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Abstract
We propose a generic variance-reduced algorithm,
which we call MUltiple RANdomized Algorithm
(MURANA), for minimizing a sum of several
smooth functions plus a regularizer, in a sequen-
tial or distributed manner. Our method is for-
mulated with general stochastic operators, which
allow us to model various strategies for reduc-
ing the computational complexity. For example,
MURANA supports sparse activation of the gra-
dients, and also reduction of the communication
load via compression of the update vectors. This
versatility allows MURANA to cover many exist-
ing randomization mechanisms within a unified
framework. However, MURANA also encodes
new methods as special cases. We highlight one
of them, which we call ELVIRA, and show that it
improves upon Loopless SVRG.

1. Introduction
We consider the estimation of the model x? ∈ Rd arising as
the solution of the optimization problem

minimize
x∈Rd

{
R(x) + 1

M

M∑
m=1

Fm(x)

}
, (1)

for some M ≥ 1, where each convex function Fm is L-
smooth, for some L > 0, i.e. 1

L∇Fm is nonexpansive, and
R : Rd → R ∪ {+∞} is a proper, closed, convex function
(Bauschke & Combettes, 2017), whose proximity operator

proxγR : w 7→ arg min
x∈Rd

{
γR(x) + 1

2‖x− w‖
2
}

is easy to compute, for any γ > 0 (Parikh & Boyd, 2014;
Condat et al., 2019). We suppose that everyFm is µ-strongly
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convex, for some µ ≥ 0, i.e. Fm− µ
2 ‖·‖

2 is convex. We also
suppose that F := 1

M

∑M
m=1 Fm is µF -strongly convex,

for some µF > 0, with µF ≥ µ. We emphasize that µ
can be zero, but we require strong convexity of the global
function F . Since the problem is strongly convex, x? exists
and is unique.

In a distributed client-server setting, M is the number of
parallel computing nodes, with an additional master node
communicating with these M nodes. In a non-distributed
setting, M is, for instance, the number of data points con-
tributing to some training task. We let [M ] := {1, . . . ,M}.

Randomized optimization algorithms. To formulate our
algorithms, we will make use of several sources of random-
ness of the form

dk = Ck(∇F (xk)− hk), (2)

where k is the iteration counter, xk ∈ Rd is the model esti-
mate converging to the desired solution x?, hk is a control
variate converging to ∇F (x?), and Ck(r) is a shorthand
notation to denote a random realization of a stochastic pro-
cess with expectation r, so that Ck(r) is a random unbiased
estimate of the vector r ∈ Rd. Although we adopt this no-
tation as if Ck were a random operator, its argument r does
not always have to be known or computed. For instance, if
Ck(r) = { 1

pr with probability p, 0 else}, r is not needed
when the output is 0. This means that in (2),∇F (xk) is not
computed in that case; this is the key reason why random-
ness makes it possible to decrease the overall complexity.
The distribution of the random variable is not needed, and
that is why we lighten the notations by omitting to write
the underlying probability space structure. Indeed, we only
need to know a constant ω ≥ 0 such that, for every r ∈ Rd,

E
[∥∥Ck(r)− r

∥∥2
]
≤ ω‖r‖2, (3)

where the norm is the 2-norm and E denotes the expectation.
Thus, if r tends to 0, not only does Ck(r) tend to 0, but
the variance tends to 0 as well. Hence, in a step like in (2),
dk will converge to 0 and everything will work out so that
the algorithm converges to the exact solution x?. That is,
the proposed algorithm will be variance reduced (Gower
et al., 2020b). In recent years, variance-reduced algorithms
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like SAGA (Defazio et al., 2014) or SVRG (Johnson &
Zhang, 2013; Zhang et al., 2013; Xiao & Zhang, 2014) have
become the reference for finite-sum problems of the form
(1) since they converge to the exact solution but can be M
times faster than standard proximal gradient descent, which
is typically a huge improvement.

Communication bottleneck in distributed and federated
learning. In the age of big data, there has been a shift
towards distributed computations, and modern hardware in-
creasingly relies on the power of uniting many parallel units
into a single system. Training large machine learning mod-
els critically relies on distributed architectures. Typically,
the training data is distributed across several workers, which
compute, in parallel, local updates of the model. These
updates are then sent to a central server, which performs
aggregation and then broadcasts the updated model back to
the workers, to proceed with the next iteration. But com-
munication of vectors between machines is typically much
slower than computation, so communication is the bot-
tleneck. This is even more true in the modern machine
learning paradigm of federated learning (Konečný et al.,
2016; McMahan et al., 2017; Kairouz et al., 2019; Li et al.,
2020), in which a global model is trained in a massively
distributed manner over a network of heterogeneous devices,
with a huge number of users involved in the learning task
in a collaborative way. Communication can be costly, slow,
intermittent and unreliable, and for that reason the users
ideally want to communicate the minimum amount of in-
formation. Moreover, they also do not want to share their
data for privacy reasons. Therefore, compression of the
communicated vectors, using various sketching, sparsifica-
tion, or quantization techniques (Alistarh et al., 2017; Wen
et al., 2017; Wangni et al., 2018; Albasyoni et al., 2020;
Basu et al., 2020; Dutta et al., 2020; Sattler et al., 2020;
Xu et al., 2021), has become the approach of choice. In
recent works (Tang et al., 2019; Liu et al., 2020; Philip-
penko & Dieuleveut, 2020; Gorbunov et al., 2020), double,
or bidirectional, compression is considered; that is, not only
the vectors sent by the workers to the server, but also the
model updates broadcast by the server to all workers, are
compressed. MURANA accommodates for model or bidi-
rectional compression using the operators Vk; see Section
2.1.

