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Abstract
Distributed machine learning has become an in-
dispensable tool for training large supervised ma-
chine learning models. To address the high com-
munication costs of distributed training, a large
body of work has been devoted in recent years to
the design of various compression strategies, such
as sparsification and quantization, and optimiza-
tion algorithms capable of using them. Recently,
Safaryan et al. (2021) pioneered a dramatically
different compression design approach: they first
use the local training data to form local smooth-
ness matrices, and then propose to design a com-
pressor capable of exploiting the smoothness in-
formation contained therein. While this novel
approach leads to substantial savings in communi-
cation, it is limited to sparsification as it crucially
depends on the linearity of the compression oper-
ator. It is an open problem whether this approach
can be useful in the design of other smoothness-
aware compression techniques, such as quantiza-
tion.

In this work, we resolve this problem by extending
their smoothness-aware compression strategy to
arbitrary unbiased compression operators, which
also includes sparsification. Specializing our re-
sults to quantization, we observe significant sav-
ings in communication complexity compared to
standard quantization. In particular, we show the-
oretically that block quantization with n blocks
outperforms single block quantization, leading to
a reduction in communication complexity by an
O(n) factor, where n is the number of nodes in
the distributed system. Finally, we provide ex-
tensive numerical evidence that our smoothness-
aware quantization strategies outperform existing
quantization schemes as well the aforementioned
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smoothness-aware sparsification strategies with
respect to all relevant success measures: the num-
ber of iterations, the total amount of bits commu-
nicated, and wall-clock time.

1. Introduction
Training modern machine learning models is typically cast
in terms of (regularized) empirical risk minimization prob-
lem and requires increasingly more training data to make
empirical risk closer to the true risk (Schmidhuber, 2015;
Vaswani et al., 2019). This natural requirement makes it
harder (and in some scenarios impossible) to collect all data
in one place and carry out the training using a single data
source. As a result, we reconciled with a flock of datasets
disseminated across various compute nodes holding the ac-
tual training data (Bekkerman et al., 2011; Vogels et al.,
2019). However, such divide-and-conquer approach of han-
dling vast amount of data means that local updates need to
be communicated among the nodes (or through some cen-
tral server orchestrating the process), which often forms the
main bottleneck in modern distributed systems (Zhang et al.,
2017; Lin et al., 2018). This issue is further exacerbated by
the fact that modern highly performing models are typically
overparameterized (Brown et al., 2020; Narayanan et al.,
2021).

1.1. Distributed training

In general, distributed training can be formalized as the
following optimization problem

min
x∈Rd

f(x) +R(x), where f(x)
def
= 1

n

n∑
i=1

fi(x), (1)

and where d is the number of parameters of model x ∈ Rd to
be trained, n is the number of machines/nodes participating
in the training, fi(x) is the loss/risk associated with the data
stored on machine i ∈ [n]

def
= {1, 2, . . . , n}, f(x) is the

empirical loss/risk, and R(x) is a regularizer.

Because of the communication constraints, large body of
work has been devoted in recent years to the design of vari-
ous compression strategies, such as sparsification (Konečný
& Richtárik, 2018; Wangni et al., 2018; Alistarh et al.,
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2018), quantization (Goodall, 1951; Roberts, 1962; Alis-
tarh et al., 2017), low-rank approximation (Vogels et al.,
2019), and optimization algorithms capable of using them,
such as Distributed Compressed Gradient Descent (DCGD)
(Khirirat et al., 2018), QSGD (Alistarh et al., 2017; Faghri
et al., 2020), NUQSGD (Ramezani-Kebrya et al., 2021),
DIANA (Mishchenko et al., 2019; Horváth et al., 2019),
PowerSGD (Vogels et al., 2019), signSGD (Bernstein et al.,
2018; Safaryan & Richtárik, 2021), intSGD (Mishchenko
et al., 2021), ADIANA (Li et al., 2020), MARINA (Gor-
bunov et al., 2021).

1.2. From scalar smoothness to matrix smoothness

Typically, distributed optimization algorithms in the litera-
ture that employ compressed communication, including all
methods from the aforementioned works, use only shallow
smoothness information of the loss function such as scalar
L-smoothness (Nesterov, 2004).

Definition 1 (Scalar Smoothness). Differentiable function
φ : Rd → R is called L-smooth if there exists a non-
negative scalar value L ≥ 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ L
2 ‖x− y‖

2, (2)

for all x, y ∈ Rd.

As pointed out by Safaryan et al. (2021), smoothness con-
stantL reflects small part of the rich smoothness information
often easily available through the training data. In their re-
cent work, Safaryan et al. (2021) pioneered a dramatically
different compression design approach. First, they propose
to use the local training data to form local smoothness matri-
ces, which they claim contain much more useful information
than standard smoothness constants.

Definition 2 (Matrix Smoothness). Differentiable function
φ : Rd → R is called L-smooth if there exists a symmetric
positive semidefinite matrix L � 0 such that

φ(x) ≤ φ(y) + 〈∇φ(y), x− y〉+ 1
2‖x− y‖

2
L, (3)

for all x, y ∈ Rd.

Using smoothness matrices Li of all local loss functions
fi(x), i ∈ [n], Safaryan et al. (2021) design a compressor
capable of exploiting the smoothness information contained
within the smoothness matrices. In particular, under certain
heterogeneity conditions on the smoothness matrices Li,
their new compressor reduces total communication cost by
a factor of O(min(n, d)).

While this novel approach leads to substantial
savings in communication, it is limited to ran-
dom sparsification as it crucially depends on the
linearity of the compression operator. It is not

clear whether this approach can be useful in the
design of other smoothness-aware compression
techniques.

2. Summary of Contributions
Motivated by the above mentioned development, in this
work, we made the following contributions.

2.1. Extending matrix-smoothness-aware sparsification
to general compression schemes

First, we generalize the smoothness-aware sparsification
strategy (Safaryan et al., 2021) to arbitrary unbiased com-
pressors. Instead of sparsification operator, we consider
the generic class B(ω) of (possibly randomized) unbiased
compression operators C : Rd → Rd with bounded variance
ω ≥ 0, i.e.,

E [C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω‖x‖2,

for all x ∈ Rd. This class is quite broad including random
sparsification and various quantization schemes. To ben-
efit from the matrix smoothness information with general
compressor C, we propose the following modification in
the communication protocol. If x ∈ Rd is the vector to be
communicated, instead of applying compressor C directly
to x and sending C(x), we compress it by C(L†1/2x) and
decompress it by multiplying L1/2. Overall, the receiver
estimates the original x by L1/2C(L†1/2x).

2.2. Distributed compressed methods with improved
communication complexity

To highlight the appropriateness of our generalization, we re-
design two distributed compressed methods—DCGD (Khiri-
rat et al., 2018) and DIANA (Mishchenko et al., 2019)—
to effectively utilize both matrix smoothness information
and general compression operators leading to new meth-
ods, which we call DCGD+ (Algorithm 1) and DIANA+
(Algorithm 2). The key notion we introduce that enables
the technical analysis is the following quantity describing
interaction between compression operator C ∈ Bd(ω) and
smoothness matrix L � 0:

L(C,L)
def
= inf

{
L ≥ 0: E‖C(x)− x‖2L ≤ L‖x‖2, ∀x

}
.

This quantity generalizes the one defined in (Safaryan et al.,
2021) for sparsification, and provides means for tighter
theoretical guarantees (Theorems 1 and 2) and better com-
pression design. Notice that L(C,L) ≤ ωλmax(L).

2.3. Block quantization

As we are no longer constrained to sparsification to exploit
matrix smoothness, we consider more aggressive quantiza-
tion schemes to further reduce the communication cost. Our
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Table 1. Summary of main theoretical results of this work. Below constants and log 1
ε

factors are hidden, n is the number of nodes, d is
the model size, Lmax = maxi Li, Li = λmax(Li), the expected smoothness constant Lmax is defined in (4), the variance of generic
compression operator is denoted by ω, parameters ν and ν1 are defined in (8). Refer the notation table in the Appendix.

Regime ∇fi(x∗) ≡ 0 arbitrary∇fi(x∗)

Original Methods DCGD (Khirirat et al., 2018) DIANA (Mishchenko et al., 2019)

Iteration Complexity L
µ
+ ωLmax

nµ
ω + Lmax

µ
+ ωLmax

nµ

Communication Complexity
Standard Quantization (ω = O(n)) dLmax

µ
nd+ dLmax

µ

Redesigned Methods DCGD+ (Algorithm 1)
with general compression

DIANA+ (Algorithm 2)
with general compression

Iteration Complexity L
µ
+ Lmax

nµ
ωmax + L

µ
+ Lmax

nµ

Communication Complexity
Block Quantization (n = O(

√
d))

d
n
Lmax
µ

(if ν, ν1 are O(1))

nd+ d√
nd

Lmax
µ

(if ν, ν1 are O(1))

Communication Complexity
Quantization with varying steps

d
n
Lmax
µ

+ d
d
Lmax
µ

(if ν, ν1 are O(1))

nd+ d
n
Lmax
µ

+ d
d
Lmax
µ

(if ν, ν1 are O(1))

Theorems 1, 3, 5 2, 4, 6

Speedup factor (up to) min(n, d) min(n, d)

first extension of standard quantization (Alistarh et al., 2017)
is block quantization, where each block is allowed to have a
separate quantization parameter. Notably, we show theoreti-
cally that our block quantization with n blocks outperforms
single block quantization and saves in communication by a
factor of O(n) for both DCGD+ (Theorem 3) and DIANA+
(Theorem 4) when n = O(

√
d).

