki (∇2fi(x
k) − Hk

i ) and
lki := ‖Hk

i −∇2fi(x
k)‖F to the server

6: Update local Hessian shift to Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get ∇fi(xk), Ski and lki from each node i ∈ [n]

10: ∇f(xk) = 1
n

∑n
i=1∇fi(xk), Sk = 1

n

∑n
i=1 S

k
i ,

11: lk = 1
n

∑n
i=1 l

k
i , Hk+1 = Hk + αSk

12: Option 1: xk+1 = xk −
[
Hk
]−1

µ
∇f(xk)

13: Option 2: xk+1 = xk −
[
Hk + lkI

]−1∇f(xk)

A naive choice for the local estimates Hk
i would be the

exact local Hessians∇2fi(x
k), and consequently the global

estimate Hk would be the exact global Hessian ∇2f(xk).
While this naive approach learns the global Hessian at
the optimum, it needs to communicate the entire matrices
∇2fi(x

k) to the server in each iteration, which is extremely
costly. Instead, in FedNL we aim to reuse past Hessian
information and build the next estimate Hk+1

i by updating
the current estimate Hk

i . Since all devices have to be syn-
chronized with the server, we also need to make sure the
update from Hk

i to Hk+1
i is easy to communicate. With this

intuition in mind, we propose to update the local Hessian
estimates via the rule

Hk+1
i = Hk

i + αSki , where Ski = Cki (∇2fi(x
k)−Hk

i ),

and α > 0 is the learning rate. Notice that we reduce
the communication cost by explicitly requiring all devices
i ∈ [n] to send compressed matrices Ski to the server only.

The Hessian learning technique employed in the Newton
Learn framework of (Islamov et al., 2021) is critically dif-
ferent to ours as it heavily depends on the structure (2) of
the local functions. Indeed, the local optimal Hessians

∇2fi(x
∗) = 1

m

∑m
j=1 ϕ

′′
ij(a

>
ijx
∗)aija

>
ij

are learned via the proxy of learning the optimal scalars
ϕ′′ij(a

>
ijx
∗) for all local data points j ∈ [m], which also

requires the transmission of the active data points aij to the

server in each iteration. This makes their method inapplica-
ble to the general finite sum problems [fs], and incapable of
securing even the most rudimentary privacy enhancement
[pe] mechanism.

We do not make any structural assumption on the problem
(1), and rely on the following general conditions to prove
effectiveness of our Hessian learning technique:

Assumption 3.1. The average loss f is µ-strongly convex,
and all local losses fi(x) have Lipschitz continuous Hes-
sians. Let L∗, LF and L∞ be the Lipschitz constants with
respect to three different matrix norms: spectral, Frobenius
and infinity norms, respectively. Formally, we require

‖∇2fi(x)−∇2fi(y)‖ ≤ L∗‖x− y‖
‖∇2fi(x)−∇2fi(y)‖F ≤ LF‖x− y‖

max
j,l
|(∇2fi(x)−∇2fi(y))jl| ≤ L∞‖x− y‖

to hold for all i ∈ [n] and x, y ∈ Rd.

3.2. Compressing matrices. In the literature on first-order
compressed methods, compression operators are typically
applied to vectors (e.g., gradients, gradient differences, mod-
els). As our approach is based on second-order information,
we apply compression operators to d × d matrices of the
form∇2fi(x

k)−Hk
i instead. For this reason, we adapt two

popular classes of compression operators used in first-order
methods to act on d×d matrices by treating them as vectors
of dimension d2.

Definition 3.2 (Unbiased Compressors). By B(ω) we de-
note the class of (possibly randomized) unbiased compres-
sion operators C : Rd×d → Rd×d with variance parameter
ω ≥ 0 satisfying

E [C(M)] = M, E
[
‖C(M)−M‖2F

]
≤ ω‖M‖2F (3)

for all matrices M ∈ Rd×d.

Common choices of unbiased compressors are random spar-
sification and quantization (see Appendix).

Definition 3.3 (Contractive Compressors). By C(δ) we de-
note the class of deterministic contractive compression
operators C : Rd×d → Rd×d with contraction parameter
δ ∈ [0, 1] satisfying

‖C(M)‖F ≤ ‖M‖F, ‖C(M)−M‖2F ≤ (1−δ)‖M‖2F (4)

for all matrices M ∈ Rd×d.

The first condition of (4) can be easily removed by scaling
the operator C appropriately. Indeed, if for some M ∈ Rd×d
we have ‖C(M)‖F > ‖M‖F, then we can use the scaled
compressor C̃(M) := ‖M‖F

‖C(M)‖F C(M) instead, as this satis-
fies (4) with the same parameter δ. Common examples of
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contractive compressors are Top-K and Rank-R operators
(see Appendix).

From the theory of first-order methods employing com-
pressed communication, it is known that handling contrac-
tive biased compressors is much more challenging than
handling unbiased compressors. In particular, a popular
mechanism for preventing first-order methods utilizing bi-
ased compressors from divergence is the error feedback
framework. However, contractive compressors often per-
form much better empirically than their unbiased counter-
parts. To highlight the strength of our new Hessian learning
technique, we develop our theory in a flexible way, and
handle both families of compression operators. Surpris-
ingly, we do not need to use error feedback for contractive
compressors for our methods to work.

Compression operators are used in (Islamov et al., 2021) in a
fundamentally different way. First, their theory supports un-
biased compressors only, and does not cover the practically
favorable contractive compressors [cc]. More importantly,
compression is applied within the representation (2) as an
operator acting on the space Rm. In contrast to our strategy
of using compression operators, this brings the necessity
to reveal, in each iteration, the training data {ai1, . . . , aim}
whose corresponding coefficients in (2) are not zeroed out
after the compression step [pe]. Moreover, whenO(d) com-
munication cost per communication round is achieved, the
variance of the compression noise depends on the number
of data points m, which then negatively affects the local
convergence rates. As the amount of training data can be
huge, our convergence rates provide stronger guarantees by
not depending on the size of the training dataset [fr].

3.3. Two options for updating the global model. Finally,
we offer two options for updating the global model at the
server.

• The first option assumes that the server knows the strong
convexity parameter µ > 0 (see Assumption 3.1), and that
it is powerful enough to compute the projected Hessian
estimate

[
Hk
]
µ

, i.e., that it is able to project the current
global Hessian estimate Hk onto the set{

M ∈ Rd×d : M> = M, µI �M
}

in each iteration (see the Appendix).

• Alternatively, if µ is unknown, all devices send the com-
pression errors

lki := ‖Hk
i −∇2fi(x

k)‖F

(this extra communication is extremely cheap as all lki vari-
ables are floats) to the server, which then computes the
corrected Hessian estimate Hk + lkI by adding the average
error lk = 1

n

∑n
i=1 l

k
i to the global Hessian estimate Hk.

Both options require the server in each iteration to solve a
linear system to invert either the projected, or the corrected,
global Hessian estimate. The purpose of these options is
quite simple: unlike the true Hessian, the compressed local
Hessian estimates Hk

i , and also the global Hessian estimate
Hk, might not be positive definite, or might even not be
of full rank. Further importance of the errors lki will be
discussed when we consider extensions of FedNL to partial
participation and globalization via cubic regularization.

3.4. Local convergence theory. Note that FedNL includes
two parameters, compression operators Cki and Hessian
learning rate α > 0, and two options to perform global
updates by the master. To provide theoretical guarantees,
we need one of the following two assumptions.
Assumption 3.4. Cki ∈ C(δ) for all i ∈ [n] and k. More-
over, (i) α = 1−

√
1− δ, or (ii) α = 1.

Assumption 3.5. Cki ∈ B(ω) for all i ∈ [n] and k and
0 < α ≤ 1

ω+1 . Moreover, for all i ∈ [n] and j, l ∈ [d], each
entry (Hk

i )jl is a convex combination of {(∇2fi(x
t))jl}kt=0

for any k ≥ 0.

To present our results in a unified manner, we define some
constants depending on what parameters and which option
is used in FedNL. Below, constants A and B depend on the
choice of the compressors Cki and the learning rate α, while
C and D depend on which option is chosen for the global
update.

(A,B) :=

{
(α2,α) if Assumption 3.4(i) holds

(δ/4,6/δ−7/2) if Assumption 3.4(ii) holds
(α,α) if Assumption 3.5 holds

(C,D) :=
{

(2,L2
∗) if Option 1 is used in FedNL

(8,(L∗+2LF)2) if Option 2 is used in FedNL
.

(5)

We prove three local rates for FedNL: for the squared dis-
tance to the solution ‖xk − x∗‖2, and for the Lyapunov
function

Φk := Hk + 6BL2
F‖xk − x∗‖2,

where

Hk := 1
n

∑n
i=1 ‖Hk

i −∇2fi(x
∗)‖2F.

Theorem 3.6. Let Assumption 3.1 hold. Assume ‖x0 −
x∗‖2 ≤ µ2

2D and Hk ≤ µ2

4C for all k ≥ 0. Then, FedNL
(Algorithm 1) converges linearly with the rate

‖xk − x∗‖2 ≤ 1
2k
‖x0 − x∗‖2. (6)

Moreover, depending on the choice (5) of the compressors
Cki , learning rate α, and which option is used for global
model updates, we have the following linear and superlinear
rates:

E[Φk] ≤
(
1−min

{
A, 1

3

})k
Φ0, (7)

E
[
‖xk+1−x∗‖2
‖xk−x∗‖2

]
≤
(
1−min

{
A, 1

3

})k (
C + D

12BL2
F

)
Φ0

µ2 .

(8)
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Let us comment on these rates.

• First, the local linear rate (6) with respect to iterates is
based on a universal constant, i.e., it does not depend on the
condition number of the problem, the size of the training
data, or the dimension of the problem. Indeed, the squared
distance to the optimum is halved in each iteration.

• Second, we have linear rate (7) for the Lyapunov function
Φk, which implies the linear convergence of all local Hes-
sian estimates Hk

i to the local optimal Hessians∇2fi(x
∗).

Thus, our initial goal to progressively learn the local optimal
Hessians∇2fi(x

∗) in a communication efficient manner is
achieved, justifying the effectiveness of the new Hessian
learning technique.

• Finally, our Hessian learning process accelerates the con-
vergence of iterates to a superlinear rate (8). Both rates
(7) and (8) are independent of the condition number of the
problem, or the number of data points. However, they do
depend on the compression variance (since A depends on
δ or ω), which, in case of O(d) communication constraints,
depend on the dimension d only.

For clarity of exposition, in Theorem 3.6 we assumedHk ≤
µ2

4C for all iterations k ≥ 0. Below, we prove that this
inequality holds, using the initial conditions only.
Lemma 3.7. Let Assumption 3.4 hold, and assume
‖x0 − x∗‖2 ≤ e1 := min{ Aµ2

4BCL2
F
, µ

2

2D} and ‖H0
i −

∇2fi(x
∗)‖2F ≤

µ2

4C . Then ‖xk − x∗‖2 ≤ e1 and ‖Hk
i −

∇2fi(x
∗)‖2F ≤

µ2

4C for all k ≥ 0.
Lemma 3.8. Let Assumption 3.5 hold, and assume ‖x0 −
x∗‖2 ≤ e2 := µ2

D+4Cd2L2
∞

. Then ‖xk − x∗‖2 ≤ e2 and

Hk ≤ µ2

4C for all k ≥ 0.

3.5. FedNL and the “Newton Triangle”. One implication
of Theorem 3.6 is that the local rate 1

2k
(see (6)) holds

even when we specialize FedNL to Cki ≡ 0, α = 0 and
H0
i = ∇2fi(x

0) for all i ∈ [n]. These parameter choices
give rise to the following simple method, which we call
Newton Zero (N0):

xk+1 = xk −
[
∇2f(x0)

]−1∇f(xk), k ≥ 0. (9)

Interestingly, N0 only needs initial second-order informa-
tion, i.e., Hessian at the zeroth iterate, and the same first-
order information as Gradient Descent (GD), i.e.,∇f(xk)
in each iteration. Moreover, unlike GD, whose rate de-
pends on a condition number, the local rate 1

2k
of N0 does

not. Besides, FedNL includes NS (when Cki ≡ 0, α = 0,
H0
i = ∇2fi(x

∗)) and classical Newton (N) (when Cki ≡ I,
α = 1, H0

i = 0) as special cases.

It can be helpful to visualize the three special Newton-type
methods—N, NS and N0 —as the vertices of a triangle

FedNL

Newton

Newton
Star

Newton
Zero

LS

PP

BC

CR

O(d) 
communication 
cost per round

Implementability 
in practice

Local 
quadratic rate

Figure 1. Visualization of the three special Newton-type methods—
Newton (N), Newton Star (NS) and Newton Zero (N0)—as the
vertices of a triangle capturing a subset of two of these three
requirements: 1) O(d) communication cost per round, 2) imple-
mentability in practice, and 3) local quadratic rate. Indeed, each
of these three methods satisfies two of these requirements only:
N (2+3), NS (1+3) and N0 (1+2). Finally, the proposed FedNL
framework with its four extensions to Partial Participation (FedNL-
PP), globalization via Line Search (FedNL-LS), globalization via
Cubic Regularization (FedNL-CR) and Bidirectional Compression
(FedNL-BC) interpolates between these requirements.

capturing a subset of two of these three requirements: 1)
O(d) communication cost per round, 2) implementability in
practice, and 3) local quadratic rate. Indeed, each of these
three methods satisfies two of these requirements only: N
(2+3), NS (1+3) and N0 (1+2). Finally, FedNL interpolates
between these requirements. See Figure 1.

4. FedNL with Partial Participation,
Globalization and Bidirectional
Compression

Due to space limitations, here we briefly describe four ex-
tensions to FedNL and the key technical contributions. De-
tailed sections for each extension are deferred to the Ap-
pendix.

4.1. Partial Participation. In FedNL-PP (Algorithm 2),
the server selects a subset Sk ⊆ [n] of τ devices, uniformly
at random, to participate in each iteration. As devices might
be inactive for several iterations, the same local gradient and
local Hessian used in FedNL does not provide convergence
in this case. To guarantee convergence, devices need to
compute Hessian corrected local gradients

gki = (Hk
i + lki I)w

k
i −∇fi(wki ),

where wki is the last global model that device i received
from the server. This is an innovation which also requires a
different analysis.

4.2. Globalization via Line Search. Our first globalization
strategy, FedNL-LS (Algorithm 3), which performs signifi-
cantly better in practice than FedNL-CR (described next),
is based on a backtracking line search procedure. The idea
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is to fix the search direction

dk = −
[
Hk
]−1

µ
∇f(xk)

by the server and find the smallest integer s ≥ 0 which leads
to a sufficient decrease in the loss

f(xk + γsdk) ≤ f(xk) + cγs
〈
∇f(xk), dk

〉
with some parameters c ∈ (0, 1/2] and γ ∈ (0, 1).