A generic framework. Unbiased stochastic operators with
conic variance, like in (3), allow to model a wide range of
strategies: they can be used (i) for sampling, i.e. to select
a subset of functions whose gradient is computed at every
iteration, like in SAGA or SVRG, as mentioned above; (ii)
for compression; in addition to the idea of communicat-
ing each vector only with some small probability, we can
mention as example the rand-k operator, which sends k out
of d elements, chosen at random and scaled by d

k , of its
argument vector; (iii) to model partial participation in fed-

erated learning, with each user participating in a fraction of
the communication rounds only. That is why we formulate
MURANA with this type of operators, which have all these
applications, and many more.

Contributions. We propose MUltiple RANdomized Al-
gorithm (MURANA) – a generic template algorithm with
several several sources of randomness that can model a wide
range of computation, communication reduction strategies,
or both at the same time (e.g. by composition, see Propo-
sition 2). MURANA is variance reduced: it converges to
the exact solution whatever the variance, which can be arbi-
trarily large. MURANA generalizes DIANA (Mishchenko
et al., 2019; Horváth et al., 2019) in several ways and en-
compasses SAGA (Defazio et al., 2014) and loopless SVRG
(Kovalev et al., 2020) as particular cases; we also give mini-
batch versions for them. Finally, we propose, as another
new particular case of MURANA, a new algorithm, called
ELVIRA, which improves upon loopless SVRG.

The proofs can be found in the long version of the paper:
arXiv:2106.03056.

2. Proposed framework: MURANA
2.1. Three sources of randomness

We first introduce the first set of stochastic operators, Ckm,
for every k ≥ 0 and m ∈ [M ]. In particular, we assume
that such that there is a constant ω ≥ 0 such that for every
r ∈ Rd,

E[Ckm(r)] = r and E
[∥∥Ckm(r)− r

∥∥2
]
≤ ω‖r‖2. (4)

For every (r, r′) ∈ (Rd)2 and (m,m′) ∈ [M ]2, Ckm(r)
and Ck′m′(r′) at two different iteration indexes k 6= k′ are
independent random variables. However, they can have dif-
ferent laws since only their first and second order statistics
matter, as expressed in (4). Note that Ckm(r) and Ckm′(r′)
withm 6= m′ can be dependent, so

(
Ck1 (r1), . . . , CkM (rM )

)
should be viewed as a whole joint random process; this is
needed for sampling or partial participation, for instance,
where N < M indexes in [M ] are chosen at random; see
Proposition 1 below.

Next, we introduce the second set of stochastic operators,
Ukm, with same properties: for every k ≥ 0, m ∈ [M ],
r ∈ Rd,

E
[
Ukm(r)

]
= r and E

[∥∥Ukm(r)− r
∥∥2
]
≤ χ‖r‖2,

(5)
for some constant χ ≥ 0, and same dependence properties
with respect to m and k as the Ckm. Ckm and Ukm′ can be
dependent, and we will see this in the particular case of
DIANA, where Ukm = Ckm.

Finally, we introduce the third set of stochastic operators,
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Vk, which will be applied to the model updates. For every
k ≥ 0 and r ∈ Rd,

E
[
Vk(r)

]
= r and E

[∥∥Vk(r)− r
∥∥2
]
≤ ν‖r‖2, (6)

for some constant ν ≥ 0. The operators Vk are mutually
independent with respect to k, and independent from all
operators Ck′m and Uk′m .

To analyze MURANA, we need to be more precise than
just specifying the marginal gain ω. So, we introduce
the average gain ω, characterized as follows: for every
rm ∈ Rd, m ∈ [M ], and k ≥ 0,

E
[∥∥∥ 1

M

M∑
m=1

(
Ckm(rm)− rm

) ∥∥∥2
]
≤ ω

M

M∑
m=1
‖rm‖2. (7)

In general, we have ω ≤ ω. But if the operators Ckm, for
m ∈ [M ], are mutually independent, the variance of the
sum is the sum of the variances, and we can set ω = ω/M .
Another case of interest is the sampling setting:

Proposition 1 (Marginal and average gains of sampling)
Let N ∈ [M ]. Consider that at every iteration k, a random
subset Ωk ⊂ [M ] of size N is chosen uniformly at random,
and Ckm maps rm to {MN rm if m ∈ Ωk, 0 otherwise} (this
is sometimes called N -nice sampling (Richtárik & Takáč,
2016; Gower et al., 2020a)). Then (4) is satisfied with
ω = M−N

N and (7) is satisfied with ω = M−N
N(M−1) (set to 0

if M = N = 1).