2.4. Quantization with varying steps

In our second extension of standard quantization, we go
even further and allow all coordinates to have their own
quantization steps. This extension turns out to be more
efficient in practice than block quantization and provides
savings in communication cost by a factor of O(min(n, d))
for both DCGD+ (Theorem 5) and DIANA+ (Theorem 6).

2.5. Experiments

Finally, we perform extensive numerical experiments using
LibSVM data (Chang & Lin, 2011) and provide clear nu-
merical evidence that the proposed smoothness-aware quan-
tization strategies outperform existing quantization schemes
as well the aforementioned smoothness-aware sparsification
strategies with respect to all relevant success measures: the
number of iterations, the total amount of bits communicated,
and wall-clock time (see Section 6 and the Appendix).

3. Smoothness-Aware Distributed Methods
with General Compressors

In this section we extend methods DCGD+ and DIANA+ of
(Safaryan et al., 2021) to handle arbitrary unbiased compres-
sion operators. We consider the problem (1) with matrix
smoothness assumption for all local losses fi(x) and with
strong convexity of loss function f(x).

Assumption 1 (Matrix smoothness). The functions
fi : Rd → R are differentiable, convex, lower bounded
and Li-smooth. Besides, f is L-smooth with the scalar
smoothness constant L def

= λmax(L).

Note that lower boundedness of fi(x) is not needed once
Li � 0 is invertible. This part of the assumption is not
a restriction in applications as all loss function are lower
bounded.

Assumption 2 (µ-convexity). The function f : Rd → R is
µ-convex for some µ > 0, i.e.,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ
2 ‖x− y‖

2,

for all x, y ∈ Rd.

3.1. DCGD+ with arbitrary unbiased compression

In our version of DCGD+, each node i ∈ [n] is allowed to
control its own compression operator Ci ∈ B(ω) indepen-
dent of other nodes. Denote

Lmax
def
= max1≤i≤n Li, where Li

def
= L(Ci,Li). (4)
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Furthermore, as the compressor Ci can be random, denote
by Cki a copy of Ci generated at iteration k.

Algorithm 1 DCGD+ WITH GENERAL COMPRESSION

1: Input: Initial point x0 ∈ Rd, step size γ > 0, compres-
sion operators {Ck1 , . . . , Ckn}

2: on server
3: send xk to all nodes
4: get Cki (L

†1/2
i ∇fi(xk)) from all nodes i ∈ [n]

5: gk = 1
n

∑n
i=1 L

1/2
i Cki (L

†1/2
i ∇fi(xk))

6: update the model to xk+1 = proxγR(xk − γgk)

Similar to the standard DCGD method, convergence of
DCGD+ is linear up to some oscillation neighborhood. How-
ever, for overparametrized models this neighborhood van-
ishes and the method converges linearly to the exact solu-
tion.

Theorem 1. Let Assumptions 1 and 2 hold and assume that
each node i ∈ [n] generates its own copy of compression
operator Cki ∈ Bd(ωi) independently from others. Then,
for the step-size 0 < γ ≤ 1

L+ 2
nLmax

, the iterates {xk} of
DCGD+ (Algorithm 1) satisfy

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 +
2γσ∗+
µn , (5)

where σ∗+
def
= 1

n

∑n
i=1 Li‖∇fi(x∗)‖2L†i

. In particular, if

the model is overparameterized (i.e., ∇fi(x∗) = 0 for all
i ∈ [n]), then DCGD+ converges linearly with iteration
complexity

O
((

L
µ + Lmax

nµ

)
log 1

ε

)
. (6)

We show later that the linear rate (6) of DCGD+ can be much
better than one of DCGD. However, the size of the neigh-
borhood of DCGD+ might be bigger than of DCGD. In case
of standard (scalar) smoothness (i.e. Li = LiI) the size of
the neighborhood would be σ∗ def

= 1
n

∑n
i=1 ωi‖∇fi(x∗)‖2,

which might be smaller than σ∗+. Even though we have
Li ≤ ωiλmax(Li) from the definition of Li, it does not
imply LiL†i � ωiI. Thus, with matrix-smoothness-aware
compression we ensure faster linear convergence at the cost
of a possibly larger oscillation radius. This is not an issue for
modern overparameterized models, which can interpolate
the whole training data with zero loss. Moreover, next we
present an algorithmic solution to remove the neighborhood
using the DIANA method.

3.2. DIANA+ with arbitrary unbiased compression

The mechanism allowing to remove the neighborhood in DI-
ANA+ is based on the DIANA method, which was initially
introduced for ternary quantization by Mishchenko et al.

(2019), and then extended to arbitrary unbiased compres-
sion operators by Horváth et al. (2019). The high level idea
is to learn the local optimal gradients ∇fi(x∗) by estimates
uki for all nodes i ∈ [n] in a communication efficient manner.
Nodes use these estimates uki to progressively construct bet-
ter local gradient estimates gki reducing the variance induced
from the compression.

Algorithm 2 DIANA+ WITH GENERAL COMPRESSION

1: Input: Initial point x0 ∈ Rd, initial shifts u0i ∈
range(Li) and u0 def

= 1
n

∑n
i=1 u

0
i , step size parameters

γ > 0 and α > 0, compression operators {Ck1 , . . . , Ckn}
2: for each node i = 1, . . . , n in parallel do
3: get xk from the server and compute∇fi(xk)

4: send ∆k
i = Cki (L

†1/2
i (∇fi(xk)− uki )) to the server

5: update local gradient and shift
∆k
i = L

1/2
i ∆k

i , g
k
i = uki + ∆k

i , u
k+1
i = uki + α∆k

i

6: end for
7: on server
8: get sparse updates ∆k

i from all nodes i ∈ [n]
9: ∆k = 1

n

∑n
i=1 ∆k

i , g
k = ∆k + uk

10: update the global model xk+1 = proxγR(xk − γgk)

11: update the global shift uk+1 = uk + α∆k

We prove in the Appendix that both iterates xk and all local
gradient estimates uki converge linearly to the exact solution
x∗ and ∇fi(x∗) respectively.

Theorem 2. Let Assumptions 1 and 2 hold and assume that
each node i ∈ [n] generates its own copy of compression
operator Cki ∈ Bd(ωi) independently from others. Then,
for the step-size γ = 1

L+ 6
nLmax

, DIANA+ (Algorithm 2)

guarantees E
[
‖xk − x∗‖2

]
≤ ε after

O
((
ωmax + L

µ + Lmax

nµ

)
log 1

ε

)
(7)

iterations, where ωmax = max1≤i≤n ωi.

Notice that the cost of removing the neighborhood is the
extra O(ωmax log 1

ε ) iterations, which is negligible in the
overall complexity (7) above. Another interesting obser-
vation is the second order flavor of the gradient learning
technique employed by DIANA+. Let, for concreteness,
matrices Li be invertible and Cki (−x) = −Cki (x) for all
x ∈ Rd (both random sparsification and quantization sat-
isfy this). Typically, the learning procedure of the origi-
nal DIANA method, uk+1

i = uki − αCki (uki − ∇fi(xk)),
can be interpreted as a single step of CGD applied to
the problem of minimizing the convex quadratic function
ϕki (u)

def
= 1

2

∥∥u−∇fi(xk)
∥∥2 , which changes in each itera-

tion because the gradient changes. In contrast, we observe
that the learning mechanism of DIANA+ can be interpreted
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as a single step of a (dumped) Newton’s method with com-
pressed gradients and with the true Hessian. Indeed, fix the
iteration counter k and denote

ϕki (u)
def
= 1

2

∥∥u−∇fi(xk)
∥∥2
L
−1/2
i

.

Then, the update rule of shifts uki in DIANA+ can be rewrit-
ten as

uk+1
i = uki − αL

1/2
i Cki (L

−1/2
i (uki −∇fi(xk)))

= uki − α
[
∇2ϕki (uki )

]−1 Cki (∇ϕki (uki )).

This might serve as an extra explanation on why incor-
porating smoothness matrices properly can improve the
performance of first order methods with communication
compression.

3.3. Baselines for the original methods

To make the theoretical comparison against DCGD and
DIANA more transparent, we fix the following baselines
using the standard quantization scheme.