4.3. Globalization via Cubic Regularization. Our next
globalization strategy, FedNL-CR (Algorithm 4), is to use a
cubic regularization term L∗

6 ‖h‖
3, whereL∗ is the Lipschitz

constant for Hessians and h is the direction to the next iterate.
However, to get a global upper bound, we had to correct
the global Hessian estimate Hk via compression error lk.
Indeed, since∇2f(xk) � Hk + lkI, we deduce

f(xk+1) ≤ f(xk) +
〈
∇f(xk), hk

〉
+ 1

2

〈
(Hk + lkI)hk, hk

〉
+ L∗

6 ‖h
k‖3

for all k ≥ 0. This leads to theoretical challenges and
necessitates a new analysis.

4.4. Bidirectional Compression. Finally, we modify
FedNL to allow for an even more severe level of compres-
sion that can’t be attained by compressing the Hessians only.
This is achieved by compressing the gradients (uplink) and
the model (downlink), in a “smart” way. In FedNL-BC
(Algorithm 5), the server operates its own compressors CkM
applied to the model, and uses an additional “smart” model
learning technique similar to the proposed Hessian learning
technique. On top of this, all devices compress their local
gradients via a Bernoulli compression scheme, which ne-
cessitates the use of another “smart” strategy using Hessian
corrected local gradients

gki = Hk
i (zk − wk) +∇fi(wk),

where zk is the current learned global model and wk is the
last learned global model when local gradients are sent to
the server. These changes are substantial and require novel
analysis.

5. Experiments
We carry out numerical experiments to study the perfor-
mance of FedNL, and compare it with various state-of-the-
art methods in federated learning. We consider the problem

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x) + λ
2 ‖x‖

2

}
,

fi(x) = 1
m

m∑
j=1

log
(
1 + exp(−bija>ijx)

)
, (10)

where {aij , bij}j∈[m] are data points at the i-th device. The
datasets were taken from LibSVM library (Chang & Lin,
2011): a1a, a9a, w7a, w8a, and phishing.

5.1. Parameter setting. In all experiments we use the theo-
retical parameters for gradient type methods (except those
using line search): vanilla gradient descent GD, DIANA
(Mishchenko et al., 2019), and ADIANA (Li et al., 2020b).
For DINGO (Crane & Roosta, 2019) we use the authors’
choice: θ = 10−4, φ = 10−6, ρ = 10−4. Backtracking
line search for DINGO selects the largest stepsize from
{1, 2−1, . . . , 2−10}. The initialization of H0

i for NL1 (Is-
lamov et al., 2021), FedNL and FedNL-LS is ∇2fi(x

0),
and for FedNL-CR is 0. For FedNL, FedNL-LS, and
FedNL-CR we use Rank-1 compression operator and step-
size α = 1. We use two values of the regularization parame-
ter: λ ∈ {10−3, 10−4}. In the figures we plot the relation of
the optimality gap f(xk)− f(x∗) and the number of com-
municated bits per node, or the number of communication
rounds. The optimal value f(x∗) is chosen as the function
value at the 20-th iterate of standard Newton’s method.

5.2. Local convergence. In our first experiment we com-
pare FedNL and N0 with gradient type methods: ADIANA
with random dithering (ADIANA, RD, s =

√
d), DIANA

with random dithering (DIANA, RD, s =
√
d), vanilla gra-

dient descent (GD), and DINGO. According to the results
summarized in Figure 2 (first row), we conclude that FedNL
and N0 outperform all gradient type methods and DINGO,
locally, by many orders in magnitude. We want to note that
we include the communication cost of the initialization for
FedNL and N0 in order to make a fair comparison (this is
why there is a straight line for these methods initially).

5.3. Global convergence. We now compare FedNL-LS,
N0-LS, and FedNL-CR with the first-order methods ADI-
ANA and DIANA with random dithering, gradient descent
(GD), and GD with line search (GD-LS). Besides, we com-
pare FedNL-LS and FedNL-CR with DINGO. In this ex-
periment we choose x0 far from the solution x∗, i.e., we test
the global convergence behavior; see Figure 2 (second row).
We observe that FedNL-LS and N0-LS are more commu-
nication efficient than all first-order methods and DINGO.
However, FedNL-CR is better than GD and GD-LS only.
In these experiments we again include the communication
cost of initialization for FedNL-LS and N0-LS.

5.3. Comparison with NL1. Next, we compare FedNL
with three type of compression operators: Rank-R (R = 1),
Top-K (K = d), and PowerSGD (Vogels et al., 2019) (R =
1) against NL1 with the Rand-K (K = 1) compressor. The
results, presented in Figure 2 (third row), show that FedNL
with Rank-1 compressor performs the best.
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Figure 2. First row: Local comparison of FedNL and N0 with (a), (b) ADIANA, DIANA, GD; with (c), (d) DINGO in terms of
communication complexity. Second row: Global comparison of FedNL-LS, N0-LS and FedNL-CR with (a), (b) ADIANA, DIANA, GD,
and GD with line search; with (c), (d) DINGO in terms of communication complexity. Third row: Local comparison of FedNL with 3
types of compression operators and NL1 in terms of communication complexity.
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A. Extra Experiments
We carry out numerical experiments to study the performance of FedNL, and compare it with various state-of-the-art
methods in federated learning. We consider the following problem

min
x∈Rd

{
1

n

n∑
i=1

fi(x) +
λ

2
‖x‖2

}
, fi(x) =

1

m

m∑
j=1

log
(
1 + exp(−bija>ijx)

)
, (11)

where {aij , bij}j∈[m] are data points at the i-th device.

A.1. Data sets

The datasets were taken from LibSVM library (Chang & Lin, 2011): a1a, a9a, w7a, w8a, phishing. We partitioned
each data set across several nodes to capture a variety of scenarios. See Table 3 for more detailed description of data sets
settings.

Table 3. Data sets used in the experiments with the number of worker nodes n used in each case.

Data set # workers n # data points (= nm) # features d

a1a 16 1600 123
a9a 80 32560 123
w7a 50 24600 300
w8a 142 49700 300
phishing 100 110 68

A.2. Parameters setting

In all experiments we use theoretical parameters for gradient type methods (except those with line search procedure): vanilla
gradient descent, DIANA (Mishchenko et al., 2019), and ADIANA (Li et al., 2020b). The constants for DINGO (Crane &
Roosta, 2019) are set as the authors did: θ = 10−4, φ = 10−6, ρ = 10−4. Backtracking line search for DINGO selects the
largest stepsize from {1, 2−1, . . . , 2−10}. The initialization of H0

i for NL1 (Islamov et al., 2021), FedNL, FedNL-LS, and
FedNL-PP is ∇2fi(x

0), and for FedNL-CR is 0.

We conduct experiments for two values of regularization parameter λ ∈ {10−3, 10−4}. In the figures we plot the relation of
the optimality gap f(xk)− f(x∗) and the number of communicated bits per node or the number of communication rounds.
The optimal value f(x∗) is chosen as the function value at the 20-th iterate of standard Newton’s method.

A.3. Compression operators

Here we describe four compression operators that are used in our experiments.

A.3.1. RANDOM DITHERING FOR VECTORS

For first order methods ADIANA and DIANA we use random dithering operator (Alistarh et al., 2017; Horváth et al., 2019).
This compressor with s levels is defined via the following formula

C(x) := sign(x) · ‖x‖q ·
ξs
s
, (12)

where ‖x‖q := (
∑
i |xi|q)

1/q and ξs ∈ Rd is a random vector with i-th element defind as follows

(ξs)i =

{
l + 1 with probability |xi|

‖x‖q s− l,
l otherwise.

(13)

Here s ∈ N+ denotes the levels of rounding, and l satisfies |xi|‖x‖q ∈
[
l
s ,

l+1
s

]
. According to (Horváth et al., 2019), this

compressor has the variance parameter ω ≤ 2 + d1/2+d1/q

s . However, for standard euclidean norm (q = 2) one can improve

the bound by ω ≤ min
{
d
s2 ,
√
d
s

}
(Alistarh et al., 2017).
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A.3.2. RANK-R COMPRESSION OPERATOR FOR MATRICES

Our theory supports contractive compression operators; see Definition 3.3. In the experiments for FedNL we use Rank-R
compression operator. Let X ∈ Rd×d and UΣV> be the singular value decomposition of X:

X =

d∑
i=1

σiuiv
>
i , (14)

where the singular values σi are sorted in non-increasing order: σ1 ≥ σ2 ≥ · · · ≥ σd. Then, the Rank-R compressor, for
R ≤ d, is defined by

C(X) :=

R∑
i=1

σiuiv
>
i . (15)

Note that

‖X‖2F
(14)
=

∥∥∥∥∥
d∑
i=1

σiuiv
>
i

∥∥∥∥∥
2

F

=

d∑
i=1

σ2
i

and

‖C(X)−X‖2F
(14)+(15)

=

∥∥∥∥∥
d∑

i=R+1

σiuiv
>
i

∥∥∥∥∥
2

F

=

d∑
i=R+1

σ2
i .

Since 1
d−R

∑d
i=R+1 σ

2
i ≤ 1

d

∑d
i=1 σ

2
i , we have

‖C(X)−X‖2F ≤
d−R
d
‖X‖2F =

(
1− R

d

)
‖X‖2F,

and hence the Rank-R compression operator belongs to C(δ) with δ = R
d . In case when X ∈ Sd, we have ui = vi for

all i ∈ [d], and Rank-R compressor on matrix X transforms to
∑R
i=1 σiuiu

>
i , i.e., the output of Rank-R compressor is

automatically a symmetric matrix, too.

A.3.3. TOP-K COMPRESSION OPERATOR FOR MATRICES

Another example of contractive compression operators is Top-K compressor for matrices. For arbitrary matrix X ∈ Rd×d
let sort its entires in non-increasing order by magnitude, i.e., Xik,jk is the k-th maximal element of X by magnitude. Let’s
{Eij}di,j=1 me matrices for which

(Eij)ps :=

{
1, if (p, s) = (i, j),

0, otherwise.
(16)

Then, the Top-K compression operator can be defined via

C(X) :=

K∑
k=1

Xik,jkEik,jk . (17)

This compression operator belongs to C(δ) with δ = d2

K . If we need to keep the output of Top-K on symmetric matrix X to
be symmetric matrix too, then we apply Top-K compressor only on lower triangular part of X.

A.3.4. RAND-K COMPRESSION OPERATOR FOR MATRICES

Our theory also supports unbiased compression operators; see Definition 3.2. One of the examples is Rand-K. For arbitrary
matrix X ∈ Rd×d we choose a set SK of indexes (i, j) of cardinality K uniformly at random. Then Rand-K compressor
can be defined via

C (X)ij :=

{
d2

KXij if (i, j) ∈ SK ,
0 otherwise.

(18)

This compression operator belongs to B(ω) with ω = d2

K − 1. If we need to make the output of this compressor to be
symmetric matrix, then we apply this compressor only on lower triangular part of the input.
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Figure 3. The performance of FedNL with different types of compression operators: Rank-R (first row); Top-K (second row); PowerSGD
of rank R (third row) for several values of R and K in terms of communication complexity.

A.4. Projection onto the cone of positive definite matrices

If one uses FedNL with Option 1, then we need to project onto the cone of symmetric and positive definite matrices with
constant µ:

{M ∈ Rd×d : M> = M, M � µI}.

The projection of symmetric matrix X onto the cone of positive semidefinite matrices can by computed via

[X]0 :=

d∑
i=1

max{λi, 0}uiu>i , (19)

where
∑
i λiuiu

>
i is an eigenvalue decomposition of X. Using the projection onto the cone of positive semidefinite matrices

we can define the projection onto the cone of positive definite matrices with constant µ via

[X]µ := [X− µI]0 + µI. (20)

A.5. The effect of compression

First, we investigate how the level of compression influences the performance of FedNL; see Figure 3. Here we study the
performance for three types of compression operators: Rank-R, Top-K, and PowerSGD of rank R. According to numerical
experiments, the smaller parameter is, the better performance of FedNL is. This statement is true for all three types of
compressors.

A.6. Comparison of Options 1 and 2

In our next experiment we investigate which Option (1 or 2) for FedNL with Rank-R and stepsize α = 1 compressor
demonstrates better results in terms of communication compexity. According to the results in Figure 4, we see that FedNL
with projection (Option 1) is more communication effective than that with Option 2. However, Option 1 requires more
computing resources.
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Figure 4. The performance of FedNL with Options 1 and 2 in terms of communication complexity.
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Figure 5. Comparison of the performance of FedNL with different compression operators in terms of communication complexity.

A.7. Comparison of different compression operators

Next, we study which compression operator is better in terms of communication complexity. Based on the results in Figure 5,
we can conclude that Rank-R is the best compression operator; Top-K and PowerSGD compressors can beat each other in
different cases.

A.8. Comparison of different update rules for Hessians

On the following step we compare FedNL with three update rules for Hessians in order to find the best one. They are
biased Top-K compression operator with stepsize α = 1 (Option 1); biased Top-K compression operator with stepsize
α = 1 −

√
1− δ; unbiased Rand-K compression operator with stepsize α = 1

ω+1 . The results of this experiment are
presented in Figure 6. Based on them, we can make a conclusion that FedNL with Top-K compressor and stepsize α = 1
demonstrates the best performance. FedNL with Rand-K compressor and stepsize α = 1

ω+1 performs a little bit better than
that with Top-K compressor and stepsize α = 1−

√
1− δ. As a consequence, we will use biased compression operator

with stepsize α = 1 for FedNL in further experiments.

A.9. Bi-directional compression

Now we study how the performance of FedNL-BC (with Option 1 and stepsize α = 1) is affected by the level of compression
in Figure 7. Here we use Top-K compressor for Hessians and models, and broadcast gradients with probability p. In order
to make the results more interpretable, we set K to be pd, then we carry out experiments for several values of p. We clearly
see that deep compression (p = 0.5; 0.6) influences negatively the performance of FedNL-BC. However, small compression
(p = 0.9) can be beneficial in some cases (see Figure 7: (b), (d)), but this is not the case for Figure 7: (a), (c), where the best
performance is demonstrated by FedNL-BC with p = 1. We can conclude that only weak compression (the value of p is
close to 1) can improve the performance of FedNL-BC, but the improvement is relatively small.

We also compare FedNL-BC (compression was described above, Option 2 was used in the experiments) with DORE method
(Liu et al., 2020). This method applies bi-directional compression on gradients (uplink compression) and models (downlink
compression). All constants for this method were chosen according theoretical results in the paper. We use random dithering
compressor in both directions (s =

√
d). Based on the numerical experiments in Figure 8, we can conclude that FedNL-BC

is much more communication efficient method than DORE by many orders in magnitude.
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Figure 6. Comparison of FedNL with three update rules: Top-K,α = 1 −
√
1− δ (Option 1); Top-K,α = 1 (Option 2); Rand-
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(Option 3) in terms of iteration complexity.
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Figure 7. The performance of FedNL-BC with Top-K applied to Hessians and models (K = pd), and broadcasting gradients with
probability p for several values of p in terms of communication complexity.

A.10. The performance of FedNL-PP

Now we deploy our FedNL-PP method in order to study how the performance is inlfuenced by the value of active nodes τ .
We use FedNL-PP with Rank-1 compression operator, and run the method for several values of τ ; see Figure 9. As we can
see, the smaller value of τ is, the worse performance of FedNL-PP is, as it expected.