Furthermore, the stochastic operators can be composed,
which makes it possible to combine random activation with
respect to m and compression of the vectors themselves, for
instance:

Proposition 2 (Marginal and average gains of composition)
Let Cm and C′m be stochastic operators such that, for every
m ∈ [M ] and rm ∈ Rd,

E[Cm(rm)] = rm, E[‖Cm(rm)− rm‖2] ≤ ω‖rm‖2,
E[C′m(rm)] = rm, E[‖C′m(rm)− rm‖2] ≤ ω′‖rm‖2,

E
[∥∥∥ 1

M

M∑
m=1

(C′m(rm)− rm)
∥∥∥2
]
≤ ω′

M

M∑
m=1
‖rm‖2.

for some ω ≥ 0, ω′ ≥ 0, ω′ ≥ 0. Then for every m ∈ [M ]
and rm ∈ Rd,

E [C′m(Cm(rm))] = rm,

E
[
‖C′m(Cm(rm))− rm‖2

]
≤ (ω + ω′ + ωω′)‖rm‖2.

Thus, the marginal gain of C′m ◦ Cm is ω + ω′ + ωω′.

If, in addition, the operators Cm, m ∈ [M ], are mutually

independent, then for every rm ∈ Rd and m ∈ [M ], we get

E
[∥∥∥ 1

M

M∑
m=1

(C′m(Cm(rm))− rm)
∥∥∥2
]

(8)

≤
(
ω
M + ω′(1 + ω)

)
1
M

M∑
m=1
‖rm‖2. (9)

Thus, the average gain of C′m◦Cm in that case is ω
M +ω′(1+

ω).

2.2. Proposed algorithms: MURANA and MURANA-D

We propose the MUltiple RANdomized Algorithm (MU-
RANA), described in Algorithm 1, as an abstract mathemat-
ical algorithm without regard to the execution architecture,
or equivalently, as a sequential algorithm. We also explicitly
write MURANA as a distributed algorithm in a client-server
architecture, with explicit communication steps, as Algo-
rithm 2, and call it MURANA-D.

If Ukm = Ckm = Vk = Id, where Id denotes the iden-
tity, and ω = χ = ω = ν = 0, MURANA with
λ = ρ = 1 reverts to standard proximal gradient descent:
xk+1 = proxγR

(
xk−γ∇F (xk)

)
. This baseline algorithm

evaluates the full gradient∇F (xk) = 1
M

∑M
m=1∇Fm(xk)

at every iteration, which requires M calls to the gradients
∇Fm. If every gradient call has linear complexity O(d), the
complexity is O(Md) per iteration, which is typically much
too large.

Thus, the three sources of randomness in MURANA are
typically used as follows: the operators Ckm are used to save
computation, by using much less than M , possibly even
only 1, gradient calls per iteration, and/or decreasing the
communication load by compressing the vectors sent by
the nodes to the master for aggregation. The operators Ukm
control the variance-reduction process, during which each
variable hkm learns the optimal gradient∇Fm(x?) along the
iterations, using the available computed information. In a
distributed setting, the operators Vk are used for compres-
sion during broadcasting, in which the server communicates
the model estimate to all nodes, at the beginning of every
iteration.

When Ukm = Ckm for every m ∈ [M ] and k ≥ 0, we recover
the recently proposed DIANA (Mishchenko et al., 2019;
Horváth et al., 2019) as a particular case of MURANA-D,
but generalized here in several ways, see in Sect. 3. In
MURANA, we have more degrees of freedom than in
DIANA: the stochastic gradient dk+1 + hk, which is an
unbiased estimate of ∇F (xk) and is used to update the
model xk, is obtained from the output of the operators Ckm,
whereas the hm learn the optimal gradients∇Fm(x?) using
the output of the operators Ukm. We can think of L-SVRG,
see below in Sect. 5, which has these two, different and
decoupled, mechanisms: the random choice of the activated
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Algorithm 1 MURANA (new)

1: input: parameters γ > 0, λ > 0, ρ > 0, initial vectors
x0 ∈ Rd, h0

m ∈ Rd, for m ∈ [M ].
2: h0 := 1

M

∑M
m=1 h

0
m

3: for k = 0, 1, . . . do
4: for m ∈ [M ] do
5: dk+1

m := Ckm
(
∇Fm(xk)− hkm

)
6: uk+1

m := Ukm
(
∇Fm(xk)− hkm

)
7: hk+1

m := hkm + λuk+1
m

8: end for
9: dk+1 := 1

M

∑M
m=1 d

k+1
m

10: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
11: xk+1 := xk + ρVk(x̃k+1 − xk)

12: hk+1 := hk + λ
M

∑M
m=1 u

k+1
m

13: end for

gradient at every iteration and the random decision of taking
a full gradient pass. Thus, MURANA is a versatile template
algorithm, which covers many diverse tools spread across
the literature of randomized optimization algorithms in a
single umbrella.