• Baseline for DCGD. Based on the iteration complexity
Õ(Lµ + ωLmax

nµ ) of DCGD (in case∇fi(x∗) = 0 for all i ∈
[n]) the optimal level of compression variance ω = O(n)

results in Õ(Lmax

µ ) iterations complexity. From the estimate

of quantization variance ω = min
(
d
s2 ,
√
d
s

)
we conclude

that s = O(
√
d
n ) number of levels should be used. Finally,

with this choice of s, each node communicates O(s2 +
s
√
d) = O( dn ) amount of bits. Thus, total communication

complexity (i.e. how many bits flows through the central
server) of DCGD is Õ(dLmax

µ ).

• Baseline for DIANA. Based on the iteration complexity
Õ(ω+ Lmax

µ + ωLmax

nµ ) of DIANA method, we fix the same
level of compression with ω = O(n). With a similar ar-
gument, this leads us to Õ(n+ Lmax

µ ) iteration complexity
and O( dn ) bits of communication per node in each itera-
tion. Whence, total communication complexity becomes
Õ(dn+ dLmax

µ ).

To compare the proposed methods with these baselines and
highlight improvement factors, define parameters ν and ν1
describing local smoothness matrices Li as follows

ν
def
=

∑n
i=1 Li

maxi∈[n] Li
, ν1

def
= max

i∈[n]

∑d
j=1 Li;j

maxj∈[d] Li;j
, (8)

where Li = λmax(Li), Lmax
def
= max1≤i≤n Li and Li;j is

the jth diagonal element of matrix Li. Parameters ν ∈ [1, n]
and ν1 ∈ [1, d] describe the level of heterogeneity over the
nodes and coordinates respectively. If Li matrices coincide,
then ν = n and ν1 = d. On the other extreme, when the
values of Li are extremely non-uniform, we have ν � n
and ν1 � d.

Notice that the quantity Lmax

µn in (6) and the quantity ωmax +
Lmax

µn in (7) depend on compression operators Cki applied by
the nodes. For the rest of the paper we are going to minimize
these quantities with respect to the choice of Cki in such a
way to minimize total communication complexity of the
proposed distributed methods. We specialize compressors
Ci to two different extensions of standard quantization and
optimize with respect to compression parameters.

4. Block Quantization
We now present our first extension to standard quantiza-
tion in order to properly capture the matrix smoothness
information. Instead of having a single quantization pa-
rameter (e.g. number of levels) for all coordinates, here
we divide the space Rd into B ∈ {1, 2, . . . , d} blocks as
Rd = Rd1 × Rd2 × · · · × RdB and for each subspace
Rdl , l ∈ [B] we apply standard quantization independently
from other blocks with different number of levels sl. Thus,
for any l ∈ [B] we allocate one parameter sl for lth block
of x ∈ Rd. Hence quantization is applied block-wise: for
each block we send the norm ‖xl‖ of the block xl ∈ Rdl
and all entries within this block are quantized with levels
{0, 1

sl
, 2
sl
, . . . , 1}. In the special case of B = 1, we get the

standard quantization of Alistarh et al. (2017).

To get rid of the constraints on sl to be integers, instead of
working with the number of levels sl, we introduce the size
of the quantization step hl = 1

sl
and allow them to take any

positive values (even bigger than 1). Thus, for each block
l ∈ [B] we quantize with respect to levels {0, hl, 2hl, . . . }.
Definition 3 (Block Quantization). For a given num-
ber of blocks B ∈ [d] and fixed quantization steps
h = (h1, . . . , hB), define block-wise quantization operator
QBh : Rd → Rd as follows:[

QBh (x)
]
t

def
= ‖xl‖ · sign(xt) · ξl

(
|xt|
‖xl‖

)
,

where x ∈ Rd, t = (l − 1)B + j, j ∈ [dl], l ∈ [B]
and ξl(v) for v ≥ 0 is defined via the quantization levels
{0, hl, 2hl, . . . } as follows: if khl ≤ v < (k + 1)hl for
some k ∈ {0, 1, 2, . . . }, then

ξl(v)
def
=

{
khl with prob. k + 1− v

hl

(k + 1)hl with prob. v
hl
− k

. (9)

Note that QBh is an unbiased compression operator as
E [ξj(v)] = v for any v ≥ 0. To communicate a vector
of the formQBh (x), we encode each block

[
QBh (x)

]l ∈ Rdl
using Elias ω-coding as in the standard quantization scheme
(Alistarh et al., 2017). Hence, for each block l ∈ [B]

we need to send Õ( 1
h2
l

+
√
dl
hl

) bits and one floating point

number for ‖xl‖. Overall, the number of encoding bits
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for QBh (x) (up to constant and log factors) can be given
by
∑B
l=1( 1

h2
l

+
√
dl
hl

) + B. As for the compression noise,
we prove in the Appendix the following upper bound for
L(QBh ,L):

L(QBh ,L) ≤ max1≤l≤B hl‖Diag(Lll)‖, (10)

where Lll is the lth diagonal block matrix of L with sizes
dl × dl. Next, we are going to minimize communication
complexity of DCGD+ and DIANA+ by optimizing param-
eters of block quantization.

4.1. DCGD+ with block quantization

We fix the number of blocks B ∈ [d] for all nodes
i ∈ [n] and allow each node to apply different block
quantization operator QBhi

with quantization steps hi =
(hi,1, . . . , hi,B). To minimize communication complex-
ity of DCGD+, we need to minimize Lmax subject to
the communication constraint mentioned above. Since
Lmax = maxi∈[n] L(Ci,Li), each node i ∈ [n] can min-
imize the impact of its own compression by minimizing
L(Ci,Li) based on local smoothness matrix Li. This leads
to the following optimization problem for finding optimal
values of hi for each node i ∈ [n]:

min
h∈RB

max1≤l≤B hl‖Diag(Llli )‖

s.t.
∑B
l=1

(
1
h2
l

+
√
dl
hl

)
+B = β

hl > 0, l ∈ [B]

(11)

The solution to this problem is given by

hi,l =
δi,B

‖Diag(Lll
i )‖ , (12)

where δi,B ≥ 0 is uniquely determined by the constraint
equality of (11) as the only positive solution of

δ2i,B − δi,B
dTi,B

β−B −
dT 2

1,B

β−B = 0,

which implies δi,B =
dTi,B

2(β−B) +

√
d2T 2

i,B

4(β−B)2 +
dT 2

i,1

β−B ≤
d

β−BTi,B +
√

d
β−BTi,1, where Ti,B

def
=

1
d

∑B
l=1

√
dl‖Diag(Llli )‖. If this solution of quanti-

zation steps hi is used by all nodes i ∈ [n], then we show
reduction in communication complexity by a factor of O(n)
compared to standard quantization.

Theorem 3. Assume n = O(
√
d) and both ν, ν1 are O(1).

Then DCGD+ using block quantization with B = n blocks,
dl = O(d/n) block sizes for all l ∈ [n] and quantization
steps (12) with β = O(d/n) reduces overall communication
complexity by a factor of O(n) compared to DCGD using
B = 1 single block quantization. Formally, to guarantee

ε > 0 accuracy, the communication complexity of DCGD+
is

O
(
d
n
Lmax

µ log 1
ε

)
,

which is O(n) times smaller over DCGD.

4.2. DIANA+ with block quantization

For the rate (7) of DIANA+, we need to optimize ωmax +
Lmax

nµ part of the complexity under the same communication
constraint used in (11). Since

max
i∈[n]

(
ωi + Li

nµ

)
≤ ωmax + Lmax

nµ ≤ 2 max
i∈[n]

(
ωi + Li

nµ

)
,

(13)
we can decompose the problem into subproblems for each
node i to optimize ωi + Li

nµ with respect to its own quantiza-
tion parameters hi. Analogously, this leads to the following
optimization problem for finding optimal values of hi for
each node i ∈ [n]:

min
h∈RB

max1≤l≤B hl

(√
dl + 1

µn‖Diag(Llli )‖
)

s.t.
∑B
l=1

(
1
h2
l

+
√
dl
hl

)
+B = β

hl > 0, l ∈ [B]

(14)

which can be solved with a similar argument as done for
(11). Details are deferred to the Appendix.
Theorem 4. Assume n = O(

√
d) and both ν, ν1 are O(1).

Then DIANA+ using block quantization with B = n blocks,
dl = O(d/n) block sizes for all l ∈ [n] and hi,l quantization
steps (solution to (14)) with β = O(d/n) reduces overall
communication complexity by a factor ofO(n) compared to
DIANA using B = 1 single block quantization. Formally, to
guarantee ε > 0 accuracy, the communication complexity
of DIANA+ is

O((nd+
√

d
n
Lmax

µ ) log 1
ε ),

which (ignoring n summand in the complexity) is O(n)
times smaller over DIANA.

