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Abstract

The mathematical formalization of a neurological
mechanism in the olfactory circuit of a fruit-fly as
a locality sensitive hash (FlyHash) and bloom
filter (FBF) has been recently proposed and “re-
programmed” for various machine learning tasks
such as similarity search, outlier detection and
text embeddings. We propose a novel reprogram-
ming of this hash and bloom filter to emulate
the canonical nearest neighbor classifier (NNC) in
the challenging Federated Learning (FL) setup
where training and test data are spread across
parties and no data can leave their respective
parties. Specifically, we utilize FlyHash and
FBF to create the FlyNN classifier, and theoreti-
cally establish conditions where FlyNN matches
NNC. We show how FlyNN is trained exactly in
a FL setup with low communication overhead to
produce FlyNNFL. Empirically, we demonstrate
that (i) FlyNN matches NNC accuracy across
70 OpenML datasets, (ii) FlyNNFL training is
highly scalable with low communication over-
head, providing up to 8× speedup with 16 parties.

1. Introduction
Biological systems (such a neural networks (Kavukcuoglu
et al., 2010; Krizhevsky et al., 2012), convolutions (Lecun
& Bengio, 1995), dropout (Hinton et al., 2012), attention
mechanisms (Larochelle & Hinton, 2010; Mnih et al., 2014))
have served as inspiration to modern deep learning systems,
demonstrating amazing empirical performance in areas of
computer vision, natural language programming and rein-
forcement learning. Such learning systems are not biologi-
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cally viable anymore, but the biological inspirations were
critical. This has motivated a lot of research into identifying
other biological systems that can inspire development of
new and powerful learning mechanisms or provide novel
critical insights into the workings of intelligent systems.
Such neurobiological mechanisms have been identified in
the olfactory circuit of the brain in a common fruit-fly, and
have been re-used for common learning problems such as
similarity search (Dasgupta et al., 2017; Ryali et al., 2020),
outlier detection (Dasgupta et al., 2018) and word embed-
dings (Liang et al., 2021).

More precisely, in the fruit-fly olfactory circuit, an odor ac-
tivates a small set of Kenyon Cells (KC) which represent a
“tag” for the odor. This tag generation process can be viewed
as a natural hashing scheme (Dasgupta et al., 2017), termed
FlyHash, which generates a high dimensional but very
sparse representation (2000 dimensions with 95% sparsity).
This tag/hash creates a response in a specific mushroom
body output neuron (MBON) – the MBON-α′3 – corre-
sponding to the perceived novelty of the odor. Dasgupta
et al. (2018) “interpret the KC→MBON-α′3 synapses as
a Bloom Filter” that creates a “memory” of all the odors
encountered by the fruit-fly, and reprogram this Fly Bloom
Filter (FBF) as a novelty detection mechanism that performs
better than other locality sensitive Bloom Filter-based nov-
elty detectors for neural activity and vision datasets.

We build upon the reprogramming of the KC→MBON-α′3
synapses as the FBF to create a supervised classification
scheme. We show that this classifier mimics a nearest-
neighbor classifier (NNC). This scheme possesses several
unique desirable properties that allows for nearest-neighbor
classification in the federated learning (FL) setup with a
low communication overhead. In FL setup the complete
training data is distributed across multiple parties and none
of the original data (training or testing) is to be exchanged
between the parties. This is possible because of the unique
high-dimensional sparse structure of the FlyHash.

We consider this an exercise of leveraging “naturally occur-
ring” algorithms to solve common learning problems (which
these natural algorithms were not designed for), resulting in
schemes with unique capabilities. Nearest neighbor classi-
fication (NNC) is a fundamental nonparametric supervised
learning scheme, with various theoretical guarantees and
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strong empirical capabilities (especially with an appropriate
similarity function). FL has gained a lot of well-deserved
interest in the recent years as, on one hand, models become
more data hungry, requiring data to be pooled from various
sources, while on the other hand, ample focus is put on
data privacy and security, restricting the transfer of data.
However, the very nature of NNC makes it unsuitable for FL
– for any test point at a single party, obtaining the nearest
neighbors would naively either require data from all parties
to be collected at the party with the test point, or require
the test point to be sent to all parties to obtain the per-party
neighbors; both these options violate the desiderata of FL.