2.3. Convergence results

Let h?m := ∇Fm(x?), for m ∈ [M ]. We denote by κ :=
L/µF the conditioning of F .

Theorem 1 (Linear convergence of MURANA) In MU-
RANA, suppose that 0 < λ ≤ 1

1+χ and 0 < ρ ≤ 1
1+ν ,

and set χ′ := 1
λ − 1 ≥ χ and ν′ := 1

ρ − 1 ≥ ν. Choose
B > 1. If µ = 0, suppose that 0 < γ < 2

L+µ
1

1+(1+B)2ω ;
else, suppose that 0 < γ ≤ 2

L+µ
1

1+(1+B)2ω . Set η :=

1 − γ
(

2
L+µ

1
1+(1+B)2ω

)−1 ∈ [0, 1). Define the Lyapunov
function, for every k ≥ 0,

Ψk := ‖xk−x?‖2+(B2+B)γ2ω 1+χ′

1+ν′
1
M

M∑
m=1
‖hkm−h?m‖2.

(10)
Then, for every k ≥ 0, we have, conditionally to xk, hk and
all hkm,

E
[
Ψk+1

]
≤ cΨk,

where

c := 1−min
(

2γ
1+ν′

(
ηµF + (1− η) Lµ

L+µ

)
, 1−B−2

1+χ′

)
< 1.

(11)
Therefore, the algorithm converges linearly with rate c, in
expectation; in particular, E[‖xk − x?‖2] ≤ ckΨ0, and
E[‖hkm − ∇Fm(x?)‖2] ≤ ckΨ0, for every m ∈ [M ] and
k ≥ 0.

In the conditions of Theorem 1, the best choice of the pa-

Algorithm 2 MURANA-D (new)

1: input: parameters γ > 0, λ > 0, ρ > 0, initial vectors
x0 ∈ Rd, h0

m ∈ Rd.
2: h0 := 1

M

∑M
m=1 h

0
m, s0 := 0, x−1 = x0

3: for k = 0, 1, . . . do
4: at master: broadcast sk to all nodes
5: for m ∈ [M ], at nodes in parallel, do
6: xk := xk−1 + ρsk

7: dk+1
m := Ckm

(
∇Fm(xk)− hkm

)
8: uk+1

m := Ukm
(
∇Fm(xk)− hkm

)
9: hk+1

m := hkm + λuk+1
m

10: convey dk+1
m and uk+1

m to master
11: end for
12: at master:
13: hk+1 := hk + λ

M

∑M
m=1 u

k+1
m

14: dk+1 := 1
M

∑M
m=1 d

k+1
m

15: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
16: sk+1 := Vk(x̃k+1 − xk)
17: xk+1 := xk + ρsk+1

18: end for

rameter γ in MURANA, minimizing c in (11), is

γ = 1

1+max
(

1− µ
µF

2L
L+µ ,0

) 2
L+µ

1
1+(1+B)2ω . (12)

When µ is unknown, one should do as if it was true that
µ = 0, and set γ = 1

L
1

1+(1+B)2ω .

Further, since ηµF + (1− η) Lµ
L+µ ≥

µ
2 , we have

c ≤ 1−min
(

γµ
1+ν′ ,

1−B−2

1+χ′

)
.

However, µ can be 0, so that to guarantee a linear rate
depending on the conditioning κ only, whatever µ ≥ 0, γ
should not be too close to the upper bound of the allowed
interval in Theorem 1. In particular, we have:

Corollary 1 In MURANA, suppose that λ = 1
1+χ and ρ =

1
1+ν . Choose B > 1. Suppose that 0 < γ ≤ 1

L
1

1+(1+B)2ω .
Then, using Ψk defined in (10), with χ′ = χ and ν′ = ν, we
have, for every k ≥ 0, conditionally on xk, hk and all hkm,

E
[
Ψk+1

]
≤ c′Ψk, (13)

where c′ := 1 − min
(
γµF
1+ν ,

1−B−2

1+χ

)
< 1. Therefore, if

γ = Θ( 1
L

1
1+(1+B)2ω ) and B is fixed, the complexity of

MURANA to achieve ε-accuracy is

O
(
(κ(1 + ω)(1 + ν) + χ) log(1/ε)

)
iterations.

In the conditions of Corollary 1, if γ = 1
L

1
1+(1+B)2ω , then

c′ = 1−min
(

1
κ

1
1+ν

1
1+(1+B)2ω ,

1−B−2

1+χ

)
. (14)
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Algorithm 3 DIANA-PP (new)
(reverts to DIANA if N = M)

1: input: parameters γ > 0, λ > 0, ρ > 0, participation
level N ∈ [M ], initial vectors x0 ∈ Rd, h0

m ∈ Rd, for
m ∈ [M ].