5. Quantization with Varying Steps
Our second extension of standard quantization scheme is
to allow different quantization steps for all coordinates
{1, 2, . . . , d}. In other words, for each coordinate j ∈ [d]
we quantize with respect to levels {0, hj , 2hj , . . . }. The
standard quantization (Alistarh et al., 2017) is the special
case when hj = 1

s for all j ∈ [d], where s is the number of
quantization levels.
Definition 4 (Quantization with varying steps). For fixed
quantization steps h = (h1, . . . , hd)

> ∈ Rd, define quanti-
zation operator Qh : Rd → Rd as follows:

[Qh(x)]j = ‖x‖ · sign(xj) · ξj
(
|xj |
‖x‖

)
,
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where x ∈ Rd, j = 1, 2, . . . , d and ξj is defined via the
quantization levels {0, hj , 2hj , . . . } as in (9).

Note that compression operator Qh is unbiased as
E [ξj(v)] = v for any v ≥ 0. To understand how the number
of encoding bits ofQh(x) depends on h exactly seems chal-
lenging, since it depends on the actual encoding scheme (i.e.
binary representation of compressed information). Besides,
even if we fix binary mapping, the closed form expression
of total amount of bits is complicated enough to be utilized
in the further analysis. We provide theoretical arguments

and clear numerical evidence that ‖h−1‖ =
√∑d

j=1 h
−2
j

is a reasonable proxy for the number of encoding bits for
compressor Qh.

Assumption 3. For any input vector x ∈ Rd and quan-
tization steps h ∈ Rd, compressed vector Qh(x) can be
encoded with O(‖h−1‖) number of bits.

First, consider the special case when all quantization steps
are the same, i.e. hj = 1

s . Then ‖h−1‖ = s
√
d recovers the

dominant part (provided s = O(
√
d)) in Õ(s2+s

√
d) show-

ing total amount of bits for standard quantization scheme.

Second, in the Appendix we present an encoding
scheme which (up to constant and log d factors) requires
E [ψ(‖x̂‖0)] + ‖h−1‖ number of bits in expectation to com-
municate x̂ = Qh(x), where ψ(τ)

def
= dH2(τ/d) + τ ≤

d log 3, if τ ∈ [0, d] and H2 is the binary entropy function.
Note that, based on the definition (9), increasing quanti-
zation steps hj forces more sparsity in x̂ and hence re-
duces ‖x̂‖0. Thus, ‖x̂‖0 and hence ψ(‖x̂‖0) (notice that
ψ(0) = 0) are proportional to ‖h−1‖. Furthermore, we
present a numerical experiment which shows that the num-
ber of encoding bits of Qh(x) and ‖h−1‖ are positively
correlated.
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Figure 1. Experiment to verify the Assumption 3. We randomly
generate 1000 quantization step vectors h ∈ R50, each compo-
nent of h is hj = |h̃j | and h̃j is independently sampled from
N (0, 1). For each h, we randomly generate multiple sparse vec-
tors to quantize x, which is sampled from Poisson distribution with
λ = {1, 10, 100} and density {0.25, 0.5, 0.75, 1.0}.

Hence, in the further analysis, we fix the number of encod-
ing bits of Qh(x) by the constraint ‖h−1‖ = β for some
parameter β > 0. As for the variance induced by the com-
pression operator Qh, we prove the following upper bound
for L(Qh,L):

L(Qh,L) ≤ ‖Diag(L)h‖. (15)

5.1. DCGD+ with varying quantization steps

Now, we optimize the rate (6) of DCGD+ with respect to
quantization steps hi = (hi;1, hi;2, . . . , hi;d) of compressor
Qhi

controlled by ith node for all i ∈ [n]. The term in (6)
affected by the compression is Lmax = maxi∈[n] L(Ci,Li),
which implies that each node i ∈ [n] can minimize the im-
pact of its own compression by minimizing L(Ci,Li) based
on local smoothness matrix Li. Based on the upper bound
(15) and communication constraint given by ‖h−1‖ = β
for some β > 0, we get the following optimization problem
to choose the optimal quantization parameters hi for node
i ∈ [n]:

min
h∈Rd

‖Diag(Li)h‖

s.t. ‖h−1‖ = β

hj > 0, j ∈ [d]

(16)

This problem has the following closed form solution due to
KKT conditions (see Appendix):

hi;j = 1
β

√∑d
t=1 Li;t

Li;j
, i ∈ [n], j ∈ [d]. (17)

With this choice of quantization steps we saveO(min(n, d))
times in communication.
Theorem 5. Assume both ν, ν1 are O(1) and β = O(d/n).
Then DCGD+ using quantization with varying steps (26)
for all i ∈ [n] reduces overall communication complexity
by a factor of O(min(n, d)) compared to the baseline of
DCGD. Formally, the iteration complexity (6) can be upper
bounded as
L
µ + Lmax

nµ ≤
ν
n
Lmax

µ + ν1
β
Lmax

nµ = O
(

1
n
Lmax

µ + 1
d
Lmax

µ

)
,

which is min(n, d) times smaller than the one for DCGD.
As both methods communicate O(d/n) bits per node per
iteration, we get min(n, d) times savings in communication
complexity.

5.2. DIANA+ with varying quantization steps

Based on (13), each node i ∈ [n] optimizes ωi + Li

nµ with
respect to its quantization parameters hi, which is equivalent
to the problem

min
h∈Rd

∑d
j=1

(
1 +A2

ij

)
h2j

s.t. ‖h−1‖ = β

hj > 0, j ∈ [d]

(18)
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where Aij
def
=

Li;j

nµ . Due to the KKT conditions (see Ap-
pendix), we get the following solution

hi;j = 1
β

√∑d
t=1

√
1+A2

it√
1+A2

ij

. (19)

With this choice of quantization steps we saveO(min(n, d))
times in communication.

Theorem 6. Assume both ν, ν1 are O(1) and β = O(d/n).
Then DIANA+ using quantization with varying steps (29)
for all i ∈ [n] reduces overall communication complexity
by a factor of O(min(n, d)) compared to the baseline of
DIANA. Formally, the iteration complexity (7) can be upper
bounded as

ωmax + L
µ + Lmax

nµ ≤
√
2d
β + ν

n
Lmax

µ +
√
2ν1
βn

Lmax

µ

= O
(
n+ 1

n
Lmax

µ + 1
d
Lmax

µ

)
,

which is min(n, d) times smaller than the one for DIANA
(ignoring negligible term n).

6. Experiments
In this section we present two key experiments. Additional
experiments can be found in the Appendix.

6.1. Setup

We run the experiments with several datasets listed in Table
2 from the LibSVM repository (Chang & Lin, 2011) on the
`2-regularized logistic regression problem described below:

min
x∈Rd

1
n

∑n
i=1 fi(x),

fi(x) = 1
m

∑m
t=1 log(1 + exp(−bi,tA>i,tx)) + λ

2 ‖x‖
2,

where x ∈ Rd, Ai,l ∈ Rd, bi,l ∈ {−1, 1} are the feature
and label of l-th data point on the i-th worker, where the
features of each Ai,l are rescaled into [−1, 1]. The data
points are randomly shuffled before allocating to local work-
ers. The experiments are performed on a workstation with
Intel(R) Xeon(R) Gold 6246 CPU @ 3.30GHz cores. The
gather and broadcast operations for the communica-
tions between master and workers are implemented based
on the MPI4PY library (Dalcín et al., 2005) and each CPU
core is treated as a local worker. We set λ = 10−3 for all
datasets. For each dataset, we run each algorithm multiples
times with 5 random seeds for each worker.

6.2. Comparison to standard quantization techniques

In our first experiment, we compare smoothness-aware
DCGD+ and DIANA+ methods with our varying-step
quantization technique (quant+) to the original DCGD
(Khirirat et al., 2018) and DIANA (Mishchenko et al.,

2019) methods with the standard quantization technique
(quant) of Alistarh et al. (2017). Figure 2 demonstrates
that DCGD+/DIANA+ with quant+ lead to significant im-
provement in both transmitted megabytes and wall-clock
time. An ablation study to disentangle the contributions
of exploiting the smoothness matrix and utilizing varying
number of levels can be found in Appendix B.
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Figure 2. Comparison of smoothness-aware DCGD+/DIANA+
methods with varying-step quantization (quant+) to original
DCGD/DIANA methods with standard quantization (quant).
Note that in quant+ workers need to send L

1/2
i ∈ Rd×d and

quantization steps hi ∈ Rd to the master before the training. This
leads to extra costs in communication bits and time, which are
taken into consideration.

6.3. Comparison to matrix-smoothness-aware
sparsification

Second experiment is devoted to the performance of three
smoothness-aware compression techniques —block quanti-
zation (block quant+) of Section 4, varying-step quan-
tization (quant+) of Section 5 and smoothness-aware spar-
sification strategy (rand-τ+) of Safaryan et al. (2021). All
three compression techniques are shown to outperform the
standard compression strategies by at most O(n) times in
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theory. For the sparsification, we use the optimal probabili-
ties and the sampling size τ = d/n as suggested in Section
5.3 of (Safaryan et al., 2021). The empirical results in Fig-
ure 3 illustrate that the varying-step quantization technique
(quant+) is always better than the smoothness-aware spar-
sification (Safaryan et al., 2021), in terms of both commu-
nication cost and wall-clock time. Our block quantization
technique also beats sparsification when the dimension of
the model is relatively high.
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Figure 3. Comparison of three matrix-smoothness-aware compres-
sion techniques employed in DIANA+ method: varying-step
quantization quant+, our variant of block quantization block
quant+, and smoothness-aware sparsification rand-τ+ of Sa-
faryan et al. (2021).
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P. Distributed learning with compressed gradient differ-
ences. In arXiv preprint arXiv:1901.09269, 2019.

