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Abstract

Federated Learning (FL) has been gaining signif-
icant traction across different ML tasks, ranging
from vision to keyboard predictions. In large-
scale deployments, client heterogeneity is a fact,
and constitutes a primary problem for fairness,
training performance and accuracy. Although
significant efforts have been made into tackling
statistical data heterogeneity, the diversity in the
processing capabilities and network bandwidth of
clients, termed as system heterogeneity, has re-
mained largely unexplored. Current solutions ei-
ther disregard a large portion of available devices
or set a uniform limit on the model’s capacity,
restricted by the least capable participants. In this
work, we introduce Ordered Dropout, a mecha-
nism that achieves an ordered, nested represen-
tation of knowledge in Neural Networks and en-
ables the extraction of lower footprint submodels
without the need of retraining. We further show
that for linear maps our Ordered Dropout is equiv-
alent to SVD. We employ this technique, along
with a self-distillation methodology, in the realm
of FL in a framework called FjORD. FjORD alle-
viates the problem of client system heterogeneity
by tailoring the model width to the client’s ca-
pabilities. Extensive evaluation on both CNNs
and RNNs across diverse modalities shows that
FjORD consistently leads to significant perfor-
mance gains over state-of-the-art baselines, while
maintaining its nested structure.
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Figure 1: FjORD employs OD to tailor the amount of com-
putation to the capabilities of each participating device.

1. Introduction
Over the past few years, advances in deep learning have
revolutionised the way we interact with everyday devices.
Much of this success relies on the availability of large-scale
training infrastructures and the collection of vast amounts of
training data. However, users and providers are becoming
increasingly aware of the privacy implications of this ever-
increasing data collection, leading to the creation of various
privacy-preserving initiatives by service providers (Apple,
2017) and government regulators (European Commission).
Federated Learning (FL) (McMahan et al., 2017a) is a rel-
atively new subfield of machine learning (ML) that allows
the training of models without the data leaving the users’
devices; instead, FL allows users to collaboratively train a
model by moving the computation to them. At each round,
participating devices download the latest model and com-
pute an updated model using their local data. These locally
trained models are then sent from the participating devices
back to a central server where updates are aggregated for
next round’s global model. Until now, a lot of research ef-
fort has been invested with the sole goal of maximising the
accuracy of the global model (McMahan et al., 2017a; Liang
et al., 2019; Li et al., 2020b; Karimireddy et al., 2020; Wang
et al., 2020b), while complementary mechanisms have been
proposed to ensure privacy and robustness (Bonawitz et al.,
2017; Geyer et al., 2017; McMahan et al., 2018; Melis et al.,
2019; Hu et al., 2020; Bagdasaryan et al., 2020).
A key challenge of deploying FL in the wild is the vast
heterogeneity of devices (Li et al., 2020a), ranging from
low-end IoT to flagship mobile devices. Despite this fact,
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the widely accepted norm in FL is that the local models
have to share the same architecture as the global model.
Under this assumption, developers typically opt to either
drop low-tier devices from training, hence introducing train-
ing bias due to unseen data (Kairouz et al., 2019), or limit
the global model’s size to accommodate the slowest clients,
leading to degraded accuracy due to the restricted model
capacity (Caldas et al., 2018b). In addition to these limita-
tions, variability in sample sizes, computation load and data
transmission speeds further contribute to a very unbalanced
training environment. Finally, the resulting model might not
be as efficient as models specifically tailored to the capabil-
ities of each device tier to meet the minimum processing-
performance requirements (Laskaridis et al., 2020).
In this work, we introduce FjORD (Fig. 1), a novel adaptive
training framework that enables heterogeneous devices to
participate in FL by dynamically adapting model size – and
thus computation, memory and data exchange sizes – to
the available client resources. To this end, we introduce
Ordered Dropout (OD), a mechanism for run-time ordered
(importance-based) pruning, which enables us to extract and
train submodels in a nested manner. As such, OD enables
all devices to participate in the FL process independently
of their capabilities by training a submodel of the origi-
nal DNN, while still contributing knowledge to the global
model. Alongside OD, we propose a self-distillation method
from the maximal supported submodel on a device to en-
hance the feature extraction of smaller submodels. Finally,
our framework has the additional benefit of producing mod-
els that can be dynamically scaled during inference, based
on the hardware and load constraints of the device.
Our evaluation shows that FjORD enables significant accu-
racy benefits over the baselines across diverse datasets and
networks, while allowing for the extraction of submodels of
varying FLOPs and sizes without the need for retraining.

2. Motivation
Despite the progress on the accuracy front, the unique de-
ployment challenges of FL still set a limit to the attainable
performance. FL is typically deployed on either siloed se-
tups, such as among hospitals, or on mobile devices in the
wild (Bonawitz et al., 2019). In this work, we focus on the
latter setting. Hence, while cloud-based distributed training
uses powerful high-end clients (Hazelwood et al., 2018), in
FL these are commonly substituted by resource-constrained
and heterogeneous embedded devices.
In this respect, FL deployment is currently hindered by
the vast heterogeneity of client hardware (Wu et al., 2019;
Ignatov et al., 2019; Bonawitz et al., 2019). On the one
hand, different mobile hardware leads to significantly vary-
ing processing speed (Almeida et al., 2019), in turn leading
to longer waits upon aggregation of updates (i.e. stragglers).
At the same time, devices of mid and low tiers might not
even be able to support larger models, e.g. the model does

not fit in memory or processing is slow, and, thus, are either
excluded or dropped upon timeouts from the training pro-
cess, together with their unique data. More interestingly, the
resource allocation to participating devices may also reflect
on demographic and socio-economic information of owners,
that makes the exclusion of such clients unfair (Kairouz
et al., 2019). Analogous to the device load and hetero-
geneity, a similar trend can be traced in the downstream
(model) and upstream (updates) network communication in
FL, which can be an additional substantial bottleneck for
the training procedure (Sattler et al., 2020).
We provide the detailed Related Work section in Ap-
pendix A.

