
FedGNN: Federated Graph Neural Network for Privacy-Preserving
Recommendation

Chuhan Wu 1 Fangzhao Wu 2 Yang Cao 3 Lingjuan Lyu 4 Yongfeng Huang 1 Xing Xie 2

Abstract
Graph neural network (GNN) is widely used for
recommendation to model high-order interactions
between users and items. Existing GNN-based
recommendation methods rely on centralized stor-
age of user-item graphs for model learning, which
may arouse privacy concerns and risks due to the
privacy-sensitivity of user behaviors. In this pa-
per, we propose a privacy-preserving GNN-based
recommendation method based on federated learn-
ing, named FedGNN. It can collaboratively train
GNN models from decentralized user data and
meanwhile exploit high-order user-item interac-
tion information with privacy well protected. In
our method, we locally train GNN model in each
user client based on the local user-item graph in-
ferred from the local user-item interaction data,
where the gradients of GNN are communicated
between clients and a server for aggregation and
local GNN update. Since local gradients may
contain private information, we apply differen-
tial privacy techniques to the local gradients to
protect user privacy. In addition, to protect the
items that users have interactions with, we in-
corporate randomly sampled items as pseudo in-
teracted items for anonymity. Since local data
only contain first-order interaction information,
we propose a user-item graph expansion method
to expand local user-item graphs and propagate
high-order information in a privacy-preserving
way. Extensive experiments on six datasets show
the effectiveness of FedGNN in GNN-based rec-
ommendation and privacy protection.

*Equal contribution 1Tsinghua University, Beijing 100084,
China 2Microsoft Research Asia, Beijing 100080, China
3Kyoto University, Kyoto 615-8558, Japan 4Ant group,
Hangzhou 310013, China. Correspondence to: Chuhan Wu
<wuchuhan15@gmail.com>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

...

...

1

...

...

Local User-Item Graph

...

Centralized User-Item Graph
Local GNN

Global GNN

...

Local User-Item Graph

Global
GNN

Server

User Device

User Device

Local GNN

(a) Centralized GNN.

...

...

1

...

...

...

Centralized User-Item Graph
Local GNN

Global GNN

...

Local User-Item Graph

Global
GNN

Server

 
Local User-Item Graph

Client N
Local User-Item Graph

Local GNN

Client 1 

(b) Decentralized GNN in FL.

Figure 1. Comparisons between centralized and decentralized train-
ing of GNN models for recommendation.

1. Introduction
Graph neural network (GNN) is widely used by many per-
sonalized recommendation methods in recent years (Ying
et al., 2018; Jin et al., 2020), since it can capture high-order
interactions between users and items on the user-item graph
to enhance the user and item representations (Zhou et al.,
2018; Zhang et al., 2019). For example, Berg et al. (2017)
proposed to use graph convolutional autoencoders to learn
user and item representations from the user-item bipartite
graph. Wang et al. (2019) proposed to use a three-hop
graph attention network to capture the high-order interac-
tions between users and items. These existing GNN-based
recommendation methods usually necessitate centralized
storage of the entire user-item graph to learn GNN models
and the representations of users and items, which means that
the user-item interaction data needs to be centrally stored,
as shown in Fig. 1(a). However, user-item interaction data is
highly privacy-sensitive, and its centralized storage can lead
to the privacy concerns of users and the risk of data leak-
age (Lyu et al., 2017; Shin et al., 2018; Lyu et al., 2020c;b).
Moreover, under the pressure of strict data protection reg-
ulations such as GDPR1, online platforms may not be able
to centrally store user-item interaction data to learn GNN
models for recommendation in the future (Yang et al., 2019).

An intuitive way to tackle the privacy issue of user-item
interaction data is to locally store the raw data on user de-

1https://gdpr-info.eu



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

vices and learn local GNN models based on it. However, for
most users the volume of interaction data on their devices is
too small to locally train accurate GNN models. Federated
learning is a potential way to collaboratively learn GNN
models from the local data decentralized on a large number
of user clients in a privacy-preserving way. As shown in
Fig. 1(b), the clients learn their local GNN models based on
the local user-item graphs inferred from the local user-item
interaction data, and aggregate these local models into a
global one for recommendation. However, there exist two
challenges in this framework. First, the local GNN model
trained on local user data may convey private information,
and it is challenging to protect user privacy when synthe-
sizing the global GNN model from the local ones. Second,
the local user data only contains first-order user-item in-
teractions, and users’ interaction items cannot be directly
exchanged due to privacy restrictions. Thus, it is very chal-
lenging to exploit the high-order user-item interactions to
enhance GNN model learning without privacy leakage.