2: h0 := 1
M

∑M
m=1 h

0
m, s0 := 0, x−1 = x0

3: for k = 0, 1, . . . do
4: pick Ωk ⊂ [M ] of size N uniformly at random
5: at master: broadcast sk to all nodes
6: for m ∈ Ωk, at nodes in parallel, do
7: xk := xk−1 + ρsk

8: dk+1
m := Ckm

(
∇Fm(xk)− hkm

)
9: hk+1

m := hkm + λdk+1
m

10: convey dk+1
m to master

11: end for
12: for m /∈ Ωk, at nodes in parallel, do
13: xk := xk−1 + ρsk

14: hk+1
m := hkm

15: end for
16: at master:
17: dk+1 := 1

M

∑
m∈Ωk

dk+1
m

18: hk+1 := hk + λdk+1

19: x̃k+1 := proxγR
(
xk − γ(hk + dk+1)

)
20: sk+1 := Vk(x̃k+1 − xk)
21: xk+1 := xk + ρsk+1

22: end for

To balance the two constants (1 + B)2 and 1 − B−2, one
can choose B =

√
20/3− 1, which yields

c′ ≤ 1−min
(

1
κ

1
1+ν

1
1+(20/3)ω ,

3
5

1
1+χ

)
. (15)

Another choice is B =
√

5− 1, so that (1 +B)2 = 5 and

c′ ≤ 1−min
(

1
κ

1
1+ν

1
1+5ω ,

1
3

1
1+χ

)
. (16)

3. Particular case: DIANA
When Ukm = Ckm, for every k ≥ 0 and m ∈ [M ], and Vk =
Id, MURANA-D reverts to DIANA, shown as Algorithm 3
(in the case N = M , i.e. full participation). DIANA was
proposed by Mishchenko et al. (Mishchenko et al., 2019)
and generalized (with R = 0) in (Horváth et al., 2019). It
was then further extended (still with R = 0) to the case of
compression of the model during broadcast in (Gorbunov
et al., 2020), where it is called ‘DIANA with bi-directional
quantization’; this corresponds to Vk 6= Id here, and we still
call the algorithm DIANA in this case. But to date, DIANA
was studied for independent operators Ckm only, and with
µ = µF > 0. Even in this case, our following results are
more general than existing ones, for instance with a larger
range for γ in comparison with Theorem 1 of (Horváth et al.,
2019).

Thus, we generalize DIANA to arbitrary operators Ckm, to the
general setting 0 ≤ µ ≤ µF , to the presence of a regularizer
R, and to possible randomization, or compression, of the
model updates. As a direct application of Theorem 1 with
χ = ω, we have:

Theorem 2 (Linear convergence of DIANA) In DIANA,
suppose that 0 < λ ≤ 1

1+ω and 0 < ρ ≤ 1
1+ν , and set

ω′ := 1
λ − 1 ≥ ω and ν′ := 1

ρ − 1 ≥ ν. Choose B > 1.
If µ = 0, suppose that 0 < γ < 2

L+µ
1

1+(1+B)2ω ; else,
suppose that 0 < γ ≤ 2

L+µ
1

1+(1+B)2ω . Set η := 1 −
γ
(

2
L+µ

1
1+(1+B)2ω

)−1 ∈ [0, 1). We define the Lyapunov
function, for every k ≥ 0,

Ψk :=‖xk−x?‖2+(B2+B)γ2ω 1+ω′

1+ν′
1
M

∑M
m=1 ‖hkm−h?m‖2.

(17)
Then, for every k ≥ 0, we have, conditionally to xk, hk and
all hkm,

E
[
Ψk+1

]
≤ cΨk,

where

c := 1−min
(

2γ
1+ν′

(
ηµF + (1− η) Lµ

L+µ

)
, 1−B−2

1+ω′

)
. (18)

Corollary 2 In DIANA, suppose that λ = 1
1+ω and ρ = 1

1+ν .
Choose B > 1. Suppose that 0 < γ ≤ 1

L
1

1+(1+B)2ω . Then,
using Ψk defined in (17), with ω′ = ω and ν′ = ν, we have,
for every k ≥ 0, conditionally to xk, hk and all hkm,

E
[
Ψk+1

]
≤ c′Ψk, (19)

where c′ := 1 − min
(
γµF
1+ν ,

1−B−2

1+ω

)
< 1. Therefore, if

γ = Θ( 1
L

1
1+(1+B)2ω ) and B is fixed, the complexity of

DIANA to achieve ε-accuracy is

O
(
(κ(1 + ω)(1 + ν) + ω) log(1/ε)

)
iterations.