3. Ordered Dropout
In this paper, we firstly introduce the tools that act as en-
ablers for heterogeneous federated training. Concretely, we
have devised a mechanism of importance-based pruning
for the easy extraction of subnetworks from the original,
specially trained model, each with a different computational
and memory footprint. We name this technique Ordered
Dropout (OD), as it orders knowledge representation in
nested submodels of the original network.
More specifically, our technique starts by sampling a value
(denoted by p) from a distribution of candidate values. Each
of these values corresponds to a specific submodel, which in
turn gets translated to a specific computational and memory
footprint (see Table 2). Such sampled values and asso-
ciations are depicted in Fig. 2. Contrary to conventional
dropout (RD), our technique drops adjacent components
of the model instead of random neurons, which translates
to computational benefits in today’s linear algebra libraries
and higher accuracy as shown later.
3.1. Ordered Dropout Mechanics
The proposed OD method is parametrised with respect to:
i) the value of the dropout rate p ∈ (0, 1] per layer, ii) the
set of candidate values P , such that p ∈ P and iii) the
sampling method of p over the set of candidate values, such
that p ∼ DP , where DP is the distribution over P .
A primary hyperparameter of OD is the dropout rate pwhich
defines how much of each layer is to be included, with the
rest of the units dropped in a structured and ordered manner.
The value of p is selected by sampling from the dropout
distributionDP which is represented by a set of discrete val-
ues P = {s1, s2, . . . , s|P|} such that 0<s1<. . .<s|P| ≤ 1
and probabilities P(p = si) > 0, ∀i ∈ [|P|] such that∑|P|

i=1 P(p = si) = 1. For instance, a uniform distri-
bution over P is denoted by p ∼ UP (i.e. D = U). In
our experiments we use uniform distribution over the set
P = {i/k}ki=1, which we refer to as Uk (or uniform-k). The
discrete nature of the distribution stems from the innately
discrete number of neurons or filters to be selected. The
selection of set P is discussed in the next subsection.
The dropout rate p can be constant across all layers or con-
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Figure 2: Ordered vs. Random Dropout. The left-most
features are used by more devices during training, creating
a natural ordering to the importance of these features.
figured individually per layer l, leading to pl ∼ Dl

P . As
such an approach opens the search space dramatically, we
refer the reader to NAS techniques (Zoph & Le, 2017) and
continue with the same p value across network layers for
simplicity, without hurting the generality of our approach.
Given a p value, a pruned p-subnetwork can be di-
rectly obtained as follows. For each1 layer l with
width2 Kl , the submodel for a given p has all neu-
rons/filters with index {0, 1, . . . , dp ·Kle−1} included and
{dp ·Kle , . . . ,Kl − 1} pruned. Moreover, the unneces-
sary connections between pruned neurons/filters are also
removed3. We denote a pruned p-subnetwork Fp with its
weights wp, where F and w are the original network and
weights, respectively. Importantly, contrary to existing prun-
ing techniques (Han et al., 2015; Lee et al., 2019; Molchanov
et al., 2019), a p-subnetwork from OD can be directly ob-
tained post-training without the need to fine-tune, thus elim-
inating the requirement to access any labelled data.
3.2. Training OD Formulation
We propose two ways to train an OD-enabled network:
i) plain OD and ii) knowledge distillation OD training
(OD w/ KD). In the first approach, in each step we first
sample p ∼ DP ; then we perform the forward and back-
ward pass using the p-reduced network Fp; finally we up-
date the submodel’s weights using the selected optimiser.
Since sampling a p-reduced network provides us signif-
icant computational savings on average, we can exploit
this reduction to further boost accuracy. Therefore, in
the second approach we exploit the nested structure of
OD, i.e. p1 < p2 =⇒ Fp1 ⊂ Fp2 and allow for the big-
ger capacity supermodel to teach the sampled p-reduced
network at each iteration via knowledge distillation (teacher
pmax > p, pmax = maxP). In particular, in each iteration,
the loss function consists of two components as follows:
Ld = (1− α)CE(SMp,y) + αKL(SMp, SMpmax , T ) (1)

where SMp is the softmax output of the sampled p-submodel,
y is the ground-truth label, CE is the cross-entropy func-
tion, KL is the KL divergence, T is the distillation tempera-
ture (Hinton et al., 2014) and α is the relative weight of the

1Notice that OD is not applied on the last layer in order to
maintain the same output dimensionality.

2i.e. neurons for fully-connected layers (linear and recurrent)
and filters for convolutional layers.

3For BatchNorm, we maintain a separate set of statistics for ev-
ery dropout rate p. This has only a marginal effect on #parameters
and can be used in a privacy-preserving manner (Li et al., 2021).

two components. We observed in our experiments always
backpropagating also the teacher network further boosts
performance. Furthermore, the best performing values for
distillation were α = T = 1, thus smaller models exactly
mimic the teacher output.
3.3. Ordered Dropout exactly recovers SVD
We further show that our new OD formulation can recover
the Singular Value Decomposition (SVD) in the case where
there exists a linear mapping from features to responses. We
formalise this claim in the following theorem.
Theorem 1. Let F : Rn → Rm be a NN with two fully-
connected linear layers with no activation or biases and
K = min{m,n} hidden neurons. Moreover, let data X
come from a uniform distribution on the n-dimensional unit
ball and A be an m × n full rank matrix with K distinct
singular values. If response y is linked to data X via a
linear map: x→ Ax and distribution DP is such that for
every b ∈ [K] there exists p ∈ P for which b = dp ·Ke,
then for the optimal solution of