In this paper, we propose a federated framework named
FedGNN for privacy-preserving GNN-based recommenda-
tion, which can effectively exploit high-order user-item in-
teraction information by collaboratively training GNN mod-
els for recommendation in a privacy-preserving way. In
FedGNN user-item interaction data is locally stored on user
clients and there is no global user-item graph due to privacy
restrictions. Each client locally learns a GNN model and the
embeddings of user and items based on the user-item graph
inferred from the local user-item interaction data on this
device. The user devices compute the gradients of GNN and
user/item embeddings and upload them to a central server,
which aggregates the gradients from a number of users and
distributes them to user devices for local updates. Since
the communicated gradients contain private information,
we propose a privacy-preserving model update method to
protect user-item interaction information. More specifically,
we apply differential privacy (DP) techniques to the local
gradients computed by user clients to protect user privacy.
In addition, in order to protect the real items that a user has
interactions with, we generate random embedding gradients
of randomly sampled pseudo interacted items. Besides, to
exploit high-order information of the user-item graph with-
out leaking user privacy, we propose a privacy-preserving
user-item graph expansion method that aims to find the
neighbors of users with co-interacted items and exchange
their embeddings periodically, which can expand local user-
item graphs and propagate high-order interaction informa-
tion. We conduct massive experiments on six widely used
benchmark datasets for recommendation, and the results
show that FedGNN can achieve competitive results with
existing centralized GNN-based recommendation methods
and meanwhile effectively protect user privacy.

2. Methodology
In this section, we first present the problem definitions in our
federated framework named FedGNN to train GNN-based
recommendation model in a privacy-preserving way, then
introduce the details of FedGNN, and finally provide some
discussions and analysis on privacy protection.

2.1. Problem Formulation

Denote U = {u1, u2, ..., uP } and T = {t1, t2, ..., tQ} as
the sets of users and items respectively, where P is the
number of users and Q is the number of items. Denote the
rating matrix between users and items as Y ∈ RP×Q, which
is used to form a bipartite user-item graph G based on the
observed ratings Yo. We assume that the user ui has interac-
tions withK items, which are denoted by [ti,1, ti,2, ..., ti,K ].
These items and the user ui can form a first-order local
user-item subgraph Gi. The ratings that given to these items
by user ui are denoted by [yi,1, yi,2, ..., yi,K ]. To protect
user privacy (both the private ratings and the items a user
has interactions with), each user device locally keeps the
interaction data of this user, and the raw data never leaves
the user device. We aim to predict the user ratings based
on the interaction data Gi locally stored on user devices in
a privacy-preserving way. Note that there is no global user-
item interaction graph in FedGNN and local graphs are built
and stored in different device, which is very different from
existing federated GNN methods (Mei et al., 2019; Jiang
et al., 2020; He et al., 2021; Ni et al., 2021) that require
the entire graph is built and stored together in at least one
platform or device.

2.2. FedGNN Framework

Next, we introduce the framework of FedGNN to train GNN-
based recommendation model in a privacy-preserving way.
It can leverage the highly decentralized user interaction data
to learn GNN models for recommendation by exploiting
the high-order user-item interactions in a privacy-preserving
way. The framework of FedGNN is shown in Fig. 2. It
mainly consists of a central server and a large number of user
clients. The user client keeps a local subgraph that consists
of the user interaction histories with items and the neighbors
of this user with co-interacted items with this user (we will
introduce how to incorporate user neighbors in Section 2.4).
Each client learns the user/item embeddings and the GNN
models from its local subgraph, and uploads the gradients
to a central server. The central server is responsible for
coordinating these user clients in the model learning process
by aggregating the gradients received from a number of
user clients and delivering the aggregated gradients to them.
Next, we introduce how they work in detail.

The local subgraph on each user client is constructed from



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

Aggregator

......

Loss

...

G
N

N

R
ating 

Predictor

...

Item Embedding Gradients

GNN Gradients C
lip

𝑡𝑡𝑡𝑖𝑖,𝑀𝑀

𝑡𝑡𝑡𝑖𝑖,1

𝒉𝒉𝑖𝑖𝑢𝑢

𝒉𝒉𝑖𝑖,𝐾𝐾𝑡𝑡

�𝑦𝑦𝑖𝑖,1
�𝑦𝑦𝑖𝑖,2

�𝑦𝑦𝑖𝑖,𝐾𝐾

𝑦𝑦𝑖𝑖,1
𝑦𝑦𝑖𝑖,2

𝑦𝑦𝑖𝑖,𝐾𝐾

𝒆𝒆𝑖𝑖,1
𝑝𝑝

𝒆𝒆𝑖𝑖,𝑀𝑀
𝑝𝑝

......