Mishchenko, K., Wang, B., Kovalev, D., and Richtárik, P.
IntSGD: Floatless compression of stochastic gradients.
arXiv preprint arXiv:2102.08374, 2021.

Narayanan, D., Shoeybi, M., Casper, J., LeGres-
ley, P., Patwary, M., Korthikanti, V., Vainbrand,
D., and Catanzaro, B. Scaling language model
training to a trillion parameters using mega-
tron. https://developer.nvidia.com/blog/scaling-
language-model-training-to-a-trillion-parameters-using-
megatron/, 2021.

Nesterov, Y. Introductory lectures on convex optimization:
a basic course. Kluwer Academic Publishers, 2004.

Ramezani-Kebrya, A., Faghri, F., Markov, I., Aksenov,
V., Alistarh, D., and Roy, D. M. NUQSGD: Provably
communication-efficient data-parallel SGD via nonuni-
form quantization. arXiv preprint arXiv:2104.13818,
2021.

Roberts, L. Picture coding using pseudo-random noise.
IRE Transactions on Information Theory, 8(2):145–154,
February 1962. ISSN 0096-1000. doi: 10.1109/TIT.1962.
1057702.

Safaryan, M. and Richtárik, P. Stochastic sign descent meth-
ods: New algorithms and better theory. In International
Conference on Machine Learning (ICML), 2021.

Safaryan, M., Hanzely, F., and Richtárik, P. Smoothness
matrices beat smoothness constants: Better communica-
tion compression techniques for distributed optimization.
arXiv preprint arXiv:2102.07245, 2021.

Schmidhuber, J. Deep learning in neural networks: An
overview. In Neural networks, volume 61, pp. 85–117,
2015.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of SGD for over-parameterized models and
an accelerated perceptron. In 22nd International Confer-
ence on Artificial Intelligence and Statistics, volume 89
of PMLR, pp. 1195–1204, 2019.

Vogels, T., Karimireddy, S. P., and Jaggi, M. PowerSGD:
Practical low-rank gradient compression for distributed
optimization. arXiv prepring arXiv:1905.13727, 2019.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1306–1316, 2018.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. ZipML: Training linear models with end-to-end low
precision, and a little bit of deep learning. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70, pp. 4035–4043, 2017.



Smoothness-Aware Quantization Techniques

Appendix
Contents

1 Introduction 1

1.1 Distributed training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 From scalar smoothness to matrix smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Summary of Contributions 2

2.1 Extending matrix-smoothness-aware sparsification to general compression schemes . . . . . . . . . . . . 2

2.2 Distributed compressed methods with improved communication complexity . . . . . . . . . . . . . . . . 2

2.3 Block quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.4 Quantization with varying steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Smoothness-Aware Distributed Methods with General Compressors 3

3.1 DCGD+ with arbitrary unbiased compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 DIANA+ with arbitrary unbiased compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Baselines for the original methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Block Quantization 5

4.1 DCGD+ with block quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 DIANA+ with block quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Quantization with Varying Steps 6

5.1 DCGD+ with varying quantization steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 DIANA+ with varying quantization steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Experiments 8

6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.2 Comparison to standard quantization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.3 Comparison to matrix-smoothness-aware sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A Conclusions and Limitations 13

A.1 Generalization and quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B Additional Experiments 14

B.1 Comparison to standard quantization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Ablation study of DIANA+ (block quant+) and DIANA+ (quant+) . . . . . . . . . . . . . . . . . 14



Smoothness-Aware Quantization Techniques

B.3 Comparison to matrix-smoothness-aware sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C Proofs for Section 3: Smoothness-Aware Distributed Methods with General Compressors 20

C.1 Proof of Theorem 1: DCGD+ with arbitrary unbiased compression . . . . . . . . . . . . . . . . . . . . . 20

C.2 Proof of Theorem 2: DIANA+ with arbitrary unbiased compression . . . . . . . . . . . . . . . . . . . . 20

D Proofs for Section 4: Block Quantization 23

D.1 Proof of the variance bound (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.2 Proof of Theorem 3: DCGD+ with block quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D.3 Proof of Theorem 4: DIANA+ with block quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E Proofs for Section 5: Quantization with varying steps 26

E.1 An encoding scheme for Qh operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.2 Proof of the variance bound (15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.3 Proof of Theorem 5: DCGD+ with varying quantization steps . . . . . . . . . . . . . . . . . . . . . . . . 27

E.4 Proof of Theorem 6: DIANA+ with varying quantization steps . . . . . . . . . . . . . . . . . . . . . . . 28

F Notation Table 29



Smoothness-Aware Quantization Techniques

A. Conclusions and Limitations
In this work we extended the matrix-smoothness-aware sparsification strategy of Safaryan et al. (2021) to arbitrary unbiased
compression schemes. This significantly broadens the use of smoothness matrices in communication efficient distributed
methods.

A.1. Generalization and quantization

It is worth to mention that our results generalize those of Safaryan et al. (2021) in a tight manner. That is, we recover the
same convergence guarantees as a special case. Indeed, if compression operators Ci are diagonal sketches Ci generated
independently from others and via arbitrary samplings, then

Li = L(Ci,Li)

= inf
{
L ≥ 0: E

[
‖Cix− x‖2Li

]
≤ L‖x‖2 ∀x ∈ Rd

}
= inf

{
L ≥ 0: x>E [(Ci − I)Li(Ci − I)]x ≤ L‖x‖2 ∀x ∈ Rd

}
= λmax (E [(Ci − I)Li(Ci − I)])

= λmax (E [CiLiCi]− Li)

= λmax(Pi ◦ Li − Li)

= λmax(P̃i ◦ Li),

with the same probability matrices Pi and P̃i defined in (Safaryan et al., 2021).

Further, we designed two novel quantization schemes (see Definitions 3 and 4) capable of properly utilizing matrix
smoothness information of local loss functions in distributed optimization. We showed that the proposed quantization
schemes can significantly outperform the key baselines both in theory and practice.

A.2. Limitations

Next, we discuss main limitations of our work.

• Note while in this paper we redesigned only two methods, DCGD+ and DIANA+, the modifications we suggest are
not limited to these two methods and can be applied to other distributed methods. In particular, with a similar proof
technique, ADIANA+ method of (Safaryan et al., 2021) introduced with sparsification can also be extended to arbitrary
unbiased compression operator using the new notion of L(C,L).

• The server is required to store d × d matrices L
1/2
i for all nodes i ∈ [n] and multiply them by sparse updates

Cki (L
†1/2
i ∇fi(xk)) in each iteration. Moreover, each node i is required to store only its smoothness matrix L

†1/2
i and

perform multiplication L
†1/2
i ∇fi(xk) in each iterate. Hence, our methods are practical when either dimension d is not

too big or smoothness matrices Li are of special structure (e.g., diagonal, low-rank).

• For the sake of presentation, we analyzed both DCGD+ and DIANA+ when exact local gradients,∇fi, can be computed
by all nodes in each iteration. However, we believe that it is possible to extend the analysis to stochastic local gradient
oracles. Current tools handling stochastic gradients can be easily applied to our matrix-smoothness-aware compression
techniques.

• In our distributed methods we only compress uplink communication from nodes to the server, which is typically more
bandwidth limited than downlink communication from the server to nodes. We believe that techniques that ensure
compressed communication in both directions can be applied in our setting, too.

• We developed all our theory for strongly convex objectives. Extending the theory to convex and non-convex problems
in a tight manner seems to be more challenging.
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B. Additional Experiments
In this section we provide additional experiments to highlight effectiveness of our approach.

B.1. Comparison to standard quantization techniques

First, we compare DCGD+/DIANA+ with the block quantization technique (block quant+) described in Section 4
to DCGD (Khirirat et al., 2018)/DIANA (Mishchenko et al., 2019) with the standard quantization technique (quant) in
(Alistarh et al., 2017). As shown in Figure 6, DCGD+ (block quant+) and DIANA+ (block quant+) outperform
DCGD (quant) and DIANA (quant) when d is larger. This is understandable because the extra cost on communication
B norms becomes neglectable when the dimension is relatively high given the number of blocks, where splitting the whole
parameters into blocks makes more sense.

Next, we compare DCGD+/DIANA+ with our second quantization technique (quant+) that has varying number of
quantization steps per coordinate to DCGD (quant) and DIANA (quant). Figure 7 demonstrates that DCGD+ (quant+)
and DIANA+ (quant+) lead to significant improvement.