minU,V Ex∼XEp∼DP‖Fp(x)− y‖2

it holds Fp(x) = Abx, where Ab is the best b-rank approxi-
mation of A and b = dp ·Ke.
Theorem 1 shows that our OD formulation exhibits not only
intuitively, but also theoretically ordered importance repre-
sentation. Proof of this claim is deferred to the Appendix.
3.4. Model-Device Association
Computational and Memory Implications. The primary
objective of OD is to alleviate the excessive computational
and memory demands of the training and deployment pro-
cesses. When a layer is shrunk through OD, there is no
need to perform the forward and backward passes or gra-
dient updates on the pruned units. As a result, OD offers
gains both in terms of FLOP count and model size. In par-
ticular, for every fully-connected and convolutional layer,
the number of FLOPs and weight parameters is reduced by
K1·K2/dp·K1e·dp·K2e ∼ 1/p2, where K1 and K2 correspond
to the number of input and output neurons/channels, respec-
tively. Accordingly, the bias terms are reduced by a factor of
K2/dp·K2e ∼ 1/p. The normalisation, activation and pooling
layers are compressed in terms of FLOPs and parameters
similarly to the biases in fully-connected and convolutional
layers. This is also evident in Table 2. Finally, smaller
model size also leads to reduced memory footprint for gra-
dients and the optimiser’s state vectors such as momentum.
However, how are these submodels related to devices in the
wild and how is this getting modelled?
Ordered Dropout Rates Space. Our primary objective
with OD is to tackle device heterogeneity. Inherently, each
device has certain capabilities and can run a specific num-
ber of model operations within a given time budget. Since
each p value defines a submodel of a given width, we can
indirectly associate a pimax value with the i-th device capa-
bilities, such as memory, processing throughput or energy
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Figure 3: Full non-federated datasets. OD-Ordered Dropout with DP = U5, SM-single independent models, KD-knowledge
distillation.

budget. As such, each participating client is given at most
the pimax-submodel it can handle.
Devices in the wild, however, can have dramatically dif-
ferent capabilities; a fact further exacerbated by the co-
existence of previous-generation devices. Modelling dis-
cretely each device becomes quickly intractable at scale.
Therefore, we cluster devices of similar capabilities together
and subsequently associate a single pimax value with each
cluster. This clustering can be done heuristically (i.e. based
on the specifications of the device) or via benchmarking of
the model on the actual device and is considered a system-
design decision for our paper. As smartphones nowadays
run a multitude of simultaneous tasks (LiKamWa & Zhong,
2015), our framework can further support modelling of tran-
sient device load by reducing its associated pimax, which es-
sentially brings the capabilities of the device to a lower tier
at run time, thus bringing real-time adaptability to FjORD.
Concretely, the discrete candidate values of P depend on
i) the number of clusters and corresponding device tiers,
ii) the different load levels being modelled and iii) the size
of the network itself, as i.e. for each tier i there exists pimax
beyond which the network cannot be resolved. In this paper,
we treat the former two as invariants (assumed to be given
by the service provider), but provide results across different
number and distributions of clusters, models and datasets.
3.5. Preliminary Results
Here, we present some results to showcase the performance
of OD in the centralised non-FL training setting (i.e. the
server has access to all training data) across three tasks,
explained in detail in § 5. Concretely, we run OD with
distribution DP = U5 (uniform distribution over the set
{i/5}5i=1) and compare it with end-to-end trained submodels
(SM) trained in isolation for the given width of the model.
Fig. 3 shows that across the three datasets, the best attained
performance of OD along every width p is very close to
the performance of the baseline models. We note at this
point that the submodel baselines are trained from scratch,
explicitly optimised to that given width with no possibility to
jump across them, while our OD model was trained using a
single training loop and offers the ability to switch between
accuracy-computation points without the need to retrain.

Algorithm 1: FjORD (Proposed Framework)

Input: F,w0, DP , T, E
1 for t← 0 to T − 1 do // Global rounds
2 Server selects clients as a subset St ⊂ At

3 Server broadcasts weights of pimax-submodel to each
client i ∈ St

4 for k ← 0 to E − 1 do // Local iterations
5 ∀i ∈ St: Device i samples p(i,k) ∼ DP |DP ≤ pimax

and updates the weights of local model
6 end
7 ∀i ∈ St: device i sends to the server the updated weights

w(i,t,E)

8 Server updates wt+1 as in Eq. (2)
9 end

4. FjORD
Building upon the shoulders of OD, we introduce FjORD, a
framework for federated training over heterogenous clients.
We subsequently describe the FjORD’s workflow, further
documented in Alg. 1.
As a starting point, the global model architecture, F, is ini-
tialised with weights w0, either randomly or via a pretrained
network. The dropout rates space P is selected along with
distribution DP with |P| discrete candidate values, with
each p corresponding to a subnetwork of the global model
with varying FLOPs and parameters. Next, the devices to
participate are clustered into |Ctiers| tiers and a pcmax value is
associated with each cluster c. The resulting pcmax represents
the maximum capacity of the network that devices in this
cluster can handle without violating a latency or memory
constraint.
At the beginning of each communication round t, the set
of participating devices St is determined, which either con-
sists of all available clients At or contains only a random
subset of At based on the server’s capacity. Next, the server
broadcasts the current model to the set of clients St and each
client i receives wpi

max
. On the client side, each client runs

E local iterations and at each local iteration k, the device i
samples p(i,k) from conditional distributionDP |DP ≤ pimax
which accounts for its limited capability. Subsequently, each
client updates the respective weights (wp(i,k)