Loss

U
ser Em

b.

...

G
N

N

R
ating 

Predictor

𝑡𝑡𝑡𝑗𝑗,𝑀𝑀

𝑡𝑡𝑡𝑗𝑗,1

�𝑦𝑦𝑗𝑗,𝐾𝐾

�𝑦𝑦𝑗𝑗,2

�𝑦𝑦𝑗𝑗,1

𝑦𝑦𝑗𝑗,𝐾𝐾

𝑦𝑦𝑗𝑗,2

GNN
Gradients

Item 
Embedding
Gradients

Pseudo
Interacted

Items

Pseudo
Interacted

Items

User j

User i

Server

Distribute

Distribute

...

𝒉𝒉𝑖𝑖,1𝑡𝑡

𝒉𝒉𝑖𝑖,𝑁𝑁𝑢𝑢
𝒉𝒉𝑖𝑖,1𝑢𝑢...

𝒆𝒆𝑖𝑖𝑢𝑢

𝒆𝒆𝑖𝑖,𝐾𝐾𝑡𝑡

...

𝒆𝒆𝑖𝑖,1𝑡𝑡

𝒆𝒆𝑖𝑖,𝑁𝑁𝑢𝑢
𝒆𝒆𝑖𝑖,1𝑢𝑢

...

𝒉𝒉𝑗𝑗𝑢𝑢
𝒉𝒉𝑗𝑗,𝐾𝐾
𝑡𝑡

𝒆𝒆𝑗𝑗,1
𝑝𝑝

𝒆𝒆𝑗𝑗,𝑀𝑀
𝑝𝑝

...

𝒉𝒉𝑗𝑗,1
𝑡𝑡

𝒉𝒉𝑗𝑗,𝑁𝑁
𝑢𝑢

𝒉𝒉𝑗𝑗,1
𝑢𝑢...

𝒆𝒆𝑗𝑗𝑢𝑢
𝒆𝒆𝑗𝑗,𝐾𝐾
𝑡𝑡

...

𝒆𝒆𝑗𝑗,1
𝑡𝑡

𝒆𝒆𝑗𝑗,𝑁𝑁
𝑢𝑢

𝒆𝒆𝑗𝑗,1
𝑢𝑢

...
...

... Upload

Item
 Em

b.

User Embedding Gradients

 D
P

GNN Gradients

Item Embedding Gradients

User Embedding Gradients

𝑦𝑦𝑗𝑗,1
C

lip

 D
P

Local Update

Local Update

GNN

Item 
Embedding

Update

Predictions Labels

Predictions Labels

U
ser Em

b.
Item

 Em
b.

Random Gradients

Random Gradients

𝑢𝑢𝑖𝑖
𝑡𝑡𝑖𝑖,1

Neighbor Users
𝑢𝑢𝑖𝑖,1

...

...

Real 
Interacted 

Items

𝑡𝑡𝑖𝑖,𝐾𝐾

𝑢𝑢𝑖𝑖,𝑁𝑁

𝑢𝑢𝑗𝑗
𝑡𝑡𝑗𝑗,1

Neighbor Users
𝑢𝑢𝑗𝑗,1

...

...

Real 
Interacted 

Items 𝑡𝑡𝑗𝑗,𝐾𝐾

𝑢𝑢𝑗𝑗,𝑁𝑁

Figure 2. The framework of FedGNN.

the user-item interaction data and the neighboring users
that have co-interacted items with this user. The node of
this user is connected to the nodes of the items it inter-
acted with, and these item nodes are further connected to
the anonymous neighboring users. An embedding layer
is first used to convert the user node ui, the K item
nodes [ti,1, ti,2, ..., ti,K ] and the N neighboring user nodes
[ui,1, ui,2, ..., ui,N ] into their embeddings, which are de-
noted as eui , [eti,1, e

t
i,2, ..., e

t
i,K ] and [eui,1, e

u
i,2, ..., e

u
i,N ], re-

spectively. Since the user embeddings may not be accurate
enough when the model is not well-tuned, we first exclude
the neighboring user embeddings at the beginning of model
learning, and then incorporate them into model learning
when they have been tuned. Note that the embeddings of the
user ui and the item embeddings are synchronously updated
during model training, while the embeddings of neighboring
users are periodically updated.