Now we compare FedNL-PP with Artemis (Philippenko & Dieuleveut, 2021) which supports partial participation too. We
use random sparsification compressor (s =

√
d) in uplink direction, and the server broadcasts descent direction to each node

without compression. All contstants of the method were chosen according theory from the paper. Each node i computes
full local gradient ∇fi(xk). We conduct experiments for several number of active nodes: τ ∈ {0.2n, 0.4n, 0.8n}, then
we calculate the total number of transmitted bits received by the server from all active nodes. All results are presented in
Figure 10. We clearly see that FedNL-PP outperforms Artemis by several orders in magnitude in terms of communication
complexity.

A.11. Comparison with NL1

In our next experiment we compare FedNL with three types of compression operators (Rank-R, Top-K, PowerSGD) and
NL1. As we can see in Figure 11, FedNL with Rank-1 are more communication efficient method in all cases. FedNL with
Top-d and PowerSGD of rank 1 compressors performs better or the same as NL1 in almost all cases, except Figure 11:
(c), where FedNL with PowerSGD demonstrates a little bit worse results than NL1. Based on these experiments, we can
conclude that new compression mechanism for Hessians is more effective than that was introduced in (Islamov et al., 2021).

A.12. Local comparison

Now we compare FedNL (Rank-1 compressor, α = 1) and N0 with first order methods: ADIANA with random dithering
(ADIANA, RD, s =

√
d), DIANA with random dithering (DIANA, RD, s =

√
d), and vanilla gradient descent (GD). Here

we set x0 close to the solution x∗ in order to highlight fast local rates of FedNL and N0 independent on the condition
number. Moreover, we compare FedNL (Rank-1 compressor, α = 1) against DINGO. In order to make fair comparison we
calculate transmitted bits in both directions, since DINGO requires several expensive communication round per one iteration
of the algorithm. All results are presented in Figure 12. We clearly see that FedNL and N0 are more communication
effective methods than gradient type ones. In some cases the difference is large; see Figure 12: (a), (d). In addition FedNL
is more effective than DINGO in terms of communication complexity.



FedNL: Making Newton-Type Methods Applicable to Federated Learning

FedNL-BC, Top-K, K= 0.8d, p= 0.8 FedNL-BC, Top-K, K= 0.9d, p= 0.9 FedNL-BC, Top-K, K= d, p= 1 DORE, RD, s=
√
d

216 220 224

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

216 220 224

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

216 220 224 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

212 216 220 224 228

communicated bits per node

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f(
x
k
)
−
f(
x
∗
)

(a) w7a, λ = 10−3 (b) w8a, λ = 10−3 (c) a1a, λ = 10−4 (d) a9a, λ = 10−4

Figure 8. Comparison of FedNL-BC with Top-K applied to Hessians and models (K = pd), and broadcasting gradients with probability
p and DORE in terms of communication complexity.
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Figure 9. The performance of FedNL-PP with Rank-1 compressor in terms of iteration complexity.

A.13. Global compersion

In our next test we compare FedNL-LS (Rank-1 compressor, α = 1), N0-LS, and FedNL-CR (Rank-1 compressor, α = 1)
with gradient type methods such as ADIANA with random dithering (ADIANA, RD, s =

√
d), DIANA with random

dithering (DIANA, RD, s =
√
d), vanilla gradient descent (GD), and gradient descent with line search (GD-LS). Besides,

we compare FedNL-LS (Rank-1 compressor, α = 1) and FedNL-CR (Rank-1 compressor, α = 1) with DINGO. Since
DINGO requires several expensive communication round per iteration, we calculate transmitted bits in both directions
to make fair comparison. According to numerical experiments, we can conclude that FedNL-LS and N0-LS are more
communication effective methods than gradient type ones. In some cases (see Figure 13: (c), (d)) FedNL-CR performs
better or the same as DIANA.

A.14. Effect of statistical heterogeneity

In this set of experiments we investigate the performance of FedNL under different level of heterogeneity of data. We
generate synthethic data via rules as (Li et al., 2018) did. We set number of nodes n = 30, the size of local data m = 200,
the dimension of the problem d = 100, and regularization parameter λ = 10−3.

The generation rules for non-IID synthetic data have two positive parameteres α, β. For each node i ∈ [n] let Bi ∼ N (0, β).
We use diagonal covariance matrix Σ with Σj,j = j−1.2, and mean vector vi, each element of which is generated from
N (Bi, 1) in order to get feature vector aij ∈ Rd fromN (vi,Σ). Let ui ∼ N (0, α), ci ∼ N (ui, 1), then we generate vector
wi ∈ Rd each entire of which is sampled from N (ui, 1). Let pij = σ

(
w>i aij + ci

)
, where σ(·) is a sigmoid function.

Finally the label bij is equal to −1 with probability pij , and is equal to +1 with probability 1− pij . We denote the data
which is generated following the rules above as Synthetic (α, β).

In addition, we generate IID data where w ∼ N (0, 1) and c ∼ N (0, 1) are sampled only once and used for each node i.
Feature vectors aij is generated from N (vi,Σ), where each element of vi is equal to Bi ∼ N (0, β). The label bij is equal
to −1 with probability pij = σ(w>aij + c), and +1 otherwise. We denote such data as IID.

Using generated synthetic datasets we compare local performance of FedNL (Rank-1 compressor, α = 1, Option 2),
ADIANA with random dithering (ADIANA, RD, s =

√
d), DIANA with random dithering (DIANA, RD, s =

√
d), vanilla

gradient descent (GD) in terms of communication complexit; see Figure 14 (first row). Besides, we compare FedNL and
DINGO; see Figure 14 (second row). According to the results, we see that the difference between FedNL and gradient
type methods is getting worse, when the local data is becoming more heterogeneous; FedNL outperforms other methods
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Figure 10. Comparison of FedNL-PP with Artemis in terms of communication complexity for several values of active nodes τ .
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Figure 11. Comparison of FedNL with three types of compression and NL1 in terms of communication complexity.

by several orders in magnitude. FedNL is more stable varying data heterogeneity than DINGO. The difference between
these two methods on IID data is small; when data is becoming more heterogeneous, then the difference is increasing
dramatically.
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Figure 12. First row: Local comparison of FedNL and N0 with ADIANA, DIANA, and GD in terms of communication complexity.
Second row: Local comparison of FedNL with DINGO (second row) in terms of communication complexity.
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Figure 13. First row: Global comparison of FedNL-LS, N0-LS, and FedNL-CR with ADIANA, DIANA, GD, and GD-LS in terms of
communication complexity. Second row: Global comparison of FedNL-LS and FedNL-CR with DINGO in terms of communication
complexity.
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Figure 14. First row: Local comparison of FedNL, with ADIANA, DIANA, and GD in terms of communication complexity. Second
row: Local comparison of FedNL with DINGO in terms of communication complexity.
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B. Proofs of Results from Section 3
B.1. Auxiliary lemma

Denote by Ek [·] the conditional expectation given kth iterate xk. We first develop a lemma to handle different cases of
compressors for Ek‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F, where Ek[y] = y and Ek[z] = z.

Lemma B.1. For any y, z ∈ Rd such that Ek[y] = y and Ek[z] = z, we have the following results in different cases.

(i) If Cki ∈ B(ω) and α ≤ 1
ω+1 , then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F

]
≤ (1− α)‖Hk

i −∇2fi(z)‖2F + αL2
F‖y − z‖2.

(ii) If Cki ∈ C(δ) and α = 1−
√

1− δ, then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F

]
≤ (1− α2)

∥∥Hk
i −∇2fi(z)

∥∥2

F
+ αL2

F‖y − z‖2.

(iii) If Cki ∈ C(δ) and α = 1, then

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F

]
≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
6

δ
− 7

2

)
L2

F‖y − z‖2.

Using the notation from (5), we can unify the above three cases into

Ek
[
‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F

]
≤ (1−A) ‖Hk

i −∇2fi(z)‖2F +BL2
F‖y − z‖2.

Proof. Let
LHS := Ek

[
‖Hk

i + αCki (∇2fi(y)−Hk
i )−∇2fi(z)‖2F

]
be the left hand side appearing in these inequalities.

(i). If Cki ∈ B(ω), then

LHS = ‖Hk
i −∇2fi(z)‖2F + 2α〈Hk

i −∇2fi(z),∇2fi(y)−Hk
i 〉+ α2Ek‖Cki (∇2fi(y)−Hk

i )‖2F
≤ ‖Hk

i −∇2fi(z)‖2F + 2α〈Hk
i −∇2fi(z),∇2fi(y)−Hk

i 〉+ α2(ω + 1)‖Hk
i −∇2fi(y)‖2F.

Using the stepsize restriction α ≤ 1
ω+1 , we can bound α2(ω + 1) ≤ α. Plugging this back to the above inequality and using

the identity 2 〈A,B〉F + ‖B‖2F = −‖A‖2F + ‖A + B‖2F, we get

LHS ≤ ‖Hk
i −∇2fi(z)‖2F + 2α〈Hk

i −∇2fi(z),∇2fi(y)−Hk
i 〉+ α‖Hk

i −∇2fi(y)‖2F
= (1− α)‖Hk

i −∇2fi(z)‖2F + α‖∇2fi(y)−∇2fi(z)‖2F
≤ (1− α)‖Hk

i −∇2fi(z)‖2F + αL2
F‖y − z‖2.

(ii). Let Cki ∈ C(δ) and α = 1−
√

1− δ. Denote

A := Hk
i −∇2fi(z), B := ∇2fi(y)−Hk

i .

Then

LHS =
∥∥A + αCki (B)

∥∥2

F

= ‖A‖2F + 2α
〈
A, Cki (B)

〉
F

+ α2‖Cki (B)‖2F
≤ ‖A‖2F + 2α 〈A,B〉F + 2α

〈
A, Cki (B)−B

〉
F

+ α2‖B‖2F
≤ ‖A‖2F + 2α 〈A,B〉F + 2α‖A‖F‖Cki (B)−B‖F + α2‖B‖2F
≤ ‖A‖2F + 2α 〈A,B〉F + 2α

√
1− δ‖A‖F‖B‖F + α2‖B‖2F

≤ ‖A‖2F + 2α 〈A,B〉F + α
√

1− δ
(
‖A‖2F + ‖B‖2F

)
+ α2‖B‖2F

≤ (1 + α
√

1− δ) ‖A‖2F + 2α 〈A,B〉F + (α
√

1− δ + α2)‖B‖2F.
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Since α = 1−
√

1− δ, we have α
√

1− δ + α2 = α. Using the identity 2 〈A,B〉F + ‖B‖2F = −‖A‖2F + ‖A + B‖2F, we
get

LHS ≤ (1 + α
√

1− δ) ‖A‖2F + 2α 〈A,B〉F + α‖B‖2F
= (1 + α

√
1− δ − α) ‖A‖2F + α‖A + B‖2F

= (1− α2) ‖A‖2F + α‖A + B‖2F
= (1− α2)

∥∥Hk
i −∇2fi(z)

∥∥2

F
+ α‖∇2fi(y)−∇2fi(z)‖2F

≤ (1− α2)
∥∥Hk

i −∇2fi(z)
∥∥2

F
+ αL2

F‖y − z‖2.

(iii). If Cki ∈ C(δ) and α = 1, we have

LHS = ‖Hk
i + Cki (∇2fi(y)−Hk

i )−∇2fi(z)‖2F
= ‖Hk

i −∇2fi(y) + Cki (∇2fi(y)−Hk
i ) +∇2fi(y)−∇2fi(z)‖2F

≤ (1 + β)‖Hk
i −∇2fi(y) + Cki (∇2fi(y)−Hk

i )‖2F +

(
1 +

1

β

)
‖∇2fi(y)−∇2fi(z)‖2F

≤ (1 + β)(1− δ)‖Hk
i −∇2fi(y)‖2F +

(
1 +

1

β

)
‖∇2fi(y)−∇2fi(z)‖2F,

where we use Young’s inequality in the first inequality for some β > 0, and use the contraction property in the last inequality.
By choosing β = δ

2(1−δ) when 0 < δ < 1, we can get

LHS ≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
‖∇2fi(y)−∇2fi(z)‖2F

≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
L2

F‖y − z‖2.

When δ = 1,
LHS = ‖∇2fi(y)−∇2fi(z)‖2F ≤ L2

F‖y − z‖2.

Overall, for any 0 < δ ≤ 1 we have

LHS ≤
(

1− δ

2

)
‖Hk

i −∇2fi(y)‖2F +

(
2

δ
− 1

)
L2

F‖y − z‖2

≤ (1 + β)

(
1− δ

2

)
‖Hk

i −∇2fi(z)‖2F +

(
1 +

1

β

)(
1− δ

2

)
‖∇2fi(y)−∇2fi(z)‖2F

+

(
2

δ
− 1

)
L2

F‖y − z‖2.

By choosing β = δ
4−2δ , we arrive at

LHS ≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
4

δ
+
δ

2
− 3 +

2

δ
− 1

)
L2

F‖y − z‖2

≤
(

1− δ

4

)
‖Hk

i −∇2fi(z)‖2F +

(
6

δ
− 7

2

)
L2

F‖y − z‖2.

B.2. Proof of Theorem 3.6

We derive recurrence relation for ‖xk − x∗‖2 covering both options of updating the global model. If Option 1. is used in
FedNL, then
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‖xk+1 − x∗‖2 =
∥∥∥xk − x∗ − [Hk

µ

]−1∇f(xk)
∥∥∥2

≤
∥∥∥[Hk

µ

]−1
∥∥∥2 ∥∥Hk

µ(xk − x∗)−∇f(xk))
∥∥2

≤ 2

µ2

(∥∥(Hk
µ −∇2f(x∗)

)
(xk − x∗)

∥∥2
+
∥∥∇2f(x∗)(xk − x∗)−∇f(xk) +∇f(x∗)

∥∥2
)

=
2

µ2

(∥∥(Hk
µ −∇2f(x∗)

)
(xk − x∗)

∥∥2
+
∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)

∥∥2
)

≤ 2

µ2

(∥∥Hk
µ −∇2f(x∗)

∥∥2 ‖xk − x∗‖2 +
L2
∗

4
‖xk − x∗‖4

)
=

2

µ2
‖xk − x∗‖2

(∥∥Hk
µ −∇2f(x∗)

∥∥2
+
L2
∗

4
‖xk − x∗‖2

)
≤ 2

µ2
‖xk − x∗‖2

(∥∥Hk −∇2f(x∗)
∥∥2

+
L2
∗

4
‖xk − x∗‖2

)
≤ 2

µ2
‖xk − x∗‖2

(∥∥Hk −∇2f(x∗)
∥∥2

F
+
L2
∗

4
‖xk − x∗‖2

)
,

where we use Hk
µ � µI in the second inequality, and ∇2f(x∗) � µI in the fourth inequality. From the convexity of ‖ · ‖2F,

we have

‖Hk −∇2f(x∗)‖2F =

∥∥∥∥∥ 1

n

n∑
i=1

(
Hk
i −∇2fi(x

∗)
)∥∥∥∥∥

2

F

≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F = Hk.