Partial participation in DIANA. We make use of the pos-
sibility of having dependent stochastic operators and we
use the composition of operators C′km ◦ Ckm, like in Proposi-
tion 2, with the C′km being sampling operators like in Propo-
sition 1. This yields DIANA-PP, shown as Algorithm 3.
Since DIANA-PP is a particular case of DIANA with such
composed operators, we can apply Theorem 2, with ω, the
marginal gain of the composed operators here, replaced by
ω+ M−N

N (1 +ω) and ω replaced by ω
M + M−N

N(M−1) (1 +ω):

Theorem 3 (Linear convergence of DIANA-PP) In DIANA-
PP, suppose that the Ckm,m ∈ [M ] are mutually independent
and set ω := ω

M + M−N
N(M−1) (1 + ω). Suppose that 0 <

λ ≤ N
M

1
1+ω and set ω′ := N

Mλ − 1 ≥ ω. Suppose that
0 < ρ ≤ 1

1+ν and set ν′ := 1
ρ − 1 ≥ ν. Choose B > 1.
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If µ = 0, suppose that 0 < γ < 2
L+µ

1
1+(1+B)2ω ; else,

suppose that 0 < γ ≤ 2
L+µ

1
1+(1+B)2ω . Set η := 1 −

γ
(

2
L+µ

1
1+(1+B)2ω

)−1

∈ [0, 1). We define the Lyapunov
function, for every k ≥ 0,

Ψk :=‖xk−x?‖2+(B2+B)γ2ω 1+ω′

1+ν′
1
N

∑M
m=1 ‖hkm−h?m‖2.

(20)
Then, for every k ≥ 0, we have, conditionally to xk, hk and
all hkm,

E
[
Ψk+1

]
≤ cΨk,

where

c := 1−min
(

2γ
1+ν′

(
ηµF + (1− η) Lµ

L+µ

)
, 1−B−2

1+ω′

)
. (21)

Corollary 3 In DIANA-PP, suppose that the Ckm, m ∈ [M ]
are mutually independent and set ω := ω

M + M−N
N(M−1) (1+ω).

Suppose that λ = N
M

1
1+ω and ρ = 1

1+ν . Choose B > 1.
Suppose that 0 < γ ≤ 1

L
1

1+(1+B)2ω . Then, using Ψk

defined in (20), with ω′ = ω and ν′ = ν, we have, for every
k ≥ 0, conditionally to xk, hk and all hkm,

E[Ψk+1] ≤ c′Ψk,

where
c′ := 1−min

(
γµF
1+ν ,

N
M

1−B−2

1+ω

)
.

Therefore, if γ = Θ( 1
L

1
1+(1+B)2ω ) and B is fixed, the

asymptotic complexity of DIANA to achieve ε-accuracy is

O
((
κ
(
1+ ω

M+M−N
NM (1+ω)

)
(1+ν)+M

N (1+ω)
)

log(1/ε)
)

iterations.

To summarize, DIANA is the particular case of DIANA-PP
with full participation, i.e. N = M . Its convergence with
general, possibly dependent, operators Ckm, is established
in Theorem 2 and Corollary 2. DIANA-PP is more gen-
eral than DIANA, since it allows for partial participation,
but its convergence is established in Theorem 3 and Corol-
lary 3 only when the operators Ckm, m ∈ [M ], are mutually
independent.

4. Particular case: SAGA
When Ukm = Ckm, for every k ≥ 0 and m ∈ [M ], and these
operators are set as dependent sampling operators like in
Proposition 1, and Vk = Id, MURANA becomes Minibatch-
SAGA, shown as Algorithm 4. We have 1 + ω = M

N ,
ω = M−N

N(M−1) , and we set λ = 1
1+ω = N

M and ρ = 1.
Minibatch-SAGA is SAGA (Defazio et al., 2014) if N = 1
and proximal gradient descent if N = M , so Minibatch-
SAGA interpolates between these two regimes for 1 < N <

Algorithm 4 Minibatch-SAGA
(reverts to SAGA if N = 1)

1: input: parameter γ > 0, sampling size N ∈ [M ],
initial vectors x0 ∈ Rd, h0

m ∈ Rd, for m ∈ [M ].
2: h0 := 1

M

∑M
m=1 h

0
m

3: for k = 0, 1, . . . do
4: pick Ωk ⊂ [M ] of size N uniformly at random
5: for m ∈ Ωk do
6: hk+1

m := ∇Fm(xk)
7: end for
8: for m ∈ [M ]\Ωk do
9: hk+1

m := hkm
10: end for
11: dk+1 := 1

N

∑
m∈Ωk(hk+1

m − hkm)

12: xk+1 := proxγR
(
xk − γ(hk + dk+1)

)
13: hk+1 := hk + N

M dk+1

14: end for

M . This algorithm was called ‘minibatch SAGA with τ -
nice sampling’ in (Gower et al., 2020a), with their τ being
our N , but studied only with R = 0. It was called ‘q-SAGA’
in (Hofmann et al., 2015) with their q being our N , but
studied only with µF = µ. Thus, our convergence results
Theorem 4 and Corollary 4, deferred to the long version
of the paper by lack of space, are new, to the best of our
knowledge.