Next, we apply a graph neural network to these embed-
dings to model the interactions between nodes on the lo-
cal first-order sub-graph. Various kinds of GNN network
can be used in FedGNN, such as graph convolution net-
work (GCN) (Kipf & Welling, 2017), gated graph neural
network (GGNN) (Li et al., 2016) and graph attention net-
work (GAT) (Velickovic et al., 2018). The GNN model
outputs the hidden representations of the user and item
nodes, which are denoted as hui , [hti,1,h

t
i,2, ...,h

t
i,K ] and

[hui,1,h
u
i,2, ...,h

t
i,N ], respectively. Then, a rating predic-

tor module is used to predict the ratings given by the user
ui to her interacted items (denoted by [ŷi,1, ŷi,2, ..., ŷi,K ])
based on the embeddings of items and this user. These
predicted ratings are compared against the gold ratings lo-

cally stored on the user device to compute the loss func-
tion. For the user ui, the loss function Li is computed as
Li = 1

K

∑K
j=1 |ŷi,j − yi,j |2. We use the loss Li to derive

the gradients of the models and embeddings, which are de-
noted by gmi and gei , respectively. These gradients will be
further uploaded to the server for aggregation.

The server aims to coordinate all user devices and compute
the global gradients to update the model and embedding pa-
rameters in these devices. In each round, the server awakes
a certain number of user clients to compute gradients locally
and send them to the server. After the server receiving the
gradients from these users, the aggregator in this server will
aggregate these local gradients into a unified one g.2 Then,
the server sends the aggregated gradients to each client to
conduct local parameter update. Denote the parameter set in
the i-th user device as Θi. It is updated by Θi = Θi − αg
(α is the learning rate). This process is iteratively executed
until the model converges.3 We then introduce two modules
for privacy protection in FedGNN, i.e., a privacy-preserving
model update module for protecting gradients and a privacy-
preserving user-item graph expansion module to protect user
privacy in high-order user-item interaction modeling.

2.3. Privacy-Preserving Model Update

If we directly upload the GNN model and item embedding
gradients, then there may be some privacy issues due to

2We use the FedAvg algorithm to implement the aggregator.
3When the model learning process completes, the user clients

will upload their locally inferred hidden user embeddings to the
server for providing future recommendation services.



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

following reasons. First, for embedding gradients, only
the items that a user has interactions with have non-zero
gradients to update their embeddings, and the server can
directly recover the full user-item interaction history based
on the non-zero item embedding gradients. Second, besides
the embedding gradients, the gradients of the GNN model
and rating predictor may also leak private information of
user histories and ratings (Zhu et al., 2019), because the
GNN model gradients encode the preferences of users on
items. In existing methods such as FedMF (Chai et al.,
2020), homomorphic encryption techniques are applied to
gradients to protect private ratings. However, they need to
locally maintain the embedding table of the entire item set
T in user devices and upload it in every iteration to achieve
user interaction history protection, which is impractical due
to the huge storage and communication cost.

To tackle these challenges, we propose two strategies to pro-
tect user privacy in the model update process. The first one
is pseudo interacted item sampling. Concretely, we sample
M items that the user has not interacted with, and randomly
generate their gradients gpi using a Gaussian distribution
with the same mean and co-variance values with the real
item embedding gradients. The real embedding gradients
gei are combined with the pseudo item embedding gradients
gpi , and the unified gradient of the model and embeddings
on the i-th user device (Line 27 in Algorithm 1) is modi-
fied as gi = (gmi ,g

e
i ,g

p
i ). The second one is differential

privacy (Lyu et al., 2020a). Following (Qi et al., 2020),
we clip the local gradients on user clients based on their
L2-norm with a threshold δ, and apply a differential privacy
(DP) module with zero-mean Laplacian noise to the unified
gradients to achieve better user privacy protection, which
are formulated as follows:

gi = clip(gi, δ) + Laplace(0, λ), (1)

where λ is the strength of noise.4 The protected gradients
gi are uploaded to the server for aggregation.

2.4. Privacy-Preserving User-Item Graph Expansion

Then, we introduce our privacy-preserving user-item graph
expansion method that aims to find the neighbors of users
and extend the local user-item graphs in a privacy-preserving
way. In existing GNN-based recommendation method based
on centralized graph storage, high-order user-item interac-
tions can be directly derived from the global user-item graph.
However, when user data is decentralized, it is a non-trivial
task to incorporate high-order user-item interactions with-
out violating user privacy protection. To solve this problem,
we propose a privacy-preserving user-item graph expansion
method that finds the anonymous neighbors of users to en-
hance user and item representation learning, where user

4The privacy budget ε can be bounded by 2δ
λ

.