Thus,

‖xk+1 − x∗‖2 ≤ 2

µ2
‖xk − x∗‖2Hk +

L2
∗

2µ2
‖xk − x∗‖4. (21)

If Option 2. is used in FedNL, then as Hk + lkI � ∇2f(xk) � µI and∇f(x∗) = 0, we have

‖xk+1 − x∗‖ = ‖xk − x∗ − [Hk + lkI]−1∇f(xk)‖
≤ ‖[Hk + lkI]−1‖ · ‖(Hk + lkI)(xk − x∗)−∇f(xk) +∇f(x∗)‖

≤ 1

µ
‖(Hk + lkI−∇2f(x∗))(xk − x∗)‖+

1

µ
‖∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)‖

≤ 1

µ
‖Hk + lkI−∇2f(x∗)‖‖xk − x∗‖+

L∗
2µ
‖xk − x∗‖2

≤ 1

nµ

n∑
i=1

‖Hk
i + lki I−∇2fi(x

∗)‖‖xk − x∗‖+
L∗
2µ
‖xk − x∗‖2

≤ 1

nµ

n∑
i=1

(‖Hk
i −∇2fi(x

∗)‖+ lki )‖xk − x∗‖+
L∗
2µ
‖xk − x∗‖2.

From the definition of lki , we have

lki = ‖Hk
i −∇2fi(x

k)‖F ≤ ‖Hk
i −∇2fi(x

∗)‖F + LF‖xk − x∗‖.

Thus,

‖xk+1 − x∗‖ ≤ 2

nµ

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F‖xk − x∗‖+
L∗ + 2LF

2µ
‖xk − x∗‖2.
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From Young’s inequality, we further have

‖xk+1 − x∗‖2 ≤ 8

µ2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F‖xk − x∗‖

)2

+
(L∗ + 2LF)2

2µ2
‖xk − x∗‖4

≤ 8

µ2
‖xk − x∗‖2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F

)
+

(L∗ + 2LF)2

2µ2
‖xk − x∗‖4

=
8

µ2
‖xk − x∗‖2Hk +

(L∗ + 2LF)2

2µ2
‖xk − x∗‖4, (22)

where we use the convexity of ‖ · ‖2F in the second inequality.

Thus, from (21) and (22), we have the following unified bound for both Option 1 and Option 2:

‖xk+1 − x∗‖2 ≤ C

µ2
‖xk − x∗‖2Hk +

D

2µ2
‖xk − x∗‖4. (23)

Assume ‖x0 − x∗‖2 ≤ µ2

2D andHk ≤ µ2

4C for all k ≥ 0. Then we show that ‖xk − x∗‖2 ≤ µ2

2D for all k ≥ 0 by induction.

Assume ‖xk − x∗‖2 ≤ µ2

2D for all k ≤ K. Then from (23), we have

‖xK+1 − x∗‖2 ≤ 1

4
‖xK − x∗‖2 +

1

4
‖xK − x∗‖2 ≤ µ2

2D
.

Thus we have ‖xk − x∗‖2 ≤ µ2

2D andHk ≤ µ2

4C for k ≥ 0. Using (23) again, we obtain

‖xk+1 − x∗‖2 ≤ 1

2
‖xk − x∗‖2. (24)

Choosing y = xk and z = x∗ in Lemma B.1, we get

Ek‖Hk
i + αCki (∇2fi(x

k)−Hk
i )−∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2.

Then by Hk+1
i = Hk

i + αCki (∇2fi(x
k)−Hk

i ), we have

Ek[Hk+1] ≤ (1−A)Hk +BL2
F‖xk − x∗‖2.

Using the above inequality and (24), for Lyapunov function Φk we deduce

Ek[Φk+1] ≤ (1−A)Hk +BL2
F‖xk − x∗‖2 + 3BL2

F‖xk − x∗‖2

= (1−A)Hk +

(
1− 1

3

)
6BL2

F‖xk − x∗‖2

≤
(

1−min

{
A,

1

3

})
Φk.

Hence E[Φk] ≤
(
1−min

{
A, 1

3

})k
Φ0. We further have E[Hk] ≤

(
1−min

{
A, 1

3

})k
Φ0 and E[‖xk − x∗‖2] ≤

1
6BL2

F

(
1−min

{
A, 1

3

})k
Φ0 for k ≥ 0. Assume xk 6= x∗ for all k. Then from (23), we have

‖xk+1 − x∗‖2

‖xk − x∗‖2
≤ C

µ2
Hk +

D

2µ2
‖xk − x∗‖2,

and by taking expectation, we have

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ C

µ2
E[Hk] +

D

2µ2
E[‖xk − x∗‖2]

≤
(

1−min

{
A,

1

3

})k (
C +

D

12BL2
F

)
Φ0

µ2
.
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B.3. Proof of Lemma 3.7

We prove this by induction. Assume ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

4C and ‖xk − x∗‖2 ≤ min{ Aµ2

4BCL2
F
, µ

2

2D} for k ≤ K. Then we

also haveHk ≤ µ2

4C for k ≤ K. From (23), we can get

‖xK+1 − x∗‖2 ≤ C

µ2
‖xK − x∗‖2HK +

D

2µ2
‖xK − x∗‖4

≤ 1

4
‖xK − x∗‖2 +

1

4
‖xK − x∗‖2

≤ min

{
Aµ2

4BCL2
F

,
µ2

2D

}
.

From Lemma B.1, by choosing y = xk and z = x∗, for all i ∈ [n], we have

‖HK+1
i −∇2fi(x

∗)‖2F = Ek‖HK
i + αCki (∇2fi(x

K)−HK
i )−∇2fi(x

∗)‖2F
≤ (1−A)‖HK

i −∇2fi(x
∗)‖2F +BL2

F‖xK − x∗‖2

≤ (1−A)
µ2

4C
+BL2

F ·
Aµ2

4BCL2
F

=
µ2

4C
.

B.4. Proof of Lemma 3.8

Notice that Assumption 3.5 implies H0
i = ∇2fi(x

0), from which we have

‖H0
i −∇2fi(x

∗)‖2F =
∑
j,l

|(∇2fi(x
0)−∇2fi(x

∗))jl|2 ≤ d2L2
∞

µ2

D + 4Cd2L2
∞
≤ µ2

4C
,

which implies H0 ≤ µ2

4C . Next we prove ‖xk − x∗‖2 ≤ µ2

D+4Cd2L2
∞

for all k ≥ 0 by induction. Assume ‖xk − x∗‖2 ≤
µ2

D+4Cd2L2
∞

for k ≤ K. Since (Hk
i )jl is a convex combination of {(∇2fi(x

0))jl, ..., (∇2fi(x
k))jl} for all i ∈ [n], j, l ∈ [d],

from the convexity of | · |2, we have

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ ·

µ2

D + 4Cd2L2
∞
≤ µ2

4Cd2
,

for k ≤ K. Then we can get ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

4C and thusHk ≤ µ2

4C for k ≤ K. From (23), we have

‖xK+1 − x∗‖2 ≤ C

µ2
‖xK − x∗‖2HK +

D

2µ2
‖xK − x∗‖4

≤ 1

4
‖xK − x∗‖2 +

1

2
‖xK − x∗‖2

≤ µ2

D + 4Cd2L2
∞
.
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C. Extension: Partial Participation (FedNL-PP)
Our first extension to the vanilla FedNL is to handle partial participation: a setup when in each iteration only randomly
selected clients participate. This is important when the number n of devices is very large.

Algorithm 2 FedNL-PP (Federated Newton Learn with Partial Participation)
1: Parameters: Hessian learning rate α > 0; compression operators {Ck1 , . . . , Ckn}; number of participating devices
τ ∈ {1, 2, . . . , n}

2: Initialization: For all i ∈ [n]: w0
i = x0 ∈ Rd; H0

i ∈ Rd×d; l0i = ‖H0
i −∇2fi(w

0
i )‖F; g0

i = (H0
i + l0i I)w

0
i −∇fi(w0

i );
Moreover: H0 = 1

n

∑n
i=1 H

0
i ; l0 = 1

n

∑n
i=1 l

0
i ; g0 = 1

n

∑n
i=1 g

0
i

3: on server
4: xk+1 =

(
Hk + lkI

)−1
gk Main step: Update the global model

5: Choose a subset Sk ⊆ {1, . . . , n} of devices of cardinality τ , uniformly at random
6: Send xk+1 to the selected devices i ∈ Sk Communicate to selected clients

7: for each device i = 1, . . . , n in parallel do
8: for participating devices i ∈ Sk do
9: wk+1

i = xk+1 Update local model

10: Hk+1
i = Hk

i + αCki (∇2fi(w
k+1
i )−Hk

i ) Update local Hessian estimate

11: lk+1
i = ‖Hk+1

i −∇2fi(w
k+1
i )‖F Compute local Hessian error

12: gk+1
i = (Hk+1

i + lk+1
i I)wk+1

i −∇fi(wk+1
i ) Compute Hessian-corrected local gradient

13: Send Cki (∇2fi(w
k+1
i )−Hk

i ), lk+1
i − lki and gk+1

i − gki to server Communicate to server

14: for non-participating devices i /∈ Sk do
15: wk+1

i = wki , Hk+1
i = Hk

i , lk+1
i = lki , gk+1

i = gki Do nothing

16: end for
17: on server
18: gk+1 = gk + 1

n

∑
i∈Sk

(
gk+1
i − gki

)
Maintain the relationship gk = 1

n

∑n
i=1 g

k
i

19: Hk+1 = Hk + α
n

∑
i∈Sk Cki (∇2fi(w

k+1
i )−Hk

i ) Update the Hessian estimate on the server

20: lk+1 = lk + 1
n

∑
i∈Sk

(
lk+1
i − lki

)
Maintain the relationship lk = 1

n

∑n
i=1 l

k
i

C.1. Hessian corrected local gradients gki
The key technical novelty in FedNL-PP is the structure of local gradients

gki = (Hk
i + lki I)w

k
i −∇fi(wki )

(see line 12 of Algorithm 2). The intuition behind this form is as follows. Because of the partial participation, some
devices might remain inactive for several rounds. As a consequence, each device i holds a local model wki , which is a
stale global model (true global model of the last round client i participated) when the device is inactive. This breaks the
analysis of FedNL and requires an additional trick to handle stale global models of inactive clients. The trick is to apply
some form of Newton-type step locally and then update the global model at the server in communication efficient manner.
In particular, clients use their corrected learned local Hessian estimates Hk

i + lki I to do Newton-type step from wki to
wki −

[
Hk
i + lki I

]−1∇fi(wki ), which can be transformed into(
Hk
i + lki I

)−1 [(
Hk
i + lki I

)
wki −∇fi(wki )

]
=
(
Hk
i + lki I

)−1
gki .

Next, all active clients communicate compressed differences Cki (∇2fi(w
k+1
i )−Hk

i ), lk+1
i − lki and gk+1

i − gki to the sever,
which then updates global estimates gk+1, Hk+1, lk+1 (see lines 18, 19, 20) and the global model xk+1 (see line 4).

C.2. Importance of compression errors lki
Notice that, unlike FedNL, here we have only one option to update the global model at the sever (this corresponds to
Option 2 of FedNL). Although, it is possible to extend the theory also for Option 1, it would require strong practical
requirements. Indeed, in order to carry out the analysis with Option 1, either all active clients have to compute projected
estimates

[
Hk
i

]−1

µ
or the central server needs to maintain this for all clients in each iteration. Although implementable, both
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variants seem to be too much restrictive from the practical point of view. Compression errors lki mitigate the storage and
computation requirements by the cost of sending an extra float per active client.

C.3. Local convergence theory

We prove three local rates for FedNL-PP: for the squared distance of the global model xk to the solution ‖xk − x∗‖2,
averaged squared distance of stale (due to partial participation) local models wki to the solutionWk := 1

n

∑n
i=1 ‖wki −x∗‖2,

and for the Lyapunov function

Ψk := Hk +BL2
FWk.

Theorem C.1. Let Assumption 3.1 holds and further assume that all loss functions fi are µ-convex. Suppose ‖x0 − x∗‖2 ≤
µ2

4(L∗+2LF)2 and Hk ≤ µ2

64 for all k ≥ 0. Then, global model xk and all local models wki of FedNL-PP (Algorithm 2)
converge linearly as follows

‖xk+1 − x∗‖2 ≤ Wk, E
[
Wk
]
≤
(

1− 3τ

4n

)k
W0.

Moreover, depending on the choice (5) of compressors Cki and step-size α, we have linear rates

E
[
Ψk
]
≤
(

1− τ

n
min

{
A,

1

2

})k
Ψ0, (25)

E
[
‖xk+1 − x∗‖2

Wk

]
≤
(

1−min

{
A,

1

2

})k (
(L∗ + 2LF)2

2BL2
F

+ 8

)
Ψ0

µ2
. (26)

Similar to Theorem 3.6, we assumedHk ≤ µ2

64 holds for all iterates k ≥ 0. Below, we prove that this inequality holds, using
the initial conditions only.

Lemma C.2. Let Assumption 3.4 holds. Assume ‖x0−x∗‖2 ≤ e3 := min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2 } and ‖H0
i−∇2fi(x

∗)‖2F ≤
µ2

64 . Then ‖xk − x∗‖2 ≤ e3 and ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

64 for all k ≥ 1.

Lemma C.3. Let Assumption 3.5 holds and assume ‖x0 − x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞

. ThenHk ≤ µ2

64 for all k ≥ 0.

In the upcoming three subsections we provide the proofs of Theorem C.1, Lemma C.2 and C.3.

C.4. Proof of Theorem C.1

From

xk+1 =
(
Hk + lkI

)−1
gk =

(
Hk + lkI

)−1

[
1

n

n∑
i=1

(Hk
i + lki I)w

k
i −∇fi(wki )

]
,

and

x∗ =
(
Hk + lkI

)−1 [
(Hk + lkI)x∗ −∇f(x∗)

]
=
(
Hk + lkI

)−1

[
1

n

n∑
i=1

(Hk
i + lki I)x

∗ −∇fi(x∗)

]
,

we can obtain

xk+1 − x∗ =
(
Hk + lkI

)−1

[
1

n

n∑
i=1

(Hk
i + lki I)(w

k
i − x∗)− (∇fi(wki )−∇fi(x∗))

]
.
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As all functions fi are µ-convex, we get Hk + lkI � 1
n

∑n
i=1∇2fi(w

k
i ) � µI. Using the triangle inequality, we have

‖xk+1 − x∗‖ ≤ 1

µn

n∑
i=1

∥∥∇fi(wki )−∇fi(x∗)− (Hk
i + lki I)(w

k
i − x∗)

∥∥
≤ 1

µn

n∑
i=1

∥∥∇fi(wki )−∇fi(x∗)−∇2fi(x
∗)(wki − x∗)

∥∥
+

1

µn

n∑
i=1

∥∥(Hk
i + lki I−∇2fi(x

∗)(wki − x∗))
∥∥

≤ L∗
2µn

n∑
i=1

‖wki − x∗‖2 +
1

µn

n∑
i=1

‖Hk
i + lki I−∇2fi(x

∗)‖ · ‖wki − x∗‖

≤ L∗
2µ
Wk +

1

µn

n∑
i=1

(
‖Hk

i −∇2fi(x
∗)‖+ lki

)
· ‖wki − x∗‖.