) of the local
submodel using the FedAvg (McMahan et al., 2017a) up-
date rule. In this step, other strategies (Li et al., 2020b;
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Wang et al., 2020b; Karimireddy et al., 2020) can be inter-
changeably employed. At the end of the local iterations,
each device sends its update back to the server.
Finally, the server aggregates these communicated changes
and updates the global model, to be distributed in the next
global federated round to a different subset of devices. Het-
erogeneity of devices leads to heterogeneity in the model
updates and, hence, we need to account for that in the global
aggregation step. To this end, we utilise the following ag-
gregation rule:

wt+1
sj \w

t+1
sj−1

= WA
({

w
(i,t,E)
isj

\w(i,t,E)
sj−1

}
i∈Sj

t

)
(2)

where wsj \wsj−1
are the weights that belong to Fsj but not

to Fsj−1 , wt+1 the global weights at communication round
t + 1, w(i,t,E) the weights on client i at communication
round t after E local iterations, Sj

t = {i ∈ St : pimax ≥ sj} a
set of clients that have the capacity to update wsj , and WA
stands for weighted average, where weights are proportional
to the amount of data on each client.
Communication Savings. In addition to the computational
savings (§3.4), OD provides additional communication sav-
ings. First, for the server-to-client transfer, every device with
pimax < 1 observes a reduction of approximately 1/(pi

max)
2 in

the downstream transferred data due to the smaller model
size (§ 3.4). Accordingly, the upstream client-to-server
transfer is decreased by 1/(pi

max)
2 as only the gradient up-

dates of the unpruned units are transmitted.
Identifiability. A standard procedure in FL is to perform
element-wise averaging to aggregate model updates from
clients. However, coordinate-wise averaging of updates may
have detrimental effects on the accuracy of the global model,
due to the permutation invariance of the hidden layers. Re-
cent techniques tackle this problem by matching clients’
neurons before averaging (Yurochkin et al., 2019; Singh &
Jaggi, 2020; Wang et al., 2020a). Unfortunately, doing so
is computationally expensive and hurts scalability. FjORD
mitigates this issue since it exhibits the natural importance
of neurons/channels within each hidden layer by design;
essentially OD acts in lieu of a neuron matching algorithm
without the computational overhead.
Subnetwork Knowledge Transfer. In the § 3.2, we intro-
duced knowledge distillation for our OD formulation. We
extend this approach to FjORD, where instead of the full
network, we employ width max{p ∈ P : p ≤ pimax} as a
teacher network in each local iteration on device i.

5. Evaluation of FjORD
In this section, we provide a thorough evaluation of FjORD
and its components across different tasks, datasets, models
and device cluster distributions to show its performance,
elasticity and generality.
Datasets and Models. We evaluate FjORD on two vision
and one text prediction task, shown in Table 1. For CI-

Table 1: Datasets

Dataset Model # Clients # Samples Task

CIFAR10 ResNet18 100 50, 000 Image classification
FEMNIST CNN 3, 400 671, 585 Image classification
Shakespeare RNN 715 38, 001 Next character prediction

FAR10 (Krizhevsky et al., 2009), we use the “CIFAR” ver-
sion of ResNet18 (He et al., 2016). We federate the dataset
by randomly dividing it into equally-sized partitions, each
allocated to a specific client, and thus remaining IID in na-
ture. For FEMNIST, we use a CNN with two convolutional
layers followed by a softmax layer. For Shakespeare, we
employ a RNN with an embedding layer (without dropout)
followed by two LSTM (Hochreiter & Schmidhuber, 1997)
layers and a softmax layer. We report the model’s perfor-
mance of the last epoch on the test set which is constructed
by combining the test data for each client. We report top-1
accuracy vision tasks and negative perplexity for text predic-
tion. Further details, such as hyperparameters, description
of datasets and models are available in the Appendix.
5.1. Experimental Setup
Infrastructure. FjORD was implemented on top of the
Flower (v0.14dev) (Beutel et al., 2020) framework and
PyTorch (v1.4.0) (Paszke et al., 2019). We run all our exper-
iments on a private cloud cluster, consisting of Nvidia V100
GPUs. To scale to hundreds of clients on a single machine,
we optimized Flower so that clients only allocate GPU
resources when actively participating in a federated client
round. We report average performance and the standard
deviation across three runs for all experiments. To model
client availability, we run up to 100 Flower clients in par-
allel and sample 10% at each global round, with the ability
for clients to switch identity at the beginning of each round
to overprovision for larger federated datasets. Furthermore,
we model client heterogeneity by assigning each client to
one of the device clusters. We provide the following setups:

Uniform-{5,10}: This refers to the distribution DP ,
i.e. p ∼ Uk, with k = 5 or 10.
Drop Scale ∈ {0.5, 1.0}: This parameter affects a possi-
ble skew in the number of devices per cluster. It refers
to the drop in clients per cluster of devices, as we go to
higher p’s. Formally, for uniform-n and drop scale ds,
the high-end cluster n contains 1−

∑n−1
i=0

ds/n of the de-
vices and the rest of the clusters contain ds/n each. Hence,
for ds=1.0 of the uniform-5 case, all devices can run the
p = 0.2 subnetwork, 80% can run the p = 0.4 and so
on, leading to a device distribution of (0.2, ..., 0.2). This
percentage drop is half for the case of ds=0.5, resulting in
a larger high-end cluster, e.g. (0.1, 0.1, ..., 0.6).

Baselines. To assess the performance against the state-of-
the-art, we compare FjORD with the following baselines:
i) Extended Federated Dropout (eFD), ii) FjORD with eFD
(FjORD w/ eFD).

eFD builds on top of the technique of Federated Dropout
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Figure 4: Ordered Dropout with KD vs eFD baselines. Performance vs dropout rate p across different networks and datasets.
DP = U5