B.2. Ablation study of DIANA+ (block quant+) and DIANA+ (quant+)

As mentioned by (Alistarh et al., 2017), combining DCGD and block quantization can improve its iteration complexity
at the cost of transmitting extra 32B bits per iteration, which might also lead to better total communication complexity.
Thus, the advantage of DIANA+ (block quant+) over DIANA (quant) may come from either splitting the features
into blocks or exploiting the smoothness matrix. To further demistefy the improvement of DIANA+ (block quant+) , we
compare the results of DIANA+ (block quant+), DIANA+ (block quant), DIANA (block quant) and DIANA
(quant) in Figure 5. The difference between block quant and block-quant+ is that the former one uses the same
number of quantization levels for different blocks while the latter one uses varying numbers. It can be seen from Figure 5
that DIANA+ (block-quant+) consistently outperforms other methods because it optimally exploits the block structure
and the smoothness matrix.

We also demonstrate that how DIANA+ perform with varying or fixed number of levels. As seen in Figure 6, the varying
number of levels are beneficial on most of the datasets.

B.3. Comparison to matrix-smoothness-aware sparsification

Moreover, we also compare the performance of three smoothness-aware compression techniques —block quantization
(block quant+) of Section 4, varying-step quantization (quant+) of Section 5 and smoothness-aware sparsification
strategy (rand-τ+) of Safaryan et al. (2021). All three compression techniques are shown to outperform the standard
compression strategies by at most O(n) times in theory. For the sparsification, we use the optimal probabilities and the
sampling size τ = d/n as suggested in Section 5.3 of (Safaryan et al., 2021). The empirical results in Figure 8 illustrate that
the varying-step quantization technique (quant+) is always better than the smoothness-aware sparsification (Safaryan et al.,
2021), in terms of both communication cost and wall-clock time. Our block quantization technique also beats sparsification
when the dimension of the model is relatively high.

Table 2. Information of the experiments on `2-regularized logistic regression.

Dataset #Instances N Dimension d #Workers n #Instances/worker m

german 1,000 24 4 250

svmguide3 1,243 21 4 310

covtype 581,012 54 6 145,253

splice 1,000 60 6 166

w8a 49,749 300 8 6,218

a9a 22,696 123 8 2,837
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Figure 4. Comparison of DCGD+ (block quant+) and DIANA+ (block quant+) with DCGD (quant) and DIANA (quant).
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Figure 5. Comparison of DIANA+ (block quant+), DIANA+ (block quant), DIANA (block quant) and DIANA (quant).
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Figure 6. Comparison of DCGD+ (quant+) and DIANA+ (quant+) with DCGD (quant) and DIANA (quant).
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Figure 7. Comparison of DIANA+ with quantization that has varying or fixed number of levels.
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Figure 8. Comparison of smoothness-aware DCGD+/DIANA+ methods with varying-step quantization (quant+) to original
DCGD/DIANA methods with standard quantization (quant). Note that in quant+ workers need to send L

1/2
i ∈ Rd×d and quantization

steps hi ∈ Rd to the master before the training. This leads to extra costs in communication bits and time, which are taken into
consideration.



Smoothness-Aware Quantization Techniques

C. Proofs for Section 3: Smoothness-Aware Distributed Methods with General Compressors
Here we provide the proofs of Theorem 1 and Theorem 2. Both proofs follow similar steps done for sparsification in
(Safaryan et al., 2021).

C.1. Proof of Theorem 1: DCGD+ with arbitrary unbiased compression

To simplify the notation, let us skip the iteration count k in the derivations. We are going to estimate the quantity
E
[
‖g(x)−∇f(x∗)‖2

]
and establish the following bound for the gradient estimator g(x) = 1

n

∑n
i=1 L

1/2
i Ci(L

†1/2
i ∇fi(x)):

E
[
‖g(x)−∇f(x∗)‖2

]
≤ 2

(
L+

2Lmax

n

)
Df (x, x∗) +

2σ∗+
n
.

Due to Lemma E.3 (Hanzely & Richtárik, 2019), we have∇fi(x) = L
1/2
i ri for some ri. Therefore,

E
[
L

1/2
i Ci(L

†1/2
i L

1/2
i ri)

]
= L

1/2
i E

[
Ci(L†

1/2
i L

1/2
i ri)

]
= L

1/2
i L

†1/2
i L

1/2
i ri = L

1/2
i ri = ∇fi(x), (20)

which implies unbiasedness of the estimator g(x), namely E [g(x)] = ∇f(x). Next, note that

E
[
‖g(x)−∇f(x)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

L
1/2
i Ci(L

†1/2
i ∇fi(x))−∇fi(x)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥∥L1/2

i Ci(L
†1/2
i ∇fi(x))− L

1/2
i L

†1/2
i ∇fi(x)

∥∥∥2]

=
1

n2

n∑
i=1

E
[∥∥∥Ci(L†1/2i ∇fi(x))− L

†1/2
i ∇fi(x)

∥∥∥2
Li

]

≤ 1

n2

n∑
i=1

L(Ci,Li)‖∇fi(x)‖2
L†i

≤ 2

n2

n∑
i=1

Li‖∇fi(x)−∇fi(x∗)‖2L†i +
2

n2

n∑
i=1

Li‖∇fi(x∗)‖2L†i

≤ 4

n2

n∑
i=1

LiDfi(x, x
∗) +

2σ∗+
n

≤ 4Lmax

n
Df (x, x∗) +

2σ∗+
n
,

which together with convexity and L-smoothness of f implies

E
[
‖g(x)−∇f(x∗)‖2

]
= ‖∇f(x)−∇f(x∗)‖2 + E

[
‖g(x)−∇f(x)‖2

]
≤ 2LDf (x, x∗) +

4Lmax

n
Df (x, x∗) +

2σ∗+
n

≤ 2

(
L+

2Lmax

n

)
Df (x, x∗) +

2σ∗+
n
.

Applying the result of Gorbunov et al. (2020) we conclude the proof.

C.2. Proof of Theorem 2: DIANA+ with arbitrary unbiased compression

We start with the unbiasedness of the estimator

gk =
1

n

n∑
i=1

L
1/2
i Ci

(
L
†1/2
i (∇fi(x)− uki )

)
+ uki .
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In (20), we showed unbiasedness using inclusion ∇fi(xk) ∈ range(Li). Assuming uki ∈ range(Li) for all k ≥ 0, we get
∇fi(xk)− uki ∈ range(Li) for all k ≥ 0. Hence, in the same way we can show unbiasedness of gk as

Ek
[
gk
]

=
1

n

n∑
i=1

L
1/2
i Ek

[
Ci
(
L
†1/2
i (∇fi(x)− uki )

)]
+ uki

=
1

n

n∑
i=1

L
1/2
i L

†1/2
i (∇fi(x)− uki ) + uki

=
1

n

n∑
i=1

∇fi(xk) = ∇f(xk).

The inclusion uki ∈ range(Li) directly follows from the initialization u0i ∈ range(Li) (see line 1 of Algorithm 2) and linear
update rule of uk+1

i = uki + αL
1/2
i ∆k

i (see line 5 of Algorithm 2). As both ∇fi(xk) and uki belong to range(Li), denote
∇fi(xk)− uki = L

1/2
i rki . Next we bound

E
[
‖g(x)−∇f(x)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

L
1/2
i Ci

(
L
†1/2
i (∇fi(x)− uki )

)
+ uki −∇fi(x)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥∥L1/2

i C
k
i

(
L
†1/2
i (∇fi(x)− uki )

)
− L

1/2
i L

†1/2
i (∇fi(x)− uki )

∥∥∥2]

=
1

n2

n∑
i=1

E
[∥∥∥Cki (L†1/2i (∇fi(x)− uki )

)
− L

†1/2
i (∇fi(x)− uki )

∥∥∥2
Li

]

≤ 1

n2

n∑
i=1

L(Ci,Li)‖∇fi(x)− uki ‖2L†i

≤ 2Lmax

n2

n∑
i=1

‖∇fi(x)−∇fi(x∗)‖2L†i +
2Lmax

n2

n∑
i=1

‖uki −∇fi(x∗)‖2L†i

≤ 4Lmax

n2

n∑
i=1

Dfi(x, x
∗) +

2Lmax

n
σk+

=
4Lmax

n
Df (x, x∗) +

2Lmax

n
σk+,

where σk+
def
= 1

n

∑n
i=1 ‖uki −∇fi(x∗)‖2L†i

is the error in the gradient learning process. To proceed, we need to establish

contractive recurrence relation for σk+. For each summand, we have
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Ek
[∥∥uk+1

i −∇fi(x∗)
∥∥2
L†i

]
= Ek

[∥∥uki −∇fi(x∗) + α∆k
i

∥∥2
L†i

]
=

∥∥uki −∇fi(x∗)∥∥2L†i + 2α
〈
uki −∇fi(x∗),∇fi(xk)− uki

〉
L†i

+ α2E
[∥∥∥L1/2

i Ci
(
L
†1/2
i (∇fi(x)− uki )