Recall that

lki = ‖Hk
i −∇2fi(w

k
i )‖F

≤ ‖Hk
i −∇2fi(x

∗)‖F + ‖∇2fi(x
∗)−∇2fi(w

k
i )‖F

≤ ‖Hk
i −∇2fi(x

∗)‖F + LF‖wki − x∗‖.

Then we arrive at

‖xk+1 − x∗‖

≤ L∗
2µ
Wk +

1

µn

n∑
i=1

(
‖Hk

i −∇2fi(x
∗)‖+ ‖Hk

i −∇2fi(x
∗)‖F + LF‖wki − x∗‖

)
· ‖wki − x∗‖

≤ L∗ + 2LF

2µ
Wk +

2

µn

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F · ‖wki − x∗‖.

We further use Young’s inequality to bound ‖xk+1 − x∗‖2 as

‖xk+1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2n2

(
n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F · ‖wki − x∗‖

)2

≤ (L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2

(
1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖2F

)
Wk

=
(L∗ + 2LF)2

2µ2
(Wk)2 +

8

µ2
HkWk, (27)

where we use Cauchy-Schwarz inequality in the second inequality and useHk = 1
n

∑n
i=1 ‖Hk

i −∇2fi(x
∗)‖2F in the last

equality. From the update rule of wki , we have

Ek[Wk+1] =
τ

n
Ek
[
‖xk+1 − x∗‖2

]
+
(

1− τ

n

)
Wk

≤ τ

n
Wk

(
(L∗ + 2LF)2

2µ2
Wk +

8

µ2
Hk
)

+
(

1− τ

n

)
Wk. (28)

From the assumptions we have ‖w0
i − x∗‖2 = ‖x0 − x∗‖2 ≤ µ2

4(L∗+2LF)2 andHk ≤ µ2

64 for all k ≥ 0. Next we show that

‖xk − x∗‖2 ≤ µ2

4(L∗+2LF)2 for all k ≥ 1 by mathematical induction. First, we haveW0 ≤ µ2

4(L∗+2LF)2 . Then from (27) we
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have

‖x1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(W0)2 +

8

µ2
H0W0

≤ 1

8
W0 +

1

8
W0

≤ µ2

4(L∗ + 2LF)2
.

Assume ‖xk − x∗‖2 ≤ µ2

4(L∗+2LF)2 for k ≤ K. Then Wk ≤ min{ µ2

(L∗+2LF)2 ,M} for k ≤ K, and from (27) and the

assumption thatHk ≤ µ2

64 for k ≥ 0, we have

‖xK+1 − x∗‖2 ≤ (L∗ + 2LF)2

2µ2
(WK)2 +

8

µ2
HKWK

≤ 1

8
WK +

1

8
WK

≤ µ2

4(L∗ + 2LF)2
.

This indicates that (L∗+2LF)2

2µ2 Wk + 8
µ2Hk ≤ 1

4 for all k ≥ 0. Then from (28), we can obtain

Ek[Wk+1] ≤
(

1− 3τ

4n

)
Wk. (29)

By applying the tower property, we have E[Wk+1] ≤
(
1− 3τ

4n

)
E[Wk]. Unrolling the recursion, we can get E[Wk] ≤(

1− 3τ
4n

)kW0. Since at each step, each worker makes update with probability τ
n , we have

Ek‖Hk+1
i −∇2fi(x

∗)‖2F
=

(
1− τ

n

)
Ek
[
‖Hk+1

i −∇2fi(x
∗)‖2F|i /∈ Sk

]
+
τ

n
Ek
[
‖Hk+1

i −∇2fi(x
∗)‖2F|i ∈ Sk

]
=

(
1− τ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
Ek‖Hk

i + αCki (∇2fi(x
k+1)−Hk

i )−∇2fi(x
∗)‖2F.

Then since Ek[xk+1] = xk+1 and Ek[x∗] = x∗, by choosing z = x∗ and y = xk+1 in Lemma B.1, we have

Ek‖Hk+1
i −∇2fi(x

∗)‖2F
≤

(
1− τ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
(1−A)‖Hk

i −∇2fi(x
∗)‖2F +

τ

n
BL2

F‖xk+1 − x∗‖2

=

(
1− Aτ

n

)
‖Hk

i −∇2fi(x
∗)‖2F +

τBL2
F

n
‖xk+1 − x∗‖2.

Summing up the above inequality from i = 1 to n and multiplying 1
n , we can obtain

Ek[Hk+1] ≤
(

1− Aτ

n

)
Hk +

τBL2
F

n
Ek‖xk+1 − x∗‖2.

Recall that (L∗+2LF)2

2µ2 Wk + 8
µ2Hk ≤ 1

4 for all k ≥ 0, from (27), we have

‖xk+1 − x∗‖2 ≤ 1

4
Wk,

which implies that

Ek[Hk+1] ≤
(

1− Aτ

n

)
Hk +

τBL2
F

4n
Wk. (30)
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Then from (29) and (30), we have the following recurrence relation for the Lyapunov function Ψ:

Ek[Ψk+1] = Ek[Hk+1] +BL2
FEk[Wk+1]

≤
(

1− Aτ

n

)
Hk +

τBL2
F

4n
Wk +

(
1− 3τ

4n

)
BL2

FWk

=

(
1− Aτ

n

)
Hk +

(
1− τ

2n

)
BL2

FWk

≤
(

1− τ

n
min

{
A,

1

2

})
Ψk.

By applying the tower property, we have E[Ψk+1] ≤
(
1− τ

n min
{
A, 1

2

})
E[Ψk]. Unrolling the recursion, we can

obtain E[Ψk] ≤
(
1− τ

n min
{
A, 1

2

})k
Ψ0. We further have E[Hk] ≤

(
1− τ

n min
{
A, 1

2

})k
Ψ0 and E[Wk] ≤

1
BL2

F

(
1− τ

n min
{
A, 1

2

})k
Ψ0, which applied on (27) gives

E
[
‖xk+1 − x∗‖2

Wk

]
≤ (L∗ + 2LF)2

2µ2
E[Wk] +

8

µ2
E[Hk]

≤
(

1− τ

n
min

{
A,

1

2

})k (
(L∗ + 2LF)2

2BL2
F

+ 8

)
Ψ0

µ2
.

C.5. Proof of Lemma C.2

First, we haveW0 ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2 } andH0 ≤ µ2

64 . Then from (27) we can get

‖x1 − x∗‖2 ≤ 1

4
W0.

For each i, either H1
i = H0

i , or by Lemma B.1

‖H1
i −∇2fi(x

∗)‖2F = ‖H0
i + αC0

i (∇2fi(x
1)−H0

i )−∇2fi(x
∗)‖2F

≤ (1−A)‖H0
i −∇2fi(x

∗)‖2F +BL2
F‖x1 − x∗‖2

≤ (1−A)‖H0
i −∇2fi(x

∗)‖2F +A · 1

4A
BL2

FW0

≤ (1−A)
µ2

64
+A · µ

2

64

≤ µ2

64
.

We assume ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

64 and ‖xk−x∗‖2 ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2 } for all k ≤ K. Then we haveHk ≤ µ2

64

andWk ≤ min{ Aµ2

16BL2
F
, µ2

4(L∗+2LF)2 } for all k ≤ K. Then from (27) we can get

‖xK+1 − x∗‖2 ≤ 1

4
Wk ≤ min{ Aµ2

16BL2
F

,
µ2

4(L∗ + 2LF)2
}.

For each i, either HK+1
i = HK

i , or by Lemma B.1

‖HK+1
i −∇2fi(x

∗)‖2F = ‖HK
i + αCKi (∇2fi(x

K+1)−HK
i )−∇2fi(x

∗)‖2F
≤ (1−A)‖HK

i −∇2fi(x
∗)‖2F +BL2

F‖xK+1 − x∗‖2

≤ (1−A)‖HK
i −∇2fi(x

∗)‖2F +A · 1

4A
BL2

FWK

≤ (1−A)
µ2

64
+A · µ

2

64

≤ µ2

64
.
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C.6. Proof of Lemma C.3

First, since H0
i = ∇2fi(w

0
i ), we have

‖H0
i −∇2fi(x

∗)‖2F =
∑
j,l

|(∇2fi(w
0
i )−∇2fi(x

∗))jl|2 ≤ d2L2
∞

µ2

(H + 2LF)2 + 64d2L2
∞
≤ µ2

64
,

which impliesH0 ≤ µ2

64 . Then from (27), we have

‖x1 − x∗‖2 ≤ W0 ≤ µ2

(L∗ + 2LF)2 + 64d2L2
∞
.

Next we prove ‖xk − x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞

for all k ≥ 1 by induction.

Assume ‖xk − x∗‖2 ≤ µ2

(L∗+2LF)2+64d2L2
∞

for k ≤ K. Then since (Hk
i )jl is a convex combination of

{(∇2fi(w
0
i ))jl, (∇2fi(x

1))jl, ..., (∇2fi(x
k))jl}, from the convexity of | · |2, we have

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ ·

µ2

(L∗ + 2LF)2 + 64d2L2
∞
≤ µ2

64d2
,

for k ≤ K. Therefore, ‖Hk
i −∇2fi(x

∗)‖2F ≤
µ2

64 andHk ≤ µ2

64 for k ≤ K. Furthermore, fromWk ≤ µ2

(L∗+2LF)2+64d2L2
∞

for all k ≤ K and (27), we can also obtain

‖xK+1 − x∗‖2 ≤ WK ≤ µ2

(L∗ + 2LF)2 + 64d2L2
∞
.
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D. Extension: Globalization via Line Search (FedNL-LS)
Next two extensions of FedNL is to incorporate globalization strategy. Our first globalization technique is based on
backtracking line search described in FedNL-LS below.

Algorithm 3 FedNL-LS (Federated Newton Learn with Line Search)
1: Parameters: Hessian learning rate α ≥ 0; compression operators {Ck1 , . . . , Ckn}; line search parameters c ∈ (0, 1/2] and
γ ∈ (0, 1)

2: Initialization: x0 ∈ Rd; H0
1, . . . ,H

0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server; compute fi(xk), ∇fi(xk) and ∇2fi(x

k)
5: Send fi(xk), ∇fi(xk) and Ski := Cki (∇2fi(x

k)−Hk
i ) to the server

6: Update local Hessian shifts Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get fi(xk), ∇fi(xk) and Ski from all devices i ∈ [n]

10: f(xk) = 1
n

∑n
i=1 fi(x

k), ∇f(xk) = 1
n

∑n
i=1∇fi(xk), Sk = 1

n

∑n
i=1 S

k
i

11: Compute search direction dk = −
[
Hk
]−1

µ
∇f(xk)

12: Find the smallest integer s ≥ 0 satisfying f(xk + γsdk) ≤ f(xk) + cγs
〈
∇f(xk), dk

〉
13: Update global model to xk+1 = xk + γsdk

14: Update global Hessian shift to Hk+1 = Hk + αSk

D.1. Line search procedure

In contrast to the vanilla FedNL, here we do not follow the direction dk = −
[
Hk
]−1

µ
∇f(xk) with unit step size. Instead,

FedNL-LS aims to select some step size which would guarantee sufficient decrease in the empirical loss. Thus, we fix the
direction dk (see line 11 of Algorihtm 3) of next iterate xk+1, but want to adjust the step size along that direction. With
parameters c ∈ (0, 1/2] and γ ∈ (0, 1), we choose the largest step size of the form γs, which leads to a sufficient decrease in
the loss f(xk + γsdk) ≤ f(xk) + cγs

〈
∇f(xk), dk

〉
(see line 12). Note that this procedure requires computation of local

functions fi for all devices i ∈ [n] in order to do the step in line 12. One the other hand, communication cost of line search
procedure is extremely cheap compared to communication cost of gradients and Hessians.

D.2. Local convergence theory

We provide global linear convergence analysis for FedNL-LS. Despite the fact that theoretical rate is slower than the rate of
GD, it shows excellent results in experiments. By L-smoothness we assume Lipschitz continuity of gradients with Lipschitz
constant L.

Theorem D.1. Let Assumption 3.1 hold, function f beL-smooth and assume L̃ := supk≥0 ‖Hk‖ is finite. Then convergence
of FedNL-LS is linear with the following rate

f(xk+1)− f(x∗) ≤
(

1− µ

L
min

{
µ

L̃
, 1

})k (
f(x0)− f(x∗)

)
(31)

Next, we provide upper bounds for L̃, which was assumed to be finite in Theorem D.1.

Lemma D.2. If Assumption 3.4 holds, then L̃ ≤ ‖∇2f(x∗)‖+ ‖H0
i −∇2fi(x

∗)‖F +
√

B
ALFR. If Assumption 3.5 holds,

then L̃ ≤ dL∞R+ ‖∇2f(x∗)‖.



FedNL: Making Newton-Type Methods Applicable to Federated Learning

D.3. Proof of Theorem D.1

Denote κ := L
µ . Using L-smoothness of f we get

f

(
xk +

1

κ
dk
)
≤ f(xk) +

1

κ
〈∇f(xk), dk〉+

L

2κ2

∥∥dk∥∥2

= f(xk)− 1

κ
〈∇f(xk),

[
Hk
µ

]−1∇f(xk)〉+
L

2κ2

∥∥∥[Hk
µ

]−1∇f(xk)
∥∥∥2

≤ f(xk)− 1

κ
〈∇f(xk),

[
Hk
µ

]−1∇f(xk)〉+
L

2µκ2
〈∇f(xk),

[
Hk
µ

]−1∇f(xk)〉

= f(xk)− 1

2κ
〈∇f(xk),

[
Hk
µ

]−1∇f(xk)〉.

From this we conclude that, if c = γ = 1
2 , then line search procedure needs at most s ≤ log2 κ steps. To continue the above

chain of derivations, we need to upper bound shifts Hk
µ in spectral norm.

Notice that if Hk has at least on eigenvalue larger than µ, then clearly ‖Hk
µ‖ = ‖Hk‖. Otherwise, if all eigenvalues do not

exceed µ, then projection gives Hk
µ = µI. Thus, in both cases we can state that ‖Hk

µ‖ ≤ max{‖Hk‖, µ} ≤ max{L̃, µ}.
Hence

f

(
xk +

1

κ
dk
)
≤ f(xk)− 1

2κ
〈∇f(xk),

[
Hk
µ

]−1∇f(xk)〉

≤ f(xk)− 1

2κ

1

max{L̃, µ}
‖∇f(xk)‖2

= f(xk)− 1

2κ

1

max{L̃, µ}
‖∇f(xk)−∇f(x∗)‖2

≤ f(xk)− 1

κ

µ

max{L̃, µ}
(
f(xk)− f(x∗)

)
.

Taking xk+1 = xk + 1
κd

k, subtracting both sides by f(x∗) and unraveling the above recurrence, we get (31).

D.4. Proof of Lemma D.2

Recall that R = sup{‖x − x∗‖ : f(x) ≤ f(x0)}. It follows from the line search procedure that function values are
non-increasing, namely f(xk+1) ≤ f(xk) ≤ f(x0). Hence ‖xk − x∗‖ ≤ R for all k ≥ 0. Denote

l̃k :=
1

n

n∑
i=1

l̃ki , l̃ki := ‖Hk
i −∇2fi(x

∗)‖F.