5. Particular case: L-SVRG
Like SAGA, SVRG (Johnson & Zhang, 2013; Zhang et al.,
2013) (sometimes called prox-SVRG (Xiao & Zhang, 2014)
if R 6= 0) is a variance-reduced (Gower et al., 2020b) ran-
domized algorithm, well suited to solve (1), since it can
be up to M times faster than proximal gradient descent.
Recently, the loopless-SVRG (L-SVRG) algorithm was pro-
posed (Kovalev et al., 2020), which is similar to SVRG,
but with the outer loop of epochs replaced by a coin flip
performed in each iteration, designed to trigger with a small
probability, e.g. 1/M , the computation of the full gradient
of F . In comparison with SVRG, the analysis of L-SVRG
is simpler and L-SVRG is more flexible; for instance, there
is no need to know µF to achieve theO

(
(κ+M) log(1/ε)

)
complexity. In SVRG and L-SVRG, in addition to the full
gradient passes computed once in a while, one gradient
is computed at every iteration. A minibatch version of
L-SVRG, with N instead of 1 gradients picked at every
iteration, was called ‘L-SVRG with τ -nice sampling’ in
(Qian et al., 2019); we call it Minibatch-L-SVRG, shown as
Algorithm 5.

Minibatch-L-SVRG is a particular case of MURANA, with
the Ckm, m ∈ [M ], set as dependent sampling operators
like in Proposition 1, and Vk = Id, ρ = 1. Thus, like for
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Algorithm 5 Minibatch-L-SVRG
(reverts to L-SVRG if N = 1)

1: input: parameter γ > 0, sampling size N ∈ [M ],
proba. p ∈ (0, 1], initial x0 ∈ Rd.

2: h0 := 1
M

∑M
m=1∇Fm(x0), y0 := x0

3: for k = 0, 1, . . . do
4: pick Ωk ⊂ [M ] of size N uniformly at random
5: dk+1 := 1

N

∑
m∈Ωk∇Fm(xk)−∇Fm(yk)

6: xk+1 := proxγR
(
xk − γ(hk + dk+1)

)
7: Pick randomly ak := {1 with probability p,
8: 0 with probability 1− p }
9: if ak = 1 then

10: hk+1 := 1
M

∑M
m=1∇Fm(xk),

11: yk+1 := xk

12: else
13: hk+1 := hk, yk+1 := yk

14: end if
15: end for

Minibatch-SAGA, we have 1 + ω = M
N and ω = M−N

N(M−1) .
Let p ∈ (0, 1]. The Ukm are all the same random operator
Uk, which maps x to { 1

px with probability p, 0 otherwise }.
We have χ = 1−p

p and we set λ = 1
1+χ = p. Hence, by

applying Theorem 1, we get:

Theorem 5 (Linear convergence of Minibtach-L-SVRG)
Set ω = M−N

N(M−1) and choose B > 1. In Minibtach-L-
SVRG, if µ = 0, suppose that 0 < γ < 2

L+µ
1

1+(1+B)2ω ;
else, suppose that 0 < γ ≤ 2

L+µ
1

1+(1+B)2ω . Set η := 1−

γ
(

2
L+µ

1
1+(1+B)2ω

)−1

∈ [0, 1). We define the Lyapunov
function, for every k ≥ 0,

Ψk := ‖xk−x?‖2+(B2+B)γ2ω 1
pM

∑M
m=1 ‖hkm−h?m‖2.

(22)
Then, for every k ≥ 0, we have, conditionally to xk, hk and
all hkm,

E
[
Ψk+1

]
≤ cΨk,

where

c := 1−min
(

2γ
(
ηµF + (1− η) Lµ

L+µ

)
, p(1−B−2)

)
.

Corollary 5 Set ω = M−N
N(M−1) and choose B > 1. In

Minibatch-L-SVRG, suppose that 0 < γ ≤ 1
L

1
1+(1+B)2ω .

Then, using Ψk defined in (22), we have, for every k ≥ 0,
conditionally to xk, hk and all hkm,

E
[
Ψk+1

]
≤ c′Ψk,

where
c′ :=1−min

(
γµF , p(1−B−2)

)
.

Algorithm 6 ELVIRA (new)

1: input: parameter γ > 0, sampling size N ∈ [M ],
proba. p ∈ (0, 1], initial x0 ∈ Rd.

2: h0 := 1
M

∑M
m=1∇Fm(x0), y0 := x0

3: for k = 0, 1, . . . do
4: Pick randomly ak := {1 with probability p,
5: 0 with probability 1− p }
6: if ak = 1 then
7: hk+1 := 1

M

∑M
m=1∇Fm(xk)

8: xk+1 := proxγR
(
xk − γhk+1

)
9: yk+1 := xk

10: else
11: pick Ωk ⊂ [M ] of size N uniformly at random
12: dk+1 := 1

N

∑
m∈Ωk

(
∇Fm(xk)−∇Fm(yk)

)
13: xk+1 := proxγR

(
xk − γ(hk + dk+1)

)
14: hk+1 := hk, yk+1 := yk

15: end if
16: end for

For instance, with N = 1, B =
√

5− 1 (we have seen this
choice before), and γ = 1

6L , we have c′ ≤ 1−min( 1
6κ ,

p
3 );

this is very similar to the rate 1 − min( 1
6κ ,

p
2 ) given in

Theorem 5 of (Kovalev et al., 2020).