)∥∥∥2
L†i

]
≤

∥∥uki −∇fi(x∗)∥∥2L†i + 2α
〈
uki −∇fi(x∗),∇fi(xk)− uki

〉
L†i

+ α2E
[∥∥∥Ci (L†1/2i (∇fi(x)− uki )

)∥∥∥2]
≤

∥∥uki −∇fi(x∗)∥∥2L†i + 2α
〈
uki −∇fi(x∗),∇fi(xk)− uki

〉
L†i

+ α2(1 + ωi)
∥∥∇fi(xk)− uki

∥∥2
L†i

≤
∥∥uki −∇fi(x∗)∥∥2L†i + 2α

〈
uki −∇fi(x∗),∇fi(xk)− uki

〉
L†i

+ α
∥∥∇fi(xk)− uki

∥∥2
L†i

= (1− α)
∥∥uki −∇fi(x∗)∥∥2L†i + α

∥∥∇fi(xk)−∇fi(x∗)
∥∥2
L†i
,

≤ (1− α)
∥∥uki −∇fi(x∗)∥∥2L†i + 2αDfi(x

k, x∗),

where we used bounds α ≤ 1
1+ωi

and 0 � L
1/2
i L†iL

1/2
i � I. Thus, with α ≤ 1

1+ωmax
, the estimator gk of DIANA+ satisfies

Ek
[
gk
]

= ∇f(xk)

Ek
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2Lmax

n

)
Df (xk, x∗) +

2Lmax

n
σk+

Ek
[
σk+1
+

]
≤ (1− α)σk+ + 2αDf (xk, x∗).

Again, we apply the generic result of Gorbunov et al. (2020) to complete the proof.
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D. Proofs for Section 4: Block Quantization
Here we provide the missing proofs of Section 4.

D.1. Proof of the variance bound (10)

Using Definition 3 of compression operator QBh , we have

E
[
‖QBh (x)− x‖2L

]
=

B∑
l=1

‖xl‖2E

[∥∥∥∥ξl( |xl|‖xl‖
)
− |x

l|
‖xl‖

∥∥∥∥2
Lll

]

≤
B∑
l=1

‖xl‖2 min

h2l dl∑
j=1

Llljj , hl

√√√√ dl∑
j=1

[
Llljj
]2

≤ max
1≤l≤B

min

h2l dl∑
j=1

Llljj , hl

√√√√ dl∑
j=1

[
Llljj
]2 ‖x‖2

= max
1≤l≤B

min
(
h2l ‖Diag(Lll)‖1, hl‖Diag(Lll)‖

)
‖x‖2.

From the definition of L(QBh ,L) we get

L(QBh ,L) ≤ max
1≤l≤B

min
(
h2l ‖Diag(Lll)‖1, hl‖Diag(Lll)‖

)
,

which implies (10) if we ignore the first term.

D.2. Proof of Theorem 3: DCGD+ with block quantization

First, recall that quantization steps hi are given by

hi,l =
δi,B

‖Diag(Llli )‖
, l ∈ [B], where δi,B ≤

d

β −B
Ti,B +

√
d

β −B
Ti,1.

Then, we have

Lmax

n
=

1

n
max
i∈[n]
L(QBhi

,Li)

≤ 1

n
max
i∈[n]

δi,B

≤ 1

n
max
i∈[n]

[
d

β −B
Ti,B +

√
d

β −B
Ti,1

]

≤
[

d/n

β −B

]
max
i∈[n]

Ti,B +

√
d/n

β −B
max
i∈[n]

Ti,1√
n
.
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Set β = d/n + n and B = n. Since n = O(
√
d), we have β = O(d/n) and hence

d/n
β−B = 1. For the sake of simplicity,

assume dl = d/n. Next

Ti,1√
n
≤ 1√

nd

d∑
j=1

Li;jj ≤
ν1Lmax√

nd

Ti,n ≤ 1

d

n∑
l=1

√
dl

dl∑
j=1

Llljj

=
maxl∈[n]

√
dl

d

d∑
j=1

Ljj

=
maxl∈[n]

√
dl

d
ν1Lmax ≤

ν1Lmax√
nd

.

Regardless of the choice hi, using the following inequalities with respect to matrix order

L � 1

n

n∑
i=1

Li, Li � nL, (21)

we bound L as follows

L = λmax (L)
(21)

≤ λmax

(
1

n

n∑
i=1

Li

)
≤ 1

n

n∑
i=1

λmax (Li) =
1

n

n∑
i=1

Li
(8)

≤ ν

n
Lmax. (22)

Hence
L

µ
+
Lmax

µn
≤ ν

n

Lmax

µ
+

2ν1√
nd

Lmax

µ
= O

(
1

n

Lmax

µ

)
,

which guarantees n times fewer communication rounds with the same number of bits per round. In other words, each node
communicates O(d/n) bits to the master in each iteration, which gives us O(d) communication per communication round.
Thus, overall communication complexity to achieve ε > 0 accuracy is

O
(
d

n

Lmax

µ
log

1

ε

)
.

D.3. Proof of Theorem 4: DIANA+ with block quantization

As already mentioned, for DIANA+ each node aims to minimize ωi + 1
nµL(QBhi

,Li) with respect to its quantization steps
hi. Notice that

ωi +
1

nµ
L(QBhi

,Li) ≤ max
l∈[B]

hi,l
√
dl + max

l∈[B]

hi,l
µn
‖Diag(Llli )‖

≤ 2 max
l∈[B]

hi,l

(√
dl +

1

µn
‖Diag(Llli )‖

)
.

This leads to the following optimization problem with respect to h:

min
h∈RB

max
1≤l≤B

hl

(√
dl +

1

µn
‖Diag(Llli )‖

)
s.t.

B∑
l=1

(
1

h2l
+

√
dl
hl

)
+B = β, hl > 0.

(23)
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which is solved similar to (11). Denote

Ail
def
=
√
dl +

1

µn
‖Diag(Llli )‖, T̃iB

def
=

1

d

B∑
l=1

√
dlAil.

Analogous to (11), the solution of (23) has the following form

hil =
δ̃iB
Ail

, l ∈ [B],

where δ̃iB is determined by the constraint equality of (23) as

δ̃iB =
dT̃i,B

2(β −B)
+

√
d2T̃ 2

i,B

4(β −B)2
+

dT̃ 2
i,1

β −B
≤ d

β −B
T̃i,B +

√
d

β −B
T̃i,1.

Let us estimate T̃i,1 and T̃i,n using the assumptions B = n and (for the sake of simplicity) dl = d/n.

T̃i1 =
1√
d

(√
d+

1

µn
‖Diag(Li)‖

)
= 1 +

1

µn
√
d

d∑
j=1

Li;jj ≤ 1 +
ν1Lmax

µn
√
d

T̃in =
1

d

n∑
l=1

√
d

n

(√
d

n
+

1

µn
‖Diag(Llli )‖

)
= 1 +

1

µn
√
nd

n∑
l=1

‖Diag(Llli )‖

≤ 1 +
1

µn
√
nd

d∑
j=1

Li;jj = 1 +
ν1Lmax

µn
√
nd
.

Next, using β = d/n + n and ν1 = O(1), we get

ωi +
1

nµ
L(Qnhi

,Li) ≤ 2δ̃in

≤ 2d

β − n
T̃in + 2

√
d

β − n
T̃i1

= 2nT̃in + 2
√
nT̃i1

≤ 2n

(
1 +

ν1Lmax

µn
√
nd

)
+ 2
√
n

(
1 +

ν1Lmax

µn
√
d

)
= O

(
n+

1√
nd

Lmax

µ

)
.

Together with (22), we complete the proof with the following iteration complexity:

O
(
n+

1

n

Lmax

µ
+

1√
nd

Lmax

µ

)
.
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E. Proofs for Section 5: Quantization with varying steps
In this part of the appendix we provide missing proofs and detailed arguments of Section 5.

E.1. An encoding scheme for Qh operator

To communicate a vector of the form Qh(x), we adapt the encoding scheme of Albasyoni et al. (2020). From the definition,
we have

[Qh(x)]j = ‖x‖ · sign(xj k̂j) · k̂jhj

for all j ∈ [d], where k̂j ≥ 0 are non-negative random variables coming from (9). Thus, we need to encode the magnitude
‖x‖, signs sign(xj k̂j) and non-negative integers k̂j .

For the magnitude ‖x‖ we need just 31 bits. Let n0
def
= |{j ∈ [d] : k̂j = 0}| be the number of coordinates xj that are

compressed to 0. To communicate signs {sign(xj k̂j) : j ∈ [d]}, we first send the locations of those n0 coordinates and then
d− n0 bits for the values ±1. Sending n0 positions can be done by sending log d bits representing the number n0, followed
by log

(
d
n0

)
bits for the positions. For the signs, we need log d+ log

(
d
n̂0

)
+ d− n̂0 ≤ log d+ d log 3 bits at most. Finally, it

remains to encode k̂j’s for which we only need to send nonzero entries since the positions of k̂j = 0 are already encoded.
We encode k̂j ≥ 1 with k̂j bits: k̂j − 1 ones followed by 0. Hence, the expected number of bits to encode k̂j’s is

E

 d∑
j=1

k̂j

 (9)
=

d∑
j=1

vj
hj
≤

√√√√ d∑
j=1

v2j

√√√√ d∑
j=1

1

h2j
=

√√√√ d∑
j=1

1

h2j
= ‖h−1‖,

where vj =
|xj |
‖x‖ .