Table 2: MACs and Parameters per p-reduced network

p = 0.2 0.4 0.6 0.8 1.0

CIFAR10 / ResNet18
MACs 23M 91M 203M 360M 555M
Params 456K 2M 4M 7M 11M

FEMNIST / CNN
MACs 47K 120K 218K 342K 491K
Params 5K 10K 15K 20K 26K

Shakespeare / RNN
MACs 12K 40K 83K 143K 216K
Params 12K 40K 82K 142K 214K

(FD) (Caldas et al., 2018b), which adopts a Random
Dropout (RD) at neuron/filter level for minimising the
model’s footprint. However, FD does not support adapt-
ability to heterogeneous client capabilities out of the box,
as it inherits a single dropout rate across devices. For this
reason, we propose an extension to FD, allowing to adapt
the dropout rate to the device capabilities, defined by the
respective cluster membership. It is clear that eFD domi-
nates FD in performance and provides a tougher baseline,
as the latter needs to impose the same dropout rate to fit
the model at hand on all devices, leading to larger dropout
rates (i.e. uniform dropout of 80% for full model to support
the low-end devices). We provide empirical evidence for
this in the Appendix. For investigative purposes, we also
applied eFD on top of FjORD, as a means to update a larger
part of the model from lower-tier devices, i.e. allow them to
evaluate submodels beyond their pimax during training.
5.2. Performance Evaluation
In order to evaluate the performance of FjORD, we compare
it to the two baselines, eFD and OD+eFD. We consider the
uniform-5 setup with drop scale of 1.0 (i.e. uniform clusters).
For each baseline, we train one independent model Fp, end-
to-end, for each p. For eFD, what this translates to is that the
clusters of devices that cannot run model Fp compensate
by randomly dropping out neurons/filters. We point out that
p = 0.2 is omitted from the eFD results as it is essentially
not employing any dropout whatsoever. For the case of
FjORD + eFD, we control the RD by capping it to d = 0.25.
This allows for larger submodels to be updated more often –
as device belonging to cluster c can now have pcmax → pc+1

max
during training where c+1 is the next more powerful cluster

– while at the same time it prevents the destructive effect of
too high dropout values shown in the eFD baseline.
Fig. 4 presents the achieved accuracy for varying values
of p across the three target datasets. FjORD (denoted by
FjORD w/ KD) outperforms eFD across all datasets with
improvements between 1.53-34.87 percentage points (pp)
(19.22 pp avg. across p values) on CIFAR10, 1.57-6.27 pp
(3.41 pp avg.) on FEMNIST and 0.01-0.82 points (p) (0.46
p avg.) on Shakespeare. Compared to FjORD +eFD, FjORD
achieves performance gains of 0.71-2.66 pp (1.79 avg.), up
to 2.56 pp (1.35 pp avg.) on FEMNIST and 0.12-0.22 p
(0.18 p avg.) on Shakespeare.
Across all tasks, we observe that FjORD is able to improve
its performance with increasing p due to the nested structure
of its OD method. We also conclude that eFD on top of
FjORD does not seem to lead to better results. More im-
portantly though, given the heterogeneous pool of devices,
to obtain the highest performing model for eFD, multiple
models have to be trained (i.e. one per device cluster). For
instance, the highest performing models for eFD are F0.4,
F0.6 and F0.4 for CIFAR10, FEMNIST and Shakespeare
respectively, which can be obtained only a posteriori; after
all model variants have been trained. Instead, despite the de-
vice heterogeneity, FjORD requires a single training process
that leads to a global model that significantly outperforms
the best model of eFD (by 2.98 and 2.73 pp for CIFAR10
and FEMNIST, respectively, and 0.13 p for Shakespeare),
while allowing the direct, seamless extraction of submodels
due to the nested structure of OD. Empirical evidence of the
convergence of FjORD and the corresponding baselines is
provided in the Appendix.
5.3. Ablation Study of KD in FjORD
To evaluate the contribution of our knowledge distillation
method to the attainable performance of FjORD, we conduct
an ablative analysis on all three datasets. We adopt the same
setup of uniform-5 and drop scale = 1.0 as in the previous
section and compare FjORD with and without KD.
Fig. 5 shows the efficacy of FjORD’s KD in FL settings.
FjORD’s KD consistently improves the performance across
all 3 datasets when p > 0.4, with average gains of 0.18, 0.68
and 0.87 pp for submodels of size 0.6, 0.8 and 1 on CIFAR-
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Figure 5: Ablation analysis of FjORD with Knowledge Distillation (KD). Ordered Dropout with DP = U5.
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Figure 6: Demonstration of FjORD’s scalability with respect
to the number of device clusters.
10, 1.96, 2.39 and 2.65 pp for FEMNIST and 0.10 p for
Shakespeare. For the cases of p ≤ 0.4, the impact of KD is
fading. We believe this to be a side-effect of optimising for
the average accuracy across submodels, which also yielded
the T = α = 1 strategy. We leave the exploration of
alternative weighted KD strategies as future work. Overall,
the use of KD significantly improves the performance of
the global model, yielding gains of 0.71 and 2.63 pp for
CIFAR10 and FEMNIST and 0.10 p for Shakespeare.
5.4. FjORD’s Deployment Flexibility
5.4.1. DEVICE CLUSTERS SCALABILITY

An important characteristic of FjORD is its ability to scale to
a larger number of device clusters or, equivalently, perform
well with higher granularity of p values. To illustrate this,
we test the performance of OD across two setups, uniform-5
and uniform-10 (defined in § 5.1).
As shown in Fig. 6, FjORD sustains its performance even
under the higher granularity of p values. This means that for
applications where the modelling of clients needs to be more
fine-grained, FjORD can still be of great value, without any
significant degradation in achieved accuracy per submodel.
This further supports the use-case where device-load needs
to be modelled explicitly in device clusters (e.g. modelling
device capabilities and load with deciles).
5.4.2. ADAPTABILITY TO DEVICE DISTRIBUTIONS
In this section, we make a similar case about FjORD’s elas-
ticity with respect to the allocation of available devices to
each cluster. We adopt the setup of uniform-5 once again,
but compare across drop scales 0.5 and 1.0 (defined in
§ 5.1). In both cases, clients that can support models of
pimax ∈ {0.2, . . . , 0.8} are equisized, but the former halves
the percentage of devices and allocates it to the last (high-
end) cluster, now accounting for 60% of the devices. The
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Figure 7: Demonstration of the adaptability of FjORD
across different device distributions.
rationale behind this is that the majority of participating
devices are able to run the whole original model.
The results depicted in Fig. 7 show that the larger submod-
els are expectedly more accurate, being updated more often.
However, the same graphs also indicate that FjORD does not
significantly degrade the accuracy of the smaller submodels
in the presence of more high-tier devices (i.e. ds = 0.5).
This is a direct consequence of sampling p values during lo-
cal rounds, instead of tying each tier with only the maximal
submodel it can handle. We should also note that we did
not alter the uniform sampling in this case on the premise
that high-end devices are seen more often, precisely to illus-
trate FjORD’s adaptability to latent user device distribution
changes of which the server may not be aware.