User-Item
Subgraph

Third-Party
Server

H
om

om
orphic 

Encryption

𝑡𝑡𝑖𝑖,1

𝑡𝑡𝑖𝑖,𝐾𝐾

...

Item
 

M
atcher

H
om

om
orphic 

Encryption𝑡𝑡𝑗𝑗,𝐾𝐾

𝑡𝑡𝑗𝑗,1...

① Public Key

① Public Key

𝒆𝒆𝑖𝑖,𝑁𝑁𝒖𝒖𝒆𝒆𝑖𝑖,1𝒖𝒖
...

③ Anonymous Neighbor
User Embedding

Item IDs

Item IDs

𝒆𝒆𝑖𝑖𝑢𝑢

User Embedding N
eighbor 

D
istributor 

𝒆𝒆𝑗𝑗𝑢𝑢
User Embedding

...

𝒆𝒆𝑗𝑗,𝑁𝑁
𝒖𝒖𝒆𝒆𝑗𝑗,1

𝒖𝒖

③ Anonymous Neighbor
User Embedding

...

②

②

②

②

Server

Expand Distribute

Distribute

Upload

𝑡𝑡𝑖𝑖,1

𝑡𝑡𝑖𝑖,𝐾𝐾

...𝑢𝑢𝑖𝑖

𝑡𝑡𝑗𝑗,𝐾𝐾

User-Item
Subgraph

...𝑢𝑢𝑗𝑗

𝑡𝑡𝑗𝑗,1

Expand

Figure 3. The framework of the privacy-preserving user-item graph
expansion method.

privacy does not leak. Its framework is shown in Fig. 3. The
central server that maintains the recommendation services
first generates a public key, and then distributes it to all user
clients for encryption. After receiving the public key, each
user device applies homomorphic encryption (Chai et al.,
2020) to the IDs of the items she interacted based on this
key because the IDs of these items are privacy-sensitive.
The encrypted item IDs as well as the embedding of this
user are uploaded to a trusted third-party server. This server
finds the users who interacted with the same items via item
matching, and then provides each user with the embeddings
of her anonymous neighbors. In this stage, the server for
recommendation never receives the private information of
users, and the third-party server cannot obtain any private
information of users and items since it cannot decrypt the
item IDs. We connect each anonymous user node with its
interacted item nodes. In this way, the local user-item graph
can be enriched by the high-order user-item interactions
without harming the protection of user privacy.

2.5. Analysis on Privacy Protection

The user privacy is protected by four aspects in FedGNN.
First, in FedGNN the recommendation server never collects
raw user-item interaction data, and only local computed
gradients are uploaded to this server. Based on the data pro-
cessing inequality (McMahan et al., 2017), we can infer that
these gradients contain much less private information than
the raw user interaction data. Second, the third-party server
also cannot infer private information from the encrypted
item IDs since it cannot obtain the private key. However,
if the recommendation server colludes with the third-party
server by exchanging the private key and item table, the user
interaction history will not be protected. Fortunately, the pri-
vate ratings can still be protected by our privacy-preserving
model update method. Third, in FedGNN we propose a
pseudo interacted item sampling method to protect the real



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

interacted items by sampling a number of items that are not
interacted with a user. Since gradients of both kinds of items
have the same mean and co-variance values, it is difficult
to discriminate the real interacted items from the pseudo
ones if the number of pseudo interacted items is sufficiently
large. It is proved in (Liu et al., 2021) that FedGNN can
achieve K

M−index privacy. Thus, the number of pseudo
interacted items can be relatively larger to achieve better
privacy protection as long as the computation resources of
user devices permit. Fourth, we apply the DP technique to
the gradients locally computed by the user device, making
it more difficult to recover the raw user consumption history
from these gradients. It is shown in (Qi et al., 2020) that the
upper bound of the privacy budget ε is 2δ

λ , which means that
we can achieve a smaller privacy budget ε by using a smaller
clipping threshold δ or a larger noise strength λ. However,
the model gradients will be inaccurate if ε is too small. Thus,
we need to properly choose both hyperparameters to balance
model performance and privacy protection.

3. Experiments
3.1. Dataset and Experimental Settings

In our experiments, following (Berg et al., 2017) we use
six widely used benchmark datasets for recommendation,
including MovieLens5 (100K, 1M, and 10M), Flixster,
Douban, and YahooMusic. We use the preprocessed subsets
of the Flixster, Douban, and YahooMusic datasets provided
by (Monti et al., 2017).6 We denote the three versions of
MovieLens as ML-100K, ML-1M and ML-10M respec-
tively, and we denote YahooMusic as Yahoo. The detailed
statistics of these datasets are summarized in Table 1.