Consider the case when compressors Cki ∈ C(δ) and the learning rate is either α = 1−
√

1− δ or α = 1. Using Lemma
B.1 with y = xk and z = x∗, for both cases we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2. (32)

Reusing (32) multiple times we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
FR

2

≤ (1−A)2‖Hk−1
i −∇2fi(x

∗)‖2F + [1 + (1−A)]BL2
FR

2

≤ (1−A)k+1‖H0
i −∇2fi(x

∗)‖2F +BL2
FR

2
∞∑
t=0

(1−A)t

≤ ‖H0
i −∇2fi(x

∗)‖2F +
B

A
L2

FR
2,

which implies boundedness of l̃k:

l̃k =
1

n

n∑
i=1

l̃ki ≤
1

n

n∑
i=1

√
‖H0

i −∇2fi(x∗)‖2F +
B

A
L2

FR
2 ≤ ‖H0

i −∇2fi(x
∗)‖F +

√
B

A
LFR.
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From this we also conclude boundedness of L̃ as follows

‖Hk‖ ≤ ‖Hk −∇2f(x∗)‖+ ‖∇2f(x∗)‖

≤

∥∥∥∥∥ 1

n

n∑
i=1

(Hk
i −∇2fi(x

∗))

∥∥∥∥∥
F

+ ‖∇2f(x∗)‖

≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F + ‖∇2f(x∗)‖

≤ ‖∇2f(x∗)‖+ ‖H0
i −∇2fi(x

∗)‖F +

√
B

A
LFR.

Consider the case when compressors Cki ∈ B(ω) and the learning rate α ≤ 1
ω+1 . As we additionally assume that (Hk

i )jl is a
convex combination of past Hessians {(∇2fi(x

0))jl, . . . , (∇2fi(x
k))jl}, we get

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ max

0≤t≤k
‖xt − x∗‖2 ≤ L2

∞R
2.

Therefore
‖Hk

i −∇2fi(x
∗)‖2F ≤ d2L2

∞R
2,

from which

‖Hk‖ ≤ 1

n

n∑
i=1

‖Hk
i −∇2fi(x

∗)‖F + ‖∇2f(x∗)‖ ≤ dL∞R+ ‖∇2f(x∗)‖.
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E. Extension: Globalization via Cubic Regularization (FedNL-CR)
Our next extension to FedNL providing global convergence guarantees is cubic regularization.

Algorithm 4 FedNL-CR (Federated Newton Learn with Cubic Regularization)
1: Parameters: Hessian learning rate α ≥ 0; compression operators {Ck1 , . . . , Ckn}; Lipschitz constantH ≥ 0 for Hessians
2: Initialization: x0 ∈ Rd; H0

1, . . . ,H
0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i

3: for each device i = 1, . . . , n in parallel do
4: Get xk from the server and compute local gradient∇fi(xk) and local Hessian ∇2fi(x

k)
5: Send ∇fi(xk), Ski := Cki (∇2fi(x

k)−Hk
i ) and lki := ‖Hk

i −∇2fi(x
k)‖F to the server

6: Update local Hessian shift to Hk+1
i = Hk

i + αSki
7: end for
8: on server
9: Get ∇fi(xk), Ski and lki from all devices i ∈ [n]

10: ∇f(xk) = 1
n

∑n
i=1∇fi(xk), Sk = 1

n

∑n
i=1 S

k
i , lk = 1

n

∑n
i=1 l

k
i

11: hk = arg minh∈Rd Tk(h), where Tk(h) :=
〈
∇f(xk), h

〉
+ 1

2

〈
(Hk + lkI)h, h

〉
+ L∗

6 ‖h‖
3

12: Update global model to xk+1 = xk + hk

13: Update global Hessian shift to Hk+1 = Hk + αSk

E.1. Cubic regularization

Adding third order regularization term L∗
6 ‖h‖

3 is a well known technique to guarantee global convergence for Newton-type
methods. Basically, this term provides means to upper bound the loss function globally, which ultimately leads to global
convergence. Notice that, without this term FedNL-CR reduces to FedNL with Option 2. However, cubic regularization
alone does not provide us global upper bounds as the second order information, the Hessians, are compressed, and thus
upper bounds might be violated.

E.2. Solving the subproblem

In each iteration, the sever needs to solve the subproblem in line 11 in order to compute hk. Although it does not admit a
closed form solution, the server can solve it by reducing to certain one-dimensional nonlinear equation. For more details,
see section C.1 of (Islamov et al., 2021).

E.3. Importance of compression errors lki
Unlike FedNL and FedNL-PP, compression errors are the only option for FedNL-CR to update the global model. The
reason is that to get a cubic upper bound for f we need to upper bound current true Hessians ∇2fi(x

k) in the matrix
order. Neither current learned Hessian Hk

i nor the projected matrix
[
Hk
i

]
µ

does not guarantee upper bound for ∇2fi(x
k).

Meanwhile, from lki := ‖Hk
i −∇2fi(x

k)‖F, we have ∇2fi(x
k) � Hk

i + lki I.

E.4. Global and local convergence theory

We prove two global rates (covering convex and strongly convex cases) and the same three local rates of FedNL.

Theorem E.1. Let Assumption 3.1 hold and assume l := supk≥0 l
k is finite. Then if f(x) is convex (i.e., µ = 0), we have

global sublinear rate

f(xk)− f(x∗) ≤ 9lR2

k
+

9L∗R
3

k2
+

3
(
f(x0)− f(x∗)

)
k3

, (33)

where R := {‖x− x∗‖ : f(x) ≤ f(x0)}. Moreover, if f(x) is µ-convex with µ > 0, then convergence becomes linear with
respect to function sub-optimality, i.e., f(xk)− f(x∗) ≤ ε is guaranteed after

O

((
l

µ
+

√
L∗R

µ
+ 1

)
log

f(x0)− f(x∗)

ε

)
(34)
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iterations. Furthermore, if ‖x0 − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
andHk ≤ µ2

160 for all k ≥ 0, then we have the same local rates (6),
(7) and (8).

Next, we provide upper bounds for l, which was assumed to be finite in the theorem.

Lemma E.2. If Assumption 3.4 holds, then l ≤
√
H0 +

(
1 +

√
B
A

)
LFR. If Assumption 3.5 holds, then l ≤ (dL∞+LF)R.

E.5. Proof of Theorem E.1

Global rate for weakly convex case (µ = 0). First, from L∗-Lipschitzness of the Hessian of f we get

f(xk+1) ≤ f(xk) +
〈
∇f(xk), hk

〉
+

1

2

〈
∇2f(xk)hk, hk

〉
+
L∗
6
‖hk‖3

≤ f(xk) +
〈
∇f(xk), hk

〉
+

1

2

〈
(Hk + lkI)hk, hk

〉
+
L∗
6
‖hk‖3

= f(xk) + min
h∈Rd

Tk(h) (35)

≤ f(xk) + Tk(y − xk)

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
(Hk + lkI)(y − xk), y − xk

〉
+
L∗
6
‖y − xk‖3

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
∇2f(xk)(y − xk), y − xk

〉
+
L∗
6
‖y − xk‖3

+
1

2

∥∥Hk −∇2f(xk)
∥∥ ‖y − xk‖2 +

1

2
lk‖y − xk‖2

≤ f(xk) +
〈
∇f(xk), y − xk

〉
+

1

2

〈
∇2f(xk)(y − xk), y − xk

〉
+ lk‖y − xk‖2 +

L∗
6
‖y − xk‖3

≤ f(y) +
L∗
6
‖y − xk‖3 + lk‖y − xk‖2 +

L∗
6
‖y − xk‖3

≤ f(y) + l‖y − xk‖2 +
L∗
3
‖y − xk‖3. (36)

Denote ak := k2 and

Ak := 1 +

k∑
i=1

ai = 1 +

k∑
i=1

i2 = 1 +
k(k + 1)(2k + 1)

6
≥ 1 +

k3

3
.

Let σk = ak+1

Ak+1
∈ (0, 1). Then we get 1 − σk = Ak

Ak+1
. Now we choose y = σkx

∗ + (1 − σk)xk = xk + σk(x∗ − xk).
Using convexity of f , we get

f(xk+1) ≤ f(y) + l‖y − xk‖2 +
L∗
3
‖y − xk‖3

≤ σkf(x∗) + (1− σk)f(xk) + lσ2
k‖xk − x∗‖2 +

L∗
3
σ3
k‖xk − x∗‖3 (37)

≤ σkf(x∗) + (1− σk)f(xk) + lσ2
kR

2 +
L∗
3
σ3
kR

3.

Using the definition of σk and subtracting both sides by Akf(x∗) we get

Ak+1

(
f(xk+1)− f(x∗)

)
≤ Ak

(
f(xk)− f(x∗)

)
+ lR2 a

2
k+1

Ak+1
+
L∗R

3

3

a3
k+1

A2
k+1

,

repeated application of which provides us the following bound

Ak
(
f(xk)− f(x∗)

)
≤ A0

(
f(x0)− f(x∗)

)
+ lR2

k∑
t=1

a2
t

At
+
L∗R

3

3

k∑
t=0

a3
t

A2
t

. (38)



FedNL: Making Newton-Type Methods Applicable to Federated Learning

Next we upper bound the above two sums:

k∑
t=1

a2
t

At
≤

k∑
t=1

t4

1 + t3

3

≤ 3k2,

k∑
t=1

a3
t

A2
t

≤
k∑
t=1

t6(
1 + t3

3

)2 ≤ 9k.

Hence the bound (38) can be transformed into

f(xk)− f(x∗) ≤ 1

Ak

[(
f(x0)− f(x∗)

)
+ 3k2 · lR2 + 3k · L∗R3

]
≤ 9lR2

k
+

9L∗R
3

k2
+

3
(
f(x0)− f(x∗)

)
k3

.

Thus, we have shown O( 1
k ) rate for convex functions and it holds for any k ≥ 1.

Global rate for strongly convex case (µ > 0). We can turn this rate into a linear rate using strong convexity of f . Namely,
in this case we have R2 ≤ 2

µ (f(x0)− f(x∗)) and therefore

f(xk)− f(x∗) ≤
[

18l

kµ
+

18L∗R

k2µ
+

3

k3

] (
f(x0)− f(x∗)

)
≤ 1

2

(
f(x0)− f(x∗)

)
,

if k ≥ K1 := max
(

108l
µ ,
√

108L∗R
µ , 3

)
. In other words, we half the error f(xk)− f(x∗) after K1 steps. This implies the

following linear rate

O

((
l

µ
+

√
L∗R

µ
+ 1

)
log

1

ε

)
.

Local rate for strongly convex case (µ > 0).

From the definition of hk direction, we have

∇Tk(hk) = ∇f(xk) + (Hk + lkI)hk +
L∗
2
‖hk‖hk = 0,

which implies the following equivalent update rule

xk+1 = xk + hk

= xk −
[
Hk + lkI +

L∗
2
‖xk+1 − xk‖

]−1

∇f(xk).
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Then, using µI � ∇f(xk) � Hk + lkI, we have

‖xk+1 − x∗‖2

=

∥∥∥∥∥xk − x∗ −
[
Hk + lkI +

L∗
2
‖xk+1 − xk‖

]−1

∇f(xk)

∥∥∥∥∥
2

≤ 1

µ2

∥∥∥∥[Hk + lkI +
L∗
2
‖xk+1 − x∗‖+

L∗
2
‖xk − x∗‖

]
(xk − x∗)−∇f(xk)

∥∥∥∥2

≤ 5

µ2

(∥∥∇2f(xk)(xk − x∗)−∇f(xk) +∇f(x∗)
∥∥2

+
L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2

+
∥∥(Hk −∇2f(xk)

)
(xk − x∗)

∥∥2
+
[
lk
]2 ‖xk − x∗‖2)

≤ 5

µ2

(
L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2

+
∥∥Hk −∇2f(xk)

∥∥2 ‖xk − x∗‖2 +
1

n

n∑
i=1

∥∥Hk
i −∇fi(xk)

∥∥2

F
‖xk − x∗‖2

)

≤ 5

µ2

(
L2
∗

2
‖xk − x∗‖4 +

L2
∗

4
‖xk+1 − x∗‖2‖xk − x∗‖2 +

2

n

n∑
i=1

∥∥Hk
i −∇fi(xk)

∥∥2

F
‖xk − x∗‖2

)

≤ 5L2
∗

2µ2
‖xk − x∗‖4 +

5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

nµ2

n∑
i=1

∥∥Hk
i −∇fi(x∗)

∥∥2

F
‖xk − x∗‖2

+
20

nµ2

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

F
‖xk − x∗‖2

≤ 5L2
∗

2µ2
‖xk − x∗‖4 +

5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

µ2
‖xk − x∗‖2Hk +

20L2
F

µ2
‖xk − x∗‖4

≤ 5L2
∗

4µ2
‖xk+1 − x∗‖2‖xk − x∗‖2 +

20

µ2
‖xk − x∗‖2Hk +

5(L2
∗ + 8L2

F)

2µ2
‖xk − x∗‖4. (39)

Using the assumptions we show that ‖xk − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
for all k ≥ 0. We prove this again by induction on k. From

‖xk − x∗‖2 ≤ µ2

20(L2
∗+8L2

F)
≤ 2µ2

5L2
∗

andHk ≤ µ2

160 , it follows

‖xk+1 − x∗‖2

≤ 5L2
∗

4µ2
‖xk − x∗‖2‖xk+1 − x∗‖2 +

20

µ2
Hk‖xk − x∗‖2 +

5(L2
∗ + 8L2

F)

2µ2
‖xk − x∗‖2‖xk − x∗‖2

≤ 1

2
‖xk+1 − x∗‖2 +

1

8
‖xk − x∗‖2 +

1

8
‖xk − x∗‖2

≤ 1

2
‖xk+1 − x∗‖2 +

1

4
‖xk − x∗‖2.

Hence

‖xk+1 − x∗‖2 ≤ 1

2
‖xk − x∗‖2 ≤ µ2

20(L2
∗ + 8L2

F)
. (40)

By this we complete the induction and also derived the local linear rate for iterates. Moreover, (39) and (40) imply

‖xk+1 − x∗‖2 ≤ 20

µ2
‖xk − x∗‖2Hk +

3L2
∗ + 20L2

F

µ2
‖xk − x∗‖4. (41)

Choosing y = xk and z = x∗ in Lemma B.1, and noting that Hk+1
i = Hk

i + αCki (∇2fi(x
k)−Hk

i ), we get

Ek
[
Hk+1

]
≤ (1−A)Hk +BL2

F‖xk − x∗‖2.
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Using the same Lyapunov function Φk = Hk + 6BL2
F‖xk − x∗‖2, from the above inequality and (40), we arrive at

Ek
[
Φk+1

]
≤ (1−A)Hk +BL2

F‖xk − x∗‖2 + 3BL2
F‖xk − x∗‖2

= (1−A)Hk +

(
1− 1

3

)
6BL2

F‖xk − x∗‖2

≤
(

1−min

{
A,

1

3

})
Φk.