6. Conclusions
In this work, we have introduced FjORD, a federated learn-
ing method for heterogeneous device training. To this direc-
tion, FjORD builds on top of our Ordered Dropout technique
as a means to extract submodels of smaller footprints from a
main model in a way where training the part also participates
in training the whole. We show that our Ordered Dropout
is equivalent to SVD for linear mappings and demonstrate
that FjORD’s performance in the local and federated setting
exceeds that of competing techniques, while maintaining
flexibility across different environment setups.
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and Richtárik, P. Natural Compression for Distributed
Deep Learning. arXiv preprint arXiv:1905.10988, 2019.
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Supplementary Material

A. Related Work
Dropout Techniques. Contrary to conventional Random Dropout (Srivastava et al., 2014), which stochastically drops a
different, random set of a layer’s units in every batch and is typically applied for regularisation purposes, OD employs
a structured ordered dropping scheme that aims primarily at tunably reducing the computational and memory cost of
training and inference. However, OD can still have an implicit regularization effect since we encourage learning towards the
top-ranked units (e.g. the left-most units in the example of Fig. 2), as these units will be dropped less often during training.
Respectively, at inference time, the load of a client can be dynamically adjusted by dropping the least important units, i.e.
adjusting the width of the network.
To the best of our knowledge, the only similar technique to OD is Nested Dropout, where the authors proposed a similar
construction, which is applied to the representation layer in autoencoders (Rippel et al., 2014) in order to enforce identifiability
of the learned representation or the last layer of the feature extractor (Horváth et al., 2021) to learn an ordered set of features
for transfer learning. In our case, we apply OD to every layer to elastically adapt the computation and memory requirements
during training and inference.
Traditional Pruning. Conventional non-FL compression techniques can be applicable to reduce the network size and
computation needs. The majority of pruning methods (Han et al., 2015; Guo et al., 2016; Li et al., 2016; Lee et al., 2019;
Molchanov et al., 2019) aim to generate a single pruned model and require access to labelled data in order to perform a costly
fine-tuning/calibration for each pruned variant. Instead, FjORD’s Ordered Dropout enables the deterministic extraction
of multiple pruned models with varying resource budgets directly after training. In this manner, we remove both the
excessive overhead of fine-tuning and the need for labelled data availability, which is crucial for real-world, privacy-aware
applications (Wainwright et al., 2012; Shokri & Shmatikov, 2015). Finally, other model compression methods (Fang et al.,
2018; Wang et al., 2019a; Dudziak et al., 2019) remain orthogonal to FjORD.
System Heterogeneity. So far, although substantial effort has been devoted to alleviating the statistical heterogeneity (Li
et al., 2020a) among clients (Smith et al., 2017; Li & Wang, 2019; Hsieh et al., 2020; Fallah et al., 2020; Li et al., 2020c),
the system heterogeneity has largely remained unaddressed. Considering the diversity of client devices, techniques on client
selection (Nishio & Yonetani, 2019) and control of the per-round number of participating clients and local iterations (Luo
et al., 2021; Wang et al., 2019b) have been developed. Nevertheless, as these schemes are restricted to allocate a uniform
amount of work to each selected client, they either limit the model complexity to fit the lowest-end devices or exclude
slow clients altogether. From an aggregation viewpoint, (Li et al., 2020b) allows for partial results to be integrated to the
global model, thus enabling the allocation of different amounts of work across heterogeneous clients. Despite the fact that
each client is allowed to perform a different number of local iterations based on its resources, large models still cannot be
accommodated on the more constrained devices.
Communication Optimisation. The majority of existing work has focused on tackling the communication overhead in FL.
(Konečný et al., 2016) proposed using structured and sketched updates to reduce the transmitted data. ATOMO (Wang et al.,
2018) introduced a generalised gradient decomposition and sparsification technique, aiming to reduce the gradient sizes
communicated upstream. (Han et al., 2020) adaptively select the gradients’ sparsification degree based on the available
bandwidth and computational power. Building upon gradient quantisation methods (Lin et al., 2018; Horváth et al., 2019;
Rajagopal et al., 2020), (Amiri et al., 2020) proposed using quantisation in the model sharing and aggregation steps. However,
their scheme requires the same clients to participate across all rounds, and is, thus, unsuitable for realistic settings where
clients’ availability cannot be guaranteed. Despite the bandwidth savings, these communication-optimising approaches do
not offer computational gains nor do they address device heterogeneity. Nonetheless, they remain orthogonal to our work
and can be complementarily combined to further alleviate the communication cost.
Computation-Communication Co-optimisation. A few works aim to co-optimise both the computational and bandwidth
costs. PruneFL (Jiang et al., 2020) proposes an unstructured pruning method. Despite the similarity to our work in terms of
pruning, this method assumes a common pruned model across all clients at a given round, thus not allowing more powerful
devices to update more weights. Hence, the pruned model needs to meet the constraints of the least capable devices, which
severely limits the model capacity. Moreover, the adopted unstructured sparsity is difficult to translate to processing speed
gains (Yao et al., 2019). Federated Dropout (Caldas et al., 2018b) randomly sparsifies the global model, before sharing it to
the clients. Similarly to PruneFL, Federated Dropout does not consider the system diversity and distributes the same model
to all clients. Thus, it is restricted by the low-end devices or excludes them altogether from the FL process.
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Contrary to the presented works, our framework embraces the client heterogeneity, instead of treating it as a limitation, and
thus pushes the boundaries of FL deployment in terms of fairness, scalability and performance by tailoring the model size to
the device at hand.