Table 1. Statistics of the datasets.

Dataset #Users #Items #Ratings Rating Levels
Flixster 3,000 3,000 26,173 0.5,1,...,5
Douban 3,000 3,000 136,891 1,2,...,5
Yahoo 3,000 3,000 5,335 1,2,...100
ML-100K 943 1,682 100,000 1,2,...,5
ML-1M 6,040 3,706 1,000,209 1,2,...,5
ML-10M 69,878 10,677 10,000,054 0.5,1,...,5

In our experiments, we use graph attention network
(GAT) (Velickovic et al., 2018) as the GNN model, and
use dot product to implement the rating predictor. The
user and item embeddings and their hidden representations
learned by graph neural networks are 256-dim. We update
the neighbor user embeddings after every epoch. The gra-
dient clipping threshold δ is set to 0.1, and the strength of
Laplacian noise in the DP module is set to 0.2 to achieve 1-
differential privacy. The number of pseudo interacted items
is set to 1,000. The number of users used in each round of

5https://grouplens.org/datasets/movielens/
6https://github.com/fmonti/mgcnn

Table 2. Performance of different methods in terms of RMSE. Re-
sults of FedGNN and the best-performed baseline are in bold.

Methods Flixster Douban Yahoo ML-100K ML-1M ML-10M
PMF 1.375 0.886 26.6 0.965 0.883 0.856
SVD++ 1.155 0.869 24.4 0.952 0.860 0.834
GRALS 1.313 0.833 38.0 0.934 0.849 0.808
sRGCNN 1.179 0.801 22.4 0.922 0.837 0.789
GC-MC 0.941 0.734 20.5 0.905 0.832 0.777
PinSage 0.945 0.732 21.0 0.914 0.840 0.790
NGCF 0.954 0.742 20.9 0.916 0.833 0.779
GAT 0.952 0.737 21.2 0.913 0.835 0.784
FCF 1.064 0.823 22.9 0.957 0.874 0.847
FedMF 1.059 0.817 22.2 0.948 0.872 0.841
FedGNN 0.980 0.775 20.7 0.910 0.839 0.793

model training is 128, and the total number of epoch is 3.
SGD optimizer with a learning rate of 0.01 is used. The
splits of datasets are the same as those used in (Berg et al.,
2017), and these hyperparameters are selected according to
the validation performance.We use rooted mean square error
(RMSE) as performance metric, and we report the average
RMSE scores over 10 repetitions.

3.2. Performance Evaluation

First, we compare the performance of our FedGNN approach
with several recommendation methods based on centralized
storage of user data and several privacy-preserving ones
based on federated learning, including: (1) PMF (Mnih &
Salakhutdinov, 2008), probability matrix factorization; (2)
SVD++ (Koren, 2008), a variant of singular value decompo-
sition; (3) GRALS (Rao et al., 2015), a collaborative filter-
ing approach with graph information; (4) sRGCNN (Monti
et al., 2017), a matrix completion method with recurrent
multi-graph neural networks; (5) GC-MC (Berg et al., 2017),
a matrix completion method based on graph convolutional
autoencoders; (6) PinSage (Ying et al., 2018), a recom-
mendation approach based on 2-hop GCN networks; (7)
NGCF (Wang et al., 2019), neural graph collaborative fil-
tering; (8) GAT (Velickovic et al., 2018), graph attention
network; (9) FCF (Ammad et al., 2019), privacy-preserving
recommendation based on federated collaborative filtering;
(10) FedMF (Chai et al., 2020), privacy-preserving recom-
mendation based on secure matrix factorization. The rec-
ommendation performance of these methods is summarized
in Table 2. We observe that the methods which incorporate
high-order information of the user-item graph (e.g., GC-
MC, PinSage and NGCF) achieve better performance than
those based on first-order information only (PMF). This
is because modeling the high-order interactions between
users and items can enhance user and item representation
learning, and thereby improves the accuracy of recommen-
dation. In addition, compared with the methods based on
centralized user-item interaction data storage like GC-MC
and NGCF, FedGNN can achieve comparable or even bet-
ter performance. It shows that FedGNN can protect user



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

GGNN GCN GAT
0.95

1.00

1.05

1.10

1.15

1.20
R

M
S

E
Flixster

GGNN GCN GAT
0.65

0.70

0.75

0.80

0.85

0.90

R
M

S
E

Douban

GGNN GCN GAT
20.00

21.00

22.00

23.00

24.00

25.00

R
M

S
E

Yahoo

GGNN GCN GAT
0.85

0.88

0.91

0.94

0.97

1.00

R
M

S
E

ML-100K

GGNN GCN GAT
0.80

0.82

0.84

0.86

0.88

0.90

R
M

S
E

ML-1M

GGNN GCN GAT
0.75

0.78

0.81

0.84

0.87

0.90

R
M

S
E

ML-10M

W/o High-order Information W/ Synchronously Updated Neighbor User Embedding W/ Periodically Updated Neighbor User Embedding

Figure 4. Influence of neighbor user information and different GNN architectures.