Hence E[Φk] ≤
(
1−min

{
A, 1

3

})k
Φ0. We further have E[Hk] ≤

(
1−min

{
A, 1

3

})k
Φ0 and E[‖xk − x∗‖2] ≤

1
6BL2

F

(
1−min

{
A, 1

3

})k
Φ0 for k ≥ 0. Assume xk 6= x∗ for all k. Then from (41), we have

‖xk+1 − x∗‖2

‖xk − x∗‖2
≤ 20

µ2
Hk +

3L2
∗ + 20L2

F

µ2
‖xk − x∗‖2,

and by taking expectation, we have

E
[
‖xk+1 − x∗‖2

‖xk − x∗‖2

]
≤ 20

µ2
E[Hk] +

3L2
∗ + 20L2

F

µ2
E[‖xk − x∗‖2]

≤
(

1−min

{
A,

1

3

})k (
20 +

3L2
∗ + 20L2

F

6BL2
F

)
Φ0

µ2
.

To conclude, FedNL-CR method provably provides global rates (both for convex and strongly convex cases) and recovers
the same local rates (6), (7) and (8) that we showed for FedNL. Note that constants A and B are the same, while C and D
differ from (8).

E.6. Proof of Lemma E.2

Recall that R = sup{‖x−x∗‖ : f(x) ≤ f(x0)}. Since Tk(0) = 0, from (35) we can show that f(xk+1) ≤ f(xk) ≤ f(x0),
and hence ‖xk − x∗‖ ≤ R for all k ≥ 0. Denote

l̃k :=
1

n

n∑
i=1

l̃ki , l̃ki := ‖Hk
i −∇2fi(x

∗)‖F.

Notice that

lki = ‖∇2fi(x
k)−Hk

i ‖F
≤ ‖Hk

i −∇2fi(x
∗)‖F + ‖∇2fi(x

k)−∇2fi(x
∗)‖F

≤ l̃ki + LF‖xk − x∗‖
≤ l̃ki + LFR. (42)

Consider the case when compressors Cki ∈ C(δ) and the learning rate is either α = 1−
√

1− δ or α = 1. Using Lemma
B.1 with y = xk and z = x∗, for both cases we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
F‖xk − x∗‖2. (43)

Reusing (43) multiple times we get

‖Hk+1
i −∇2fi(x

∗)‖2F ≤ (1−A)‖Hk
i −∇2fi(x

∗)‖2F +BL2
FR

2

≤ (1−A)2‖Hk−1
i −∇2fi(x

∗)‖2F + [1 + (1−A)]BL2
FR

2

≤ (1−A)k+1‖H0
i −∇2fi(x

∗)‖2F +BL2
FR

2
∞∑
t=0

(1−A)t

≤ ‖H0
i −∇2fi(x

∗)‖2F +
B

A
L2

FR
2,
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which implies boundedness of l̃ki :

l̃ki ≤
√
‖H0

i −∇2fi(x∗)‖2F +
B

A
L2

FR
2 ≤ l̃0i +

√
B

A
LFR.

From this we also conclude boundedness of lk as follows

lk =
1

n

n∑
i=1

lki
(42)
≤ 1

n

n∑
i=1

l̃ki + LFR ≤ l̃0 +

(
1 +

√
B

A

)
LFR.

We can further upper bound l̃0 ≤
√
H0 and conclude l ≤

√
H0 +

(
1 +

√
B
A

)
LFR.

Consider the case when compressors Cki ∈ B(ω) and the learning rate α ≤ 1
ω+1 . As we additionally assume that (Hk

i )jl is a
convex combination of past Hessians {(∇2fi(x

0))jl, . . . , (∇2fi(x
k))jl}, we get

|(Hk
i −∇2fi(x

∗))jl|2 ≤ L2
∞ max

0≤t≤k
‖xt − x∗‖2 ≤ L2

∞R
2.

Therefore [
l̃ki

]2
= ‖Hk

i −∇2fi(x
∗)‖2F ≤ d2L2

∞R
2,

from which

lk =
1

n

n∑
i=1

lki
(42)
≤ 1

n

n∑
i=1

l̃ki + LFR ≤ dL∞R+ LFR = (dL∞ + LF)R.
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F. Extension: Bidirectional Compression (FedNL-BC)
Finally, we extend the vanilla FedNL to allow for an even more severe level of compression that can’t be attained by
compressing the Hessians only. This is achieved by compressing the gradients (uplink) and the model (downlink), in a
“smart” way. Thus, in FedNL-BC (Algorithm 5) described below, both directions of communication are fully compressed.

Algorithm 5 FedNL-BC (Federated Newton Learn with Bidirectional Compression)
1: Parameters: Hessian learning rate α ≥ 0; model learning rate η ≥ 0; gradient compression probability p ∈ (0, 1];

compression operators {Ck1 , . . . , Ckn} and CkM
2: Initialization: x0 = w0 = z0 ∈ Rd; H0

1, . . . ,H
0
n ∈ Rd×d and H0 := 1

n

∑n
i=1 H

0
i ; ξ0 = 1

3: for each device i = 1, . . . , n in parallel do
4: Get ξk from the server
5: if ξk = 1
6: Compute local gradient∇fi(zk) and send to the server
7: gki = ∇fi(zk), wk+1 = zk

8: if ξk = 0
9: gki = Hk

i (zk − wk) +∇fi(wk), wk+1 = wk

10: Compute local Hessian∇2fi(z
k)

11: Send Ski := Cki (∇2fi(z
k)−Hk

i ) and lki := ‖∇2fi(z
k)−Hk

i ‖F to the server
12: Update local Hessian shift to Hk+1

i = Hk
i + αSki

13: end for
14: on server
15: gk = 1

n

n∑
i=1

gki , Sk = 1
n

∑n
i=1 S

k
i , lk = 1

n

∑n
i=1 l

k
i

16: Option 1: xk+1 = zk −
[
Hk
]−1

µ
gk

17: Option 2: xk+1 = zk −
[
Hk + lkI

]−1
gk

18: Update global Hessian shifts Hk+1 = Hk + αSk

19: Send sk := CkM(xk+1 − zk) to all devices i ∈ [n]
20: Update the model zk+1 = zk + ηsk

21: Sample ξk+1 ∼ Bernoulli(p) and send to all devices i ∈ [n]
22: for each device i = 1, . . . , n in parallel do
23: Get sk from the server and update the model zk+1 = zk + ηsk

24: end for

F.1. Model learning technique

In FedNL-BC we introduced “smart" model learning technique, which is similar to the proposed Hessian learning
technique. As in Hessian learning technique, the purpose of the model learning technique is learn the optimal model x∗

in a communication efficient manner. This is achieved by maintaining and progressively updating global model estimates
zk for all nodes i ∈ [n] and for the sever. Thus, the goal is to make updates from zk to zk+1 easy to communicate and to
induce zk → x∗ throughout the training process. Similar to the Hessian learning technique, the server operates its own
compressors CkM and updates the model estimates zk via the rule zk+1 = zk + ηsk, where sk = CkM(xk+1 − zk) and η > 0
is the learning rate. Again, we reduce the communication cost by explicitly requiring the server to send compressed model
information sk to all clients.

F.2. Hessian corrected local gradients

The second key technical novelty in FedNL-PP is another structure of Hessian corrected local gradients

gki = Hk
i (zk − wk) +∇fi(wk)

(see line 9 of Algorithm 5). The intuition behind this form is as follows. Uplink gradient compression is done by Bernoulli
compression synchronized by the server: namely, if the Bernoulli trial ξk ∼ Bernoulli(p) is successful (i.e., ξk = 1, see line
5), then all clients compute and communicate the current true local gradients ∇fi(zk), otherwise (i.e., ξk = 0, see line 8)
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devices do not even compute the local gradient. In the latter case, devices approximate current local gradient ∇fi(zk) based
on stale local gradient ∇fi(wk) and current Hessian estimate Hk

i via the rule gki = Hk
i (zk − wk) +∇fi(wk), wk is the

last learned global model when Bernoulli trial was successful and local gradients are sent to the server.

To further motivate the structure of gki , consider for a moment the case when Hk
i = ∇2fi(x

k). Then gki = ∇2fi(x
k)(zk −

wk) +∇fi(wk) is, indeed, approximates∇f(zk) as

‖∇f(zk)−∇fi(wk)−∇2fi(x
k)(zk − wk)‖ ≤ L∗

2
‖zk − wk‖2 ≤ L∗‖zk − x∗‖2 + L∗‖wk − x∗‖2.

F.3. Local convergence theory

Similar to Assumptions 3.4 and 3.5, we need one of the following assumptions related to the compression done by the
master.

Assumption F.1. Compressors CkM ∈ C(δM) and learning rate (i) η = 1−
√

1− δM or (ii) δM = 1.

Assumption F.2. Compressors CkM ∈ B(ωM), learning rate 0 < η ≤ 1
ωM+1 . Moreover, for all j ∈ [d], each entry (zk)j is

a convex combination of {(xt)j}kt=0 for any k ≥ 0.

Note that Assumption 3.5 assumes that (Hk
i )jl is a convex combination of {(∇2fi(x

t))jl}kt=0 as the Hessian learning
technique is based on exact Hessians ∇2fi(x

k) at xk. However, in FedNL-BC, the Hessian learning technique is based on
Hessians ∇2fi(z

k) at zk. Hence, it makes sense to adapt Assumption 3.5 and assume that (Hk
i )jl is a convex combination

of {(∇2fi(z
t))jl}kt=0.

Moreover, we need alternatives to constants A, B, C, D in this case, which we denote by AM, BM, CM, DM and define
as follows

(AM, BM) :=


(η2, η) if Assumption F.1(i) holds
( δM4 ,

6
δM
− 7

2 ) if Assumption F.1(ii) holds
(η, η) if Assumption F.2 holds

(44)

(CM, DM) :=

{
(24, 8L2

F + 9/4L2
∗) if Option 1 is used in FedNL-BC

(32, 16L2
F + 9/4L2

∗) if Option 2 is used in FedNL-BC
. (45)

Following the same steps of Lemma B.1, one can show the following lemma for different compressors applied by the master
to handle Ek

[
‖zk + ηCkM(u− zk)− v‖2

]
term, where Ek[u] = u and Ek[v] = v.

Lemma F.3. For any u, v ∈ Rd such that Ek[u] = u and Ek[v] = v, we have the following result combining three different
cases from (44):

Ek‖zk + ηCkM(u− zk)− v‖2 ≤ (1−AM)‖zk − v‖2 +BM‖u− v‖2.

The proof of Lemma F.3 can be obtained by repeating the proof of Lemma B.1 with small modifications. Denote

rk :=
∥∥xk − x∗∥∥2

, νk :=
∥∥wk − x∗∥∥2

, γk =
∥∥zk − x∗∥∥2

.

E1 := 16L2
F, E2 := 16, E3 := 16L2

F + 8L2
∗.

We prove local linear rate for Lyapunov function Φk := ‖zk − x∗‖2 + AM

3p ‖w
k − x∗‖2. As a result, we show that both

zk → x∗ and wk → x∗ converge locally linearly.

Theorem F.4. Let Assumption 3.1 hold and assume that Hk ≤ AM

BM

µ2

9CM
and ‖zk − x∗‖2 ≤ AM

BM

µ2

9E3
for all k ≥ 0. Then,

we have the following linear rate for FedNL-BC:

E
[
Φk
]
≤
(

1−min

{
AM

3
,
p

2

})k
Φ0.

We assumed inequalities Hk ≤ AM

BM

µ2

9CM
and ‖zk − x∗‖2 ≤ AM

BM

µ2

9E3
hold for all k ≥ 0. Next we prove these inequalities

using initial conditions only.
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Lemma F.5. Let Assumptions 3.4 and F.1 hold. If

H0 ≤ AM

BM

µ2

9CM
, ‖z0 − x∗‖ ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
,

then the same upper bounds hold for all k ≥ 0, i.e.,

Hk ≤ AM

BM

µ2

9CM
, ‖zk − x∗‖ ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
.

Lemma F.6. Let Assumptions 3.5 and F.2 hold. If

‖x0 − x∗‖ ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
,

then the following upper bounds hold for all k ≥ 0, i.e.,

Hk ≤ µ2

9dCM
, ‖zk − x∗‖ ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
. (46)

F.4. Proof of Theorem F.4

Consider Option 1 first and expand ‖xk+1 − x∗‖2:

∥∥xk+1 − x∗
∥∥2

=
∥∥∥[Hk

µ

]−1
(Hk

µ(zk − x∗)− gk)
∥∥∥2

≤ 1

µ2

∥∥Hk
µ(zk − x∗)− gk

∥∥2
.

Then we decompose the term Hk
µ(zk − x∗)− gk as follows

Hk
µ(zk − x∗)− gk

= (Hk
µ −∇2f(zk))(zk − x∗) +

[
∇2f(zk)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)− gk

]
= (Hk

µ −∇2f(zk))(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−Hk(zk − wk)

]
= (Hk

µ −∇2f(zk))(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

]
+ (∇2f(zk)−Hk)(zk − wk) (47)
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and apply back to the previous inequality

∥∥xk+1 − x∗
∥∥2

≤ 4

µ2

(∥∥(Hk
µ −∇2f(zk))(zk − x∗)

∥∥2
+
∥∥∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

∥∥2

+
∥∥∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

∥∥4
+
∥∥(Hk −∇f(wk))(zk − wk)

∥∥4
)

≤ 4

µ2

(∥∥Hk −∇2f(zk)
∥∥2

F

∥∥zk − x∗∥∥2
+
∥∥Hk −∇2f(wk)

∥∥
F

∥∥zk − wk∥∥2

+
L2
∗

4

∥∥zk − x∗∥∥2
+
L2
∗

4

∥∥zk − wk∥∥2
)

≤ 4

µ2

(
2
∥∥Hk −∇2f(x∗)

∥∥2

F

∥∥zk − x∗∥∥2
+ 2

∥∥∇2f(zk)−∇2f(x∗)
∥∥2

F

∥∥zk − x∗∥∥2

+4
[∥∥Hk −∇2f(x∗)

∥∥2

F +
∥∥∇2f(wk)−∇2f(x∗)

∥∥2

F

] [∥∥zk − x∗∥∥2
+
∥∥wk − x∗∥∥2

]
+
L2
∗

4

∥∥zk − x∗∥∥4
+
L2
∗

4

∥∥zk − wk∥∥4
)

≤ 4

µ2

(
2
∥∥Hk −∇2f(x∗)

∥∥2

F

∥∥zk − x∗∥∥2
+ 2L2

F

∥∥zk − x∗∥∥4

+4
[∥∥Hk −∇2f(x∗)

∥∥2

F + L2
F

∥∥wk − x∗∥∥2
] [∥∥zk − x∗∥∥2

+
∥∥wk − x∗∥∥2

]
+
L2
∗

4

∥∥zk − x∗∥∥4
+ 2L2

∗
∥∥zk − x∗∥∥4

+ 2H2
∥∥wk − x∗∥∥4

)
≤ 4

µ2

(
2Hkγk + 2L2

Fγ
2
k + 4

[
Hk + L2

Fνk
]

(γk + νk) +
L2
∗

4
γ2
k + 2H2γ2

k + 2L2
∗ν

2
k

)
= γk

(
24

µ2
Hk +

8L2
F + 9/4L2

∗
µ2

γk +
16L2

F

µ2
νk

)
+

16

µ2
Hkνk +

16L2
F + 8L2

∗
µ2

ν2
k , (48)

where

Hk :=
1

n

n∑
i=1

∥∥Hk
i −∇2fi(x

∗)
∥∥2

F ,

rk :=
∥∥xk − x∗∥∥2

, νk :=
∥∥wk − x∗∥∥2

, γk =
∥∥zk − x∗∥∥2

.