B. Proof of Theorem 1
Proof. Let A = ÛΣV̂ > =

∑k
i=1 σiûiv̂

>
i denote SVD decomposition of A. This decomposition is unique as A is full rank

with distinct singular values. We also denote Ab =
∑b

i=1 σiûiv̂
>
i

Assuming a linkage of input data x and response y through a linear mapping Ax = y, we obtain the following

min
U,V

Ex∼XEp∼DP‖Fp(x)− y‖2 = min
U,V

Ex∼XEp∼DP‖Fp(x)−Ax‖2.

Let us denote ui to be i-th row of matrix U and v>i to be i-th row of V. Due to X being uniform on unit ball and structure of
the neural network, we can further simplify the objective to

min
U,V

Ep∼DP

∥∥∥∥∥∥
dp·ke∑
i=1

uiv
>
i −A

∥∥∥∥∥∥
2

F

,

where F denotes Frobenius norm. Since for each b there exists nonzero probability Pb such that b = dp · ke, we can
explicitly compute expectation, which leads to

min
U,V

k∑
b=1

Pb

∥∥∥∥∥
b∑

i=1

uiv
>
i −A

∥∥∥∥∥
2

F

.

Realising that
∑b

i=1 uiv
>
i has rank at most b, we can use Eckart–Young theorem which implies that

min
U,V

k∑
b=1

Pb

∥∥∥∥∥
b∑

i=1

uiv
>
i −A

∥∥∥∥∥
2

F

≥
k∑

b=1

Pb ‖Ab −A‖2F .

Equality is obtained if and only if Ab =
∑b

i=1 uiv
>
i for all i ∈ {1, 2, . . . , k}. This can be achieved, e.g. vi = v̂i and

ui = σiûi for all i ∈ {1, 2, . . . , k}.

C. OD: Optimisation Perspective
In this section, we discuss the impact of introducing the Ordered Dropout formulation into the original problem. We follow
notation used in the main paper, where F and w are the original network and weights, respectively, and Fp denotes a pruned
p-subnetwork with its weights wp. We argue that the problem does not become harder from the optimization point of view
as quantities such as smoothness or strong convexity do not worsen for the OD formulation as stated in the following lemma.

Lemma 1. Let F be µ-strongly convex and L-smooth. Then FDP = Ep∼DP [Fp] is µ′-strongly convex and L′-smooth with
µ′ ≥ µ and L′ ≤ L.

Proof. The claim trivially follows from the definitions of smoothness and strong convexity by realising that Fp(wp) is
equal to F(w) where wp is obtained from w using our pruning technique, thus Fp is µp-strongly convex and Lp-smooth
with µp ≥ µ and Lp ≤ L for all p ∈ [0, 1]. Subsequently, the same has to hold for the expectation.

D. Experimental Details
D.1. Datasets and Models

Below, we provide detailed description of the datasets and models used in this paper. We use vision datasets EMNIST (Cohen
et al., 2017) and its federated equivalent FEMNIST and CIFAR10 (Krizhevsky et al., 2009), as well as the language modelling
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dataset Shakespeare (McMahan et al., 2017b). In the centralised training scenarios, we use the union of dataset partitions for
training and validation, while in the federeated deployment, we adopt either a random partitioning in IID datasets or the
pre-partitioned scheme available in TensorFlow Federated (TFF) (Authors, 2019). Detailed description of the datasets is
provided below.

CIFAR10. The CIFAR10 dataset is a computer vision dataset consisting of 32× 32× 3 images with 10 possible labels. For
federated version of CIFAR10, we randomly partition dataset among 100 clients, each client having 500 data-points. We
train a ResNet18 (He et al., 2016) on this dataset, where for Ordered Dropout, we train independent batch normalization
layers for every p ∈ DP as Ordered Dropout affects distribution of layers’ outputs. We perform standard data augmentation
and preprocessing, i.e. a random crop to shape (24, 24, 3) followed by a random horizontal flip and then we normalize the
pixel values according to their mean and standard deviation.

(F)EMNIST. EMNIST consists of 28× 28 gray-scale images of both numbers and upper and lower-case English characters,
with 62 possible labels in total. The digits are partitioned according to their author, resulting in a naturally heterogeneous
federated dataset. EMNIST is collection of all the data-points. We do not use any preprocessing on the images. We train a
Convolutional Neural Network (CNN), which contains two convolutional layers, each with 5× 5 kernels with 10 and 20
filters, respectively. Each convolutional layer is followed by a 2× 2 max pooling layer. Finally, the model has a dense output
layer followed by a softmax activation. FEMNIST refers to the federated variant of the dataset, which has been partitioned
based on the writer of the digit/character (Caldas et al., 2018a).

Shakespeare. Shakespeare dataset is also derived from the benchmark designed by (Caldas et al., 2018a). The dataset
corpus is the collected works of William Shakespeare, and the clients correspond to roles in Shakespeare’s plays with at
least two lines of dialogue. Non-federated dataset is constructed as a collection of all the clients’ data-points in the same
way as for FEMNIST. For the preprocessing step, we apply the same technique as TFF dataloader, where we split each
client’s lines into sequences of 80 characters, padding if necessary. We use a vocabulary size of 90 entities – 86 characters
contained in Shakespeare’s work, beginning and end of line tokens, padding tokens, and out-of-vocabulary tokens. We
perform next-character prediction on the clients’ dialogue using an Recurrent Neural Network (RNN). The RNN takes as
input a sequence of 80 characters, embeds it into a learned 8-dimensional space, and passes the embedding through two
LSTM (Hochreiter & Schmidhuber, 1997) layers, each with 128 units. Finally, we use a softmax output layer with 90 units.
For this dataset, we don’t apply Ordered Dropout to the embedding layer, but only to the subsequent LSTM layers, due to its
insignificant impact on the size of the model.