Therefore, if γ = Θ( 1
L ), the asymptotic complexity

of Minibatch-L-SVRG to achieve ε-accuracy is O
(
(κ +

1
p ) log(1/ε)

)
iterations and O

(
(Nκ + pMκ + N

p +

M) log(1/ε)
)

gradient calls, since there are 2N + pM gra-
dient calls per iteration in expectation. This is the same as
Minibatch-SAGA if p = Θ(NM ).

6. Particular case: ELVIRA (new)
It is a pity not to use the full gradient in L-SVRG to update
xk, when it is computed. And even with p = 1, which means
the full gradient computed at every iteration, L-SVRG does
not revert to proximal gradient descent. We correct these
drawbacks by proposing a new algorithm, called ELVIRA,
which improves upon L-SVRG; it is shown as Algorithm
6. The novelty is that whenever a full gradient pass is
computed, it is used just after to update the estimate xk+1

of the solution.

ELVIRA is a particular case of MURANA as follows: Vk =
Id, ρ = 1, and the Ukm are set like in Minibatch-L-SVRG.
The Ckm depend on the Ukm and are set as follows: if the
full gradient is not computed, Ckm are sampling operators
like in Proposition 1, Minibatch-L-SVRG and Minibatch-
SAGA. Otherwise, the Ckm are set to the identity. We have
χ = 1−p

p and we set λ = 1
1+χ = p. Moreover, ω =

M−N
N(M−1) (1 − p). For instance, if N = 1 and p = 1

M , we
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have ω = M−1
M , instead of ω = 1 with L-SVRG. Hence,

by applying Theorem 1, we get:

Theorem 6 (Linear convergence of ELVIRA) Set ω =
M−N
N(M−1) (1 − p) and choose B > 1. In ELVIRA, if
µ = 0, suppose that 0 < γ < 2

L+µ
1

1+(1+B)2ω ; else,
suppose that 0 < γ ≤ 2

L+µ
1

1+(1+B)2ω . Set η := 1 −

γ
(

2
L+µ

1
1+(1+B)2ω

)−1

∈ [0, 1). We define the Lyapunov
function, for every k ≥ 0,

Ψk := ‖xk−x?‖2+(B2+B)γ2ω 1
pM

∑M
m=1 ‖hkm−h?m‖2.

(23)
Then, for every k ≥ 0, we have, conditionally to xk, hk and
all hkm,

E
[
Ψk+1

]
≤ cΨk,

where

c := 1−min
(

2γ
(
ηµF + (1− η) Lµ

L+µ

)
, p(1−B−2)

)
.

Corollary 6 Set ω = M−N
N(M−1) (1−p) and chooseB > 1. In

ELVIRA, suppose that 0 < γ ≤ 1
L

1
1+(1+B)2ω . Then, using

Ψk defined in (23), we have, for every k ≥ 0, conditionally
to xk, hk and all hkm,

E
[
Ψk+1

]
≤ c′Ψk, (24)

where
c′ := 1−min

(
γµF , p(1−B−2)

)
.

For instance, with N = 1, B =
√

5− 1 (we have seen this
choice before), and γ = 1

6L , we have c′ ≤ 1−min( 1
6κ ,

p
3 ),

which is the same result as above for Minibatch-L-SVRG.

Therefore, if γ = Θ( 1
L ), the complexity of ELVIRA is

O
(
(κ+ 1

p ) log(1/ε)
)

iterations andO
(
(Nκ+ pMκ+ N

p +

M) log(1/ε)
)

gradient calls, since there are 2N(1−p)+pM
gradient calls per iteration in expectation. If in addition
p = Θ(NM ), the complexity becomesO

(
(κ+ M

N ) log(1/ε)
)

iterations and O
(
(Nκ + M) log(1/ε)

)
gradient calls. So,

the complexity of ELVIRA is the same as that of Minibatch-
L-SVRG; but in practice, one can expect ELVIRA to be
faster, because its variance is strictly lower. And it has
the same low-memory requirements. ELVIRA reverts to
proximal gradient descent in 3 cases: (i) if p = 1, (ii) if
N = M , (iii) if M = 1.
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P. Distributed learning with compressed gradient differ-
ences. preprint arXiv:1901.09269, 2019.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in Optimization, 3(1):127–239, 2014.

Philippenko, C. and Dieuleveut, A. Bidirectional compres-
sion in heterogeneous settings for distributed or feder-
ated learning with partial participation: tight convergence
guarantees. preprint arXiv:2006.14591, 2020.

Qian, X., Qu, Z., and Richtárik, P. L-SVRG and L-Katyusha
with arbitrary sampling. arXiv:1906.01481, 2019.
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