For Option 2 we have similar bound with different constants. Recall that µI � ∇2f(xk) � Hk + lkI.

∥∥xk+1 − x∗
∥∥ =

∥∥∥[Hk + lkI
]−1 ([

Hk + lkI
]

(zk − x∗)− gk
)∥∥∥ ≤ 1

µ

∥∥[Hk + lkI
]

(zk − x∗)− gk
∥∥ .

Then we decompose the term
[
Hk + lkI

]
(zk − x∗)− gk similar to (47):

[
Hk + lkI

]
(zk − x∗)− gk

= (Hk −∇2f(zk))(zk − x∗) + lk(zk − x∗) +
[
∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

]
+
[
∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

]
+ (∇2f(zk)−Hk)(zk − wk)
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and apply back to the previous inequality∥∥xk+1 − x∗
∥∥2

≤ 5

µ2

(∥∥(Hk −∇2f(zk))(zk − x∗)
∥∥2

+ ‖lk(zk − x∗)‖2 +
∥∥∇2f(zk)(zk − x∗)−∇f(zk) +∇f(x∗)

∥∥2

+
∥∥∇f(zk)−∇f(wk)−∇2f(zk)(zk − wk)

∥∥4
+
∥∥(Hk −∇f(wk))(zk − wk)

∥∥4
)

≤ 5

µ2

(∥∥Hk −∇2f(zk)
∥∥2

F

∥∥zk − x∗∥∥2
+
[
lk
]2 ‖(zk − x∗)‖2 +

∥∥Hk −∇2f(wk)
∥∥

F

∥∥zk − wk∥∥2

+
L2
∗

4

∥∥zk − x∗∥∥2
+
L2
∗

4

∥∥zk − wk∥∥2
)

≤ 5

µ2

(
2

n

n∑
i=1

∥∥Hk
i −∇2fi(z

k)
∥∥2

F

∥∥zk − x∗∥∥2
+
∥∥Hk −∇2f(wk)

∥∥
F

∥∥zk − wk∥∥2

+
L2
∗

4

∥∥zk − x∗∥∥2
+
L2
∗

4

∥∥zk − wk∥∥2
)

≤ 5

µ2

(
4

n

n∑
i=1

∥∥Hk
i −∇2fi(x

∗)
∥∥2

F

∥∥zk − x∗∥∥2
+

4

n

n∑
i=1

∥∥∇2fi(z
k)−∇2fi(x

∗)
∥∥2

F

∥∥zk − x∗∥∥2

+4
[∥∥Hk −∇2f(x∗)

∥∥2

F +
∥∥∇2f(wk)−∇2f(x∗)

∥∥2

F

] [∥∥zk − x∗∥∥2
+
∥∥wk − x∗∥∥2

]
+
L2
∗

4

∥∥zk − x∗∥∥4
+
L2
∗

4

∥∥zk − wk∥∥4
)

≤ 5

µ2

(
4Hk

∥∥zk − x∗∥∥2
+ 4L2

F

∥∥zk − x∗∥∥4

+4
[∥∥Hk −∇2f(x∗)

∥∥2

F + L2
F

∥∥wk − x∗∥∥2
] [∥∥zk − x∗∥∥2

+
∥∥wk − x∗∥∥2

]
+
L2
∗

4

∥∥zk − x∗∥∥4
+ 2L2

∗
∥∥zk − x∗∥∥4

+ 2H2
∥∥wk − x∗∥∥4

)
≤ 5

µ2

(
4Hkγk + 4L2

Fγ
2
k + 4

[
Hk + L2

Fνk
]

(γk + νk) +
9L2
∗

4
γ2
k + 2L2

∗ν
2
k

)
= γk

(
32

µ2
Hk +

16L2
F + 9/4L2

∗
µ2

γk +
16L2

F

µ2
νk

)
+

16

µ2
Hkνk +

16L2
F + 8L2

∗
µ2

ν2
k . (49)

Combining (48) and (49) with (45), we have

rk+1 ≤ γk
(
CM

µ2
Hk +

DM

µ2
γk +

E1

µ2
νk

)
+
E2

µ2
Hkνk +

E3

µ2
ν2
k , (50)

where E1 := 16L2
F, E2 := 16, E3 := 16L2

F + 8L2
∗.

Choosing y = zk and z = x∗ in Lemma B.1, we get the following recurrence forHk:

Ek
[
Hk+1

]
≤ (1−A)Hk +BL2

Fγk. (51)

Choosing u = xk+1 and v = x∗ in Lemma F.3, we get the following recurrence for γk:

Ek [γk+1] (52)
≤ (1−AM)γk +BMrk+1

(49)
≤ (1−AM)γk + γk

(
BMCM

µ2
Hk +

BMDM

µ2
γk +

BME1

µ2
νk

)
+
BME2

µ2
Hkνk +

BME3

µ2
ν2
k .

Assume that Hk ≤ AM

BM

µ2

max(9CM,12E2) = AM

BM

µ2

9CM
and γk ≤ AM

BM

µ2

9 max(DM,E1,E3) = AM

BM

µ2

9E3
for all k ≥ 0. Then from the

update rule of wk we also have νk ≤ µ2AM

9BM max(DM,E1,E3) . Using this upper bounds we can simplify the recurrence relation
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for γk to the following

Ek [γk+1] ≤
(

1− 2AM

3

)
γk +

AM

6
νk. (53)

In addition, from the update rule of wk we imply

Ek [νk+1] = (1− p)νk + pγk.

Finally, for the Lyapunov function

Φk = γk +
AM

3p
νk,

we have

Ek
[
Φk+1

]
= Ek [γk+1] +

AM

3p
Ek [νk+1]

≤
(

1− 2AM

3

)
γk +

AM

6
νk +

AM

3p
[(1− p)νk + pγk]

=

(
1− AM

3

)
γk +

(
1− p

2

) AM

3p
νk

≤
(

1−min

{
AM

3
,
p

2

})
Φk. (54)

F.5. Proof of Lemma F.5

We prove the lemma by induction. Let for some k we have Hk ≤ AM

BM

µ2

9CM
and γk ≤ min

{
AM

BM

µ2

9E3
, A
BL2

F

AM

BM

µ2

9CM

}
.

Then, from the definition of wk we have νk ≤ min
{
AM

BM

µ2

9E3
, A
BL2

F

AM

BM

µ2

9CM

}
. Since compressors CkM are deterministic

(Assumption F.1), from (53) we conclude

γk+1 ≤
(

1− 2AM

3

)
γk +

AM

6
νk ≤ max{γk, νk} ≤ min

{
AM

BM

µ2

9E3
,
A

BL2
F

AM

BM

µ2

9CM

}
.

Since compressors Cki are deterministic (Assumption 3.4), from (51) we conclude

Hk+1 ≤ (1−A)Hk +BL2
Fγk ≤ (1−A)

AM

BM

µ2

9CM
+BL2

F

A

BL2
F

AM

BM

µ2

9CM
=
AM

BM

µ2

9CM
.

F.6. Proof of Lemma F.6

First note that in this case AM = BM = η so that the ratio AM

BM
= 1. From the Assumption F.2, we have H0

i = ∇2fi(z
0),

from which we get

‖H0
i −∇2fi(x

∗)‖2M ≤ L2
∞‖z0 − x∗‖2 ≤ µ2

9dCM
,

which impliesH0 ≤ µ2

9dCM
. Also notice that x0 = z0 so that (46) holds for k = 0. Next we do induction. Let

Hk ≤ µ2

9dCM
, ‖zk − x∗‖ ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
, ‖xk − x∗‖ ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
.

hold for all k ≤ K and prove it for k = K + 1. Using boundsHk ≤ µ2

9dCM
and γk ≤ µ2

9dE3
we deduce from (50) that

‖xK+1 − x∗‖2 ≤ 1

3d
γK +

1

6d
νK ≤

1

d
max{γK , νK} ≤ min

{
µ2

9d2E3
,

µ2

9CMd4L2
∞

}
.
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Since (zK+1)j is a convex combination of {(xt)j}K+1
t=0 , we get

‖zK+1 − x∗‖2 =

d∑
j=1

|(zK+1 − x∗)j |2

≤
d∑
j=1

max
0≤t≤K+1

|(xt − x∗)j |2

≤ d max
0≤t≤K+1

‖xt − x∗‖2 ≤ min

{
µ2

9dE3
,

µ2

9CMd3L2
∞

}
.

Since (HK+1
i )jl is a convex combination of {(∇2fi(z

t))jl}K+1
t=0 , we get

‖HK+1
i −∇2fi(x

∗)‖2 =

d∑
j,l=1

|(HK+1
i −∇2fi(x

∗))jl|2

≤ d2L2
∞ max

0≤t≤K+1
‖zt − x∗‖2 ≤ µ2

9dCM
.

The last three inequalities complete the induction step and we conclude the lemma.
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G. Local Quadratic Rate of NEWTON-STAR for General Finite-Sum Problems
In their recent work, Islamov et al. (2021) proposed a novel Newton-type method, which does not update the Hessian
estimator from iteration to iteration and, meanwhile, preserves fast local quadratic rate of convergence. The method can be
describe with a single update rule preformed by the master:

xk+1 = xk −
[
∇2f(x∗)

]−1∇f(xk), k ≥ 0. (55)

Note that parallel nodes need to send the master only gradient information∇fi(xk). Then master aggregates them, performs
the update step (55) and sends new parameters xk+1 to devices for the next round. While this scheme is very simple-looking,
notice that the update rule (55) depends on the knowledge of ∇2f(x∗), where x∗ is the (unique) solution of (1). As we do
not know x∗ (otherwise there is no sense to do any training), this method, called NEWTON-STAR, is practically useless
and cannot be implemented. However, this method was quite useful in theory, since it led to a new practical method.

Now, the local quadratic rate of NEWTON-STAR was shown using some special structure of local loss functions fi(x).
Here we provide a very simple proof of local quadratic rate which works for any smooth losses and does not need special
structure of fi(x).

Theorem G.1. Assume that f : Rd → R has L∗-Lipschitz Hessian and the Hessian at the optimum x∗ is positive definite
with parameter µ > 0. Then local convergence rate of NEWTON-STAR (55) is quadratic, i.e., for any k ≥ 0 and initial
point x0 ∈ Rd we have

‖xk+1 − x∗‖ ≤ L∗
2µ
‖xk − x∗‖2.

Proof. As we do not have a regularization term in our ERM problem, we imply∇f(x∗) = 0. Hence

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − [∇2f(x∗)

]−1∇f(xk)
∥∥∥

≤
∥∥∥[∇2f(x∗)

]−1
∥∥∥ ∥∥∇2f(x∗)(xk − x∗)−∇f(xk) +∇f(x∗)

∥∥
≤ L∗

2µ
‖xk − x∗‖2,

where we used positive definiteness∇2f(x∗) � µI and L∗-Lipschitzness of the Hessian∇2f(x), namely∥∥∇2f(y)(x− y)−∇f(x) +∇f(y)
∥∥ ≤ L∗

2
‖x− y‖2, x, y ∈ Rd.
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H. Table of Frequently Used Notation

Table 4. Notation we use throughout the paper.
Basic

d number of the model parameters to be trained
n number of the devices/workers/clients in distributed system

[n] := {1, 2, . . . , n}
fi local loss function associated with data stored on device i ∈ [n] (1)
f := 1

n

∑n
i=1 fi(x), overall empirical loss/risk (1)

x∗ trained model, i.e., the optimal solution to (1)
ε target accuracy

Rd×d the set of d× d square matrices
(M)jl the element at jth row and lth column of matrix M

Standard
µ strong convexity parameter of f Asm 3.1
L Lipschitz constant of the gradient∇f(x) w.r.t. the Euclidean norm Thm D.1
L∗ Lipschitz constant of the Hessian∇2f(x) w.r.t. the spectral norm Asm 3.1
LF Lipschitz constant of the Hessian∇2f(x) w.r.t. the Frobenius norm Asm 3.1
L∞ Lipschitz constant of the Hessian∇2f(x) w.r.t. the max norm Asm 3.1
C (possibly randomized) compression operator C : Rd → Rd (3), (4)

B(ω) class of unbiased compressors with bounded variance ω ≥ 0 Def 3.2
C(δ) class of deterministic contractive compressors with contraction δ ∈ [0, 1] Def 3.3

Algorithm names
GD Gradient Descent

GD-LS GD with Line Search procedure
DIANA Compressed GD with variance reduction (Mishchenko et al., 2019)

ADIANA DIANA with Nesterov’s acceleration (Li et al., 2020b)
N classical Newton

NS Newton Star (55)
N0 Newton Zero (new) (9)

N0-LS Newton Zero with Line Search procedure (new)
NL1, NL2 Newton Learn methods of Islamov et al. (2021)

CNL Cubic Newton Learn (Islamov et al., 2021)
DINGO Distributed Newton-type method of (Crane & Roosta, 2019)
FedNL Federated Newton Learn (new) Alg 1

FedNL-PP Extension to FedNL: Partial Participation (new) Alg 2
FedNL-LS Extension to FedNL: Globalization via Line Search (new) Alg 3
FedNL-CR Extension to FedNL: Globalization via Cubic Regularization (new) Alg 4
FedNL-BC Extension to FedNL: Bidirectional Compression (new) Alg 5

Federated Newton Learn (FedNL)
Hk
i estimate of the local optimal Hessian∇2fi(x

∗) at client i in iteration k
Hk estimate of the global optimal Hessian∇2f(x∗) at the server in iteration k
α Hessian learning rate
Cki compression operator applied by the client i in iteration k
Ski := Cki (∇2fi(x

k)−Hk
i ) compressed second order information

lki := ‖∇2fi(x
k)−Hk

i ‖F compression error
A, B constants depending on the choice of compressors Cki and learning rate α (5)
C, D constants depending on which option is chosen for the global update (5)

Experiments
{aij , bij} jth data point stored in device i (10)

m number of local training data points (10)
λ regularization parameter (10)
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I. Limitations
Here we discuss main limitations of our approach and directions which are not explored in this work.

• Our theory covers weakly convex (the rate (33)) and strongly convex (all other rates of this paper) loss functions. We
do not consider non-convex objectives in this work.

• All the proposed methods are analyzed in the regime when the exact local gradients and exact local Hessians of local
loss functions are computed for all participating devices. We do not consider stochastic gradient or stochastic Hessian
oracles of local loss functions in our analyses.

• We present separate methods/extensions (FedNL, FedNL-PP, FedNL-CR, etc) for each setup (compressed commu-
nication, partial participation, globalization, etc) to make our contributions clearer. For practical purposes, however,
one might need to combine these extensions in order to get a method which supports compressed communication,
partial participation, globalization, etc at the same time. We do not design a single master method containing all these
extensions as special cases.

• Finally, we do not provide strong (differential) privacy guarantees for our methods. Our privacy enhancement
mechanism offers the most rudimentary level of privacy only: we forbid the devices do directly send/reveal their
training data to the server.
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