D.2. Implementation Details

FjORD was built on top of PyTorch (Paszke et al., 2019) and Flower (Beutel et al., 2020), an open-source federated
learning framework which we extended to support Ordered, Federated, and Adaptive Dropout and Knowledge Distillation.
Our OD aggregation was implemented in the form of a Flower strategy that considers each client maximum width pimax.
Server and clients run in a multiprocess setup, communicating over gRPC4 channels and can be distributed across multiple
devices. To scale to hundreds of clients per cloud node, we optimised Flower so that clients only allocate GPU resources
when actively participating in a federated client round. This is accomplished by separating the forward/backward propagation
of clients into a separate spawned process which frees its resources when finished. Timeouts are also introduced in order to
limit the effect of stragglers or failed client processes to the entire training round.

D.3. Hyperparameters.

In this section we lay out the hyperparameters used for each 〈model, dataset, deployment〉 tuple.

D.3.1. NON-FEDERATED EXPERIMENTS

For centralised training experiments, we employ SGD with momentum 0.9 as an optimiser. We also note that the training
epochs of this setting are significantly fewer that the equivalent federated training rounds, as each iteration is a full pass over
the dataset, compared to an iteration over the sampled clients.

ResNet18. We use batch size 128, step size of 0.1 and train for 300 epochs. We decrease the step size by a factor of 10 at
epochs 150 and 225.

4https://www.grpc.io/

https://www.grpc.io/


Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout

CNN. We use batch size 128 and train for 20 epochs. We keep the step size constant at 0.1.
RNN. We use batch size 32 and train for 50 epochs. We keep the step size constant at 0.1.

D.3.2. FEDERATED EXPERIMENTS

For each 〈model, dataset〉 federated deployment, we start the communication round by randomly sampling 10 clients to
model client availability and for each available client we run one local epoch. We decrease the client step size by 10 at 50%
and 75% of total rounds. We run 500 global rounds of training across experiments and use SGD without momentum.

ResNet18. We use local batch size 32 and step size of 0.1.
CNN. We use local batch size 16 and step size of 0.1.
RNN. We use local batch size 4 and step size of 1.0.

E. Additional Experiments
ORDERED DROPOUT EXACTLY RECOVERS SVD: EMPIRICAL EVIDENCE
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Figure 8: Frobenius norm of best k-rank approximation vs. corresponding OD sub-network.

In this experiment, we want to empirically back up our theoretical claims about Ordered Dropout recovering SVD. To this
end, we generate a normal random 5× 5 matrix, compute its SVD (USV T ) and set A = UDV T where D is a diagonal
matrix with 5, 4, . . . , 1 on the diagonal to ensure full rank with distinct singular values. We initialize U, V (1st & 2nd
layer, see Theorem 1’s proof) as normal random matrices. We then run SGD with lr=0.1 for 10k iterations. In each step,
we sample 32 points from the 5D unit ball and apply OD sampled from the uniform distribution, taking an SGD step. In
Fig. 8, we display the Frobenius norm between the best k-rank approximation of A and the corresponding OD subnetwork
(p = [0.2, . . . , 1], for k = 1, . . . , 5). This converges and recovers SVD.
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(b) CNN - FEMNIST
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(c) RNN - Shakespeare

Figure 9: Convergence of FjORD vs. eFD over 500 FL training rounds.

In this section, we depict the convergence behaviour of FjORD compared to the eFD baseline across 500 global training
rounds. We follow the same setup as in § 5.2. From Fig. 9, it can be easily witnessed that FjORD (with or without distillation)
leads to smoother convergence and yields lower losses across the three (model,dataset) combinations.
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Figure 10: Federated Dropout (FD) vs Extended Federated Dropout (eFD). Performance vs dropout rate p across different
networks and datasets.
FEDERATED DROPOUT VS. EFD

In this section we provide evidence of eFD’s accuracy dominance over FD. We inherit the setup of the experiment in § 5.2
to be able to compare results and extrapolate across similar conditions. From Fig. 10, it is clear that eFD’s performance
dominates the baseline FD by 27.13-33 percentage points (pp) (30.94 pp avg.) on CIFAR10, 4.59-9.04 pp (7.13 pp avg.) on
FEMNIST and 1.51-6.96 points (p) (3.96 p avg.) on Shakespeare. The superior performance of eFD, as a technique, can be
attributed to the fact that it allows for an adaptive dropout rate based on the device capabilities. As such, instead of imposing
a uniformly high dropout rate to accommodate the low-end of the device spectrum, more capable devices are able to update
larger portion of the network, thus utilising its capacity more intelligently.

However, it should be also noted that despite FD’s accuracy drop, on average it is expected to have a lower computa-
tion/upstream network bandwidth/energy impact on devices of the higher end of the spectrum, as they run the largest dropout
rate possible to accommodate the computational need of their lower-end counterparts. This behaviour, however, can also be
interpreted as wasted computation potential on the higher end – especially under unconstrained environments (i.e. device
charging overnight) – at the expense of global model accuracy.

F. Limitations
In this work we have presented a method for training DNNs in centralised (through OD) and federated (through FjORD)
settings. We have evaluated our method in terms of accuracy performance against baselines and enhancements of those that
represent the state-of-the-art at the time of writing across three different datasets and tasks in IID and non-IID settings. Our
evaluation has adopted uniform sampling of p values and considered to be constant across layers of the network at hand
mainly for simplicity and tractability of the problem. However, this does not degrade the generality of our approach.

While we do target heterogeneous devices found in the wild, such as mobile phones, we have not measured the performance
of our technique on such devices, mainly due to the lack of maturity in tools for on-device training. However, we have
demonstrated the performance gains in terms of FLOPs and parameters in Table 2, which are directly correlated with
on-device performance, memory footprint and communication size. We defer on-device benchmarking and in-the-wild
deployment at scale for future work.

Last, we have assumed the clusters of devices to be given and the different device load to be assumed in the modelling
of these clusters. While we do provide results across different number and distribution of clusters in § 5.4, we treat the
device-to-cluster association outside the scope of this work.
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