0 0.1 0.2 0.3
0.95
1.00
1.05
1.10
1.15
1.20
1.25

R
M

S
E

Flixster

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

0 0.1 0.2 0.3
0.75
0.80
0.85
0.90
0.95
1.00
1.05

R
M

S
E

Douban

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

0 0.1 0.2 0.3
20.00
21.00
22.00
23.00
24.00
25.00

R
M

S
E

Yahoo

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

0 0.1 0.2 0.3
0.85
0.92
0.99
1.06
1.13
1.20

R
M

S
E

ML-100K

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

0 0.1 0.2 0.3
0.82
0.86
0.90
0.94
0.98
1.02

R
M

S
E

ML-1M

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

0 0.1 0.2 0.3
0.78
0.81
0.84
0.87
0.90
0.93

R
M

S
E

ML-10M

0

2

4

6

8

Pr
iv

ac
y 

Bu
dg

et
 

= 0.05 = 0.1 = 0.2 = 0.05 = 0.1 = 0.2RMSE: Privacy Budget ε:

Figure 5. The recommendation RMSE and privacy budget ε w.r.t. different clipping threshold δ and noise strength λ.

privacy and meanwhile achieve satisfactory recommenda-
tion performance. Besides, among the compared privacy-
preserving recommendation methods, FedGNN achieves the
best performance. This is because FedGNN can incorporate
high-order information of the user-item graphs, while FCF
and FedMF cannot. Moreover, FedGNN can protect both
ratings and user-item interaction histories, while FCF and
FedMF can only protect ratings.

3.3. Model Effectiveness

Then, we verify the effectiveness of incorporating high-
order information of the user-item graphs as well as the
generality of our approach. We compare the performance
of FedGNN and its variants with synchronously updated
neighbor user embeddings or without high-order user-item
interactions. In addition, we also compare their results un-
der different implementations of their GNN models (GGNN,
GCN and GAT). The results are shown in Fig. 4. Compared
with the baseline performance reported in Table 2, the perfor-
mance of FedGNN and its variants implemented with other
different GNN models is satisfactory. This result shows that
FedGNN is compatible with different GNN architectures. In
addition, the variants that can utilize the high-order informa-
tion perform better. It shows the effectiveness of FedGNN in
incorporating high-order information of the user-item graph
into recommendation. Moreover, we find that using period-
ically updated neighbor user embeddings is slightly better
than using fully trainable ones that are synchronously up-
dated in each iteration. This is because the neighboring user
embeddings may be inaccurate at the beginning of model
training, which is not beneficial for learning precise user
and item representations.

3.4. Hyperparameter Analysis

Finally, we explore the influence of the gradient clip thresh-
old δ and the strength λ of the Laplacian noise in the DP

module on model performance and privacy protection. The
results are plotted in Fig. 5.7 We find that the difference
between the model performance under δ = 0.1 and δ = 0.2
is quite marginal. However, if we clip the gradients with
a smaller threshold such as 0.05, the prediction error will
substantially increase. Thus, we prefer to set δ = 0.1 be-
cause we can achieve better privacy protection without much
sacrifice of model performance. In addition, the model per-
formance declines with the growth of the noise strength λ,
while the performance loss is not too heavy if λ is not too
large. Thus, a moderate value of λ such as 0.2 is preferable
to achieve a good balance between privacy protection and
recommendation accuracy.

4. Conclusion
In this paper, we propose a federated framework for privacy-
preserving GNN-based recommendation, which aims to
collaboratively train GNN models from decentralized user
data by exploiting high-order user-item interactions in a
privacy-preserving manner. We locally train GNN model in
each user client based on the local user-item graph stored
on this device. Each client uploads the locally computed
gradients to a server for aggregation, which are further sent
to user clients for local updates. To protect user-item in-
teraction data during model training, we apply differential
privacy techniques to the local gradients and sample pseudo
interacted items to protect the real items that users have in-
teractions with. Besides, to incorporate high-order user-item
interaction information into model learning, we propose a
privacy-preserving user-item graph expansion method to
extend local graphs and propagate high-order information.
Experiments on six datasets show that our approach can
achieve competitive performance with existing methods
based on centralized storage of user-item interaction data
and meanwhile effectively protect user privacy.