In total, Qh(x) can be encoded by

31 + log d+ log

(
d

n̂0

)
+ d− n̂0 + ‖h−1‖

bits. Lastly, the log
(
d
n̂0

)
term can be upper bounded by the binary entropy function H2(t)

def
= −t log t− (1− t) log(1− t)

(see (Albasyoni et al., 2020) for more details), and the expected number of encoding bits forQh(x) can be upper bounded by

31 + log d+ dH2

(
‖x̂‖0
d

)
+ ‖x̂‖0 + ‖h−1‖,

where x̂ = Qh(x).
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E.2. Proof of the variance bound (15)

Let v ∈ Rd be the unit vector with non-negative entries vj = |xj |/‖x‖ for j ∈ [d]. Then

E
[
‖Qh(x)− x‖2L

]
= E

[∥∥∥∥‖x‖ · sign(x) · ξ
(
|x|
‖x‖

)
− ‖x‖ · sign(x) · |x|

‖x‖

∥∥∥∥2
L

]
= ‖x‖2E

[
‖ξ (v)− v‖2L

]
= ‖x‖2E

 d∑
j,l=1

Ljl (ξj(vj)− vj) (ξl(vl)− vl)


= ‖x‖2

d∑
j=1

LjjE
[
(ξj(vj)− vj)2

]
(24)

= ‖x‖2
d∑
j=1

Ljj (vj − kjhj) ((kj + 1)hj − vj)

= ‖x‖2
d∑
j=1

Ljjh
2
j

(
vj
hj
− kj

)[
1−

(
vj
hj
− kj

)]

≤ ‖x‖2
d∑
j=1

Ljjh
2
j min

(
1,
vj
hj

)

≤ min

 d∑
j=1

Ljjh
2
j ,

d∑
j=1

Ljjhjvj

 ‖x‖2
≤ min

 d∑
j=1

Ljjh
2
j ,

√√√√ d∑
j=1

L2
jjh

2
j

 ‖x‖2 = min
(
‖Diag(L)h2‖1, ‖Diag(L)h‖

)
‖x‖2,

which implies (15).

E.3. Proof of Theorem 5: DCGD+ with varying quantization steps

Based on the upper bound (15) and the communication constraint given by ‖h−1i ‖ = β for some β > 0, we get the
optimization problem

min
hi

‖Diag(Li)hi‖ subject to
∥∥h−1i ∥∥ = β, (25)

for choosing the optimal quantization parameters hi;j . This problem has a closed form solution. Indeed, due to the KKT
conditions, we have

L2
i;jh

4
ij√∑d

t=1 L
2
i;th

2
it

= 2ζ, ζ

(
d∑
t=1

h2ij − β2

)
= 0,

where ζ is the multiplier. Solving this leads to the solution:

hi;j =
1

β

√∑d
t=1 Li;t
Li;j

. (26)

For the solution (26) we have

L̃(Qhi ,Li) ≤

√√√√ d∑
j=1

L2
i;jjh

2
i;j =

1

β

√√√√ d∑
j=1

L2
i;jj

∑d
l=1 Li;ll
Li;jj

=
1

β

d∑
j=1

Li;jj

≤ ν1
β

max
j∈[d]

Li;jj ≤
ν1
β
Li =

ν1
β
Lmax. (27)
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Therefore, if both parameters ν and ν2 are O(1), then the rate (6) of DCGD+ becomes O(Lmax

nµ + Lmax

βnµ ). To make a fair
comparison against DCGD, we need to fix O( dn ) number of bits each node communicates to the master server. Now, to
make DCGD+ communicate the same number of bits, we set β = O( dn ). Hence we have the following iteration complexity
for DCGD+ based on solution (26):

O
(

1

n

Lmax

µ
+

1

d

Lmax

µ

)
which is min(n, d) times better than the one of DCGD.

E.4. Proof of Theorem 6: DIANA+ with varying quantization steps

Denote Aij
def
=

Li;jj

nµ . Note that

ωi +
Li
nµ

≤ min

 d∑
j=1

h2i;j ,

√√√√ d∑
j=1

h2i;j

+
1

nµ
min

 d∑
j=1

Li;jjh
2
i;j ,

√√√√ d∑
j=1

L2
i;jjh

2
i;j


= min

 d∑
j=1

h2i;j ,

√√√√ d∑
j=1

h2i;j

+ min

 d∑
j=1

Li;jj
nµ

h2i;j ,

√√√√ d∑
j=1

(
Li;jj
nµ

)2

h2i;j


≤ min

 d∑
j=1

h2i;j +

d∑
j=1

Li;jj
nµ

h2i;j ,

√√√√ d∑
j=1

h2i;j +

√√√√ d∑
j=1

(
Li;jj
nµ

)2

h2i;j


≤ min

 d∑
j=1

(1 +Aij)h
2
i;j ,

√√√√2

d∑
j=1

(
1 +A2

ij

)
h2i;j


≤

d∑
j=1

(1 +Aij)h
2
i;j .

We solve the optimization problem

min
hi

d∑
j=1

(1 +Aij)h
2
i;j subject to

∥∥h−1∥∥ = β, (28)

which has a closed form solution. Indeed, due to the KKT conditions, we have:

hi;j =
1

β

√√√√√∑d
l=1

√
1 +A2

il√
1 +A2

ij

. (29)

For the solution (29) we have

ωi +
L̃i
nµ

≤

√√√√2

d∑
j=1

(
1 +A2

ij

)
h2i;j =

√
2

β

d∑
j=1

√
1 +A2

ij =

√
2

β

d∑
j=1

(1 +Aij)

=

√
2d

β
+

√
2

βnµ

d∑
j=1

Li;jj ≤
√

2d

β
+

√
2ν1
βn

Lmax

µ
,

which further leads to O(n+ 1
n
Lmax

µ + 1
d
Lmax

µ ) iteration complexity if ν1 = O(1) and β = O( dn ).
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F. Notation Table

Table 3. Notation we use throughout the paper.
Basic

d number of the model parameters to be trained
n number of the nodes/workers in distributed system

[n]
def
= {1, 2, . . . , n}

f : Rd → R overall empirical loss/risk (1)
fi : Rd → R local loss function associated with data owned by the node i ∈ [n] (1)
R : Rd → R (possibly non-smooth) regularization (1)

x∗ trained model, i.e. optimal solution to (1)
ε target accuracy

‖x‖0
def
= #{j ∈ [d] : xj 6= 0}, number of nonzero entries of x ∈ Rd

‖x‖ def
=
√∑d

j=1 x
2
j , the standard Euclidean norm of x ∈ Rd

Standard
µ strong convexity parameter of f Asm. 2
L smoothness constant of f , namely L = λmax(L) (2)
Li smoothness constant of fi, namely Li = λmax(Li)

Lmax
def
= maxi∈[n] Li

C (possibly randomized) compression operator C : Rd → Rd

B(ω) class of compressors with E [C(x)] = x, E
[
‖C(x)− x‖2

]
≤ ω‖x‖2, ∀x ∈ Rd

Ci compression operator controlled by node i
ωi variance of compression operator Ci
ωmax

def
= maxi∈[n] ωi

γ step-size parameter in DCGD+ and DIANA+ methods
α learning rate for the local optimal gradients in DIANA+

Matrix Smoothness
L smoothness matrix of f (3)

L
1/2 square root of symmetric and positive semidefinite matrix L

L† Moore–Penrose inverse of matrix L
Li smoothness matrix of fi

Li;j ,Li;jj jth diagonal element of Li
L(C,L) def

= inf
{
L ≥ 0: E‖C(x)− x‖2L ≤ L‖x‖2 ∀x ∈ Rd

}
≤ ωλmax(L)

Li
def
= L(Ci,Li) (4)

Lmax
def
= maxi∈[n] L(Ci,Li) = maxi∈[n] Li (4)

ν, ν1 ν
def
=

∑n
i=1 Li

maxi∈[n] Li
and ν1

def
= maxi∈[n]

∑d
j=1 Li;j

maxj∈[d] Li;j
Def. 8

Quantization
s number of quantization levels
B number of blocks to divide the space Rd
l index for blocks, i.e. l ∈ [B]

dl dimension of the lth subspace in Rd, in particular
∑B
l=1 dl = d

xl lth block of coordinates of x ∈ Rd

Lll lth diagonal block matrix of L with sizes dl × dl
hi;l quantization step of lth block for node i
β parameter controlling the number of encoding bits
j index for coordinates, i.e. j ∈ [d]

hi;j quantization step of jth coordinate for node i (26)
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