7A larger λ and smaller δ means better privacy protection.



FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation

References
Ammad, M., Ivannikova, E., Khan, S. A., Oyomno, W., Fu,

Q., Tan, K. E., and Flanagan, A. Federated collaborative
filtering for privacy-preserving personalized recommen-
dation system. arXiv preprint arXiv:1901.09888, 2019.

Berg, R. v. d., Kipf, T. N., and Welling, M. Graph
convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

Chai, D., Wang, L., Chen, K., and Yang, Q. Secure federated
matrix factorization. IEEE Intelligent Systems, 2020.

He, C., Balasubramanian, K., Ceyani, E., Rong, Y., Zhao,
P., Huang, J., Annavaram, M., and Avestimehr, S. Fed-
graphnn: A federated learning system and benchmark for
graph neural networks. arXiv preprint arXiv:2104.07145,
2021.

Jiang, M., Jung, T., Karl, R., and Zhao, T. Federated
dynamic gnn with secure aggregation. arXiv preprint
arXiv:2009.07351, 2020.

Jin, B., Gao, C., He, X., Jin, D., and Li, Y. Multi-behavior
recommendation with graph convolutional networks. In
SIGIR, pp. 659–668, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Koren, Y. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In KDD, pp. 426–
434, 2008.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S.
Gated graph sequence neural networks. In ICLR, 2016.

Liu, R., Cao, Y., Chen, H., Guo, R., and Yoshikawa, M.
Flame: Differentially private federated learning in the
shuffle model. In AAAI, 2021.

Lyu, L., He, X., Law, Y. W., and Palaniswami, M. Privacy-
preserving collaborative deep learning with application
to human activity recognition. In CIKM, pp. 1219–1228,
2017.

Lyu, L., He, X., and Li, Y. Differentially private represen-
tation for nlp: Formal guarantee and an empirical study
on privacy and fairness. In EMNLP: Findings, pp. 2355–
2365, 2020a.

Lyu, L., Yu, H., and Yang, Q. Threats to federated learning:
A survey. arXiv preprint arXiv:2003.02133, 2020b.

Lyu, L., Yu, J., Nandakumar, K., Li, Y., Ma, X., Jin, J., Yu,
H., and Ng, K. S. Towards fair and privacy-preserving
federated deep models. IEEE Transactions on Parallel
and Distributed Systems, 31(11):2524–2541, 2020c.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep

networks from decentralized data. In AISTATS, pp. 1273–
1282, 2017.

Mei, G., Guo, Z., Liu, S., and Pan, L. Sgnn: A graph neural
network based federated learning approach by hiding
structure. In IEEE Big Data, pp. 2560–2568. IEEE, 2019.

Mnih, A. and Salakhutdinov, R. R. Probabilistic matrix
factorization. In NIPS, pp. 1257–1264, 2008.

Monti, F., Bronstein, M., and Bresson, X. Geometric matrix
completion with recurrent multi-graph neural networks.
In NIPS, pp. 3697–3707, 2017.

Ni, X., Xu, X., Lyu, L., Meng, C., and Wang, W. A vertical
federated learning framework for graph convolutional
network. arXiv preprint arXiv:2106.11593, 2021.

Qi, T., Wu, F., Wu, C., Huang, Y., and Xie, X. Fedrec:
Privacy-preserving news recommendation with federated
learning. arXiv preprint arXiv:2003.09592, 2020.

Rao, N., Yu, H.-F., Ravikumar, P. K., and Dhillon, I. S. Col-
laborative filtering with graph information: Consistency
and scalable methods. In NIPS, pp. 2107–2115, 2015.

Shin, H., Kim, S., Shin, J., and Xiao, X. Privacy enhanced
matrix factorization for recommendation with local dif-
ferential privacy. TKDE, 30(9):1770–1782, 2018.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
Neural graph collaborative filtering. In SIGIR, pp. 165–
174, 2019.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. TIST, 10(2):1–19,
2019.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In KDD, pp.
974–983, 2018.

Zhang, J., Shi, X., Zhao, S., and King, I. Star-gcn: stacked
and reconstructed graph convolutional networks for rec-
ommender systems. In IJCAI, pp. 4264–4270. AAAI
Press, 2019.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A
review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
arXiv preprint arXiv:1906.08935, 2019.