We leverage the ability of the FBF to summarize a data
distribution in a bloom filter to develop a classifier where
every class is summarized with its own FBF, and inference
involves selecting the class whose distribution (represented
by its own FBF) is most similar to the test point. We the-
oretically and empirically show that this classifier, which
we name FlyNN (Fly Nearest Neighbor) classifier, approxi-
mately agrees with NNC. We then present a way to perform
NNC with FlyNN in a distributed data setting under the FL
setup with low communication overhead. The key idea is
to train a FlyNN separately on each party and then per-
form a low communication aggregation without having to
exchange any of the original data. This enables low com-
munication federated nearest-neighbor classification with
FlyNNFL. One unique capability enabled by this neuro-
biological mechanism is that FlyNNFL can perform NNC
without transferring the test point to other parties in any
form. We make the following contributions:

I We present the FlyNN classifier utilizing the FBF and
FlyHash, and theoretically present precise conditions
under with FlyNN matches NNC.

I We present a training algorithm for FlyNN with dis-
tributed data in the FL setup, with low communication,
without requiring exchange of the original data.

I We empirically compare FlyNN to NNC and other
baselines on 70 classification datasets from the
OpenML (Van Rijn et al., 2013) data repository.

I We demonstrate the scaling of the data distributed
FlyNN training on datasets of varying sizes to highlight
its low communication overhead.

The paper is organized as follows: We detail our proposed
FlyNN classifier and analyze its theoretical properties in
§2. We present federated kNNC via distributed FlyNN in
§3. We empirically evaluate our proposed methods against
baselines in §4, discuss related work in §5.

2. FlyNN based Nearest Neighbor Classifier
In the ensuing presentation, we use lowercase letters (x)
scalars or functions (with arguments), boldface lower-

case letters (x) for vectors, lowercase SansSerif letter (h)
for Booleans, boldface lowercase SansSerif letter (h) for
Boolean vectors, and uppercase SansSerif letter (M) for
Boolean matrices. For any vector x, x[j] denotes its jth

index. For any positive integer k ∈ N, [k] := {1, . . . , k}.
We will use L to denote the total number of classes and [L]
to denote the set of all labels.

We start this section by recalling k-nearest neighbor classi-
fication (kNNC). Given a dataset of labeled points S =
{(xi, yi)}ni=1 ⊂ Rd × [L] and similarity function s :
Rd × Rd → R+, a test point x ∈ Rd is labeled by the
kNNC based on its k-nearest neighbors Sk(x) as follow:

ŷ ← argmax
y∈[L]

∣∣{(xi, yi) ∈ Sk(x) : yi = y
}∣∣ ,

Sk(x) = argmax
R⊂S : |R|=k

∑
(xi,yi)∈R

s(x,xi).
(1)

In the federated version of kNNC, the data is distributed
across τ parties, each with a chunk of the data St, t ∈ [τ ].
For a test point x at a specific party tin, the classification
should be based on the nearest-neighbors of x over the
pooled data S1 ∪ S2 · · · ∪ Sτ .

We leverage the locality sensitive FlyHash (Dasgupta
et al., 2017) in our proposed scheme, focusing on the bi-
narized version (Dasgupta et al., 2018). For x ∈ Rd, the
FlyHash h : Rd → {0, 1}m is defined as,

h(x) = Γρ(Mx), (2)

where M ∈ {0, 1}m×d is the randomized sparse lifting bi-
nary matrix with s � d nonzero entries in each row, and
Γρ : Rm → {0, 1}m is the winner-take-all function convert-
ing a vector in Rm to one in {0, 1}m by setting the highest
ρ� m elements to 1 and the rest to zero. FlyHash is an
upward projection or a lifting increasing the data dimension-
ality (m � d). The Fly bloom filter (FBF) w ∈ (0, 1)m

summarizes a dataset and is subsequently used for novelty
detection (Dasgupta et al., 2018) with novelty scores for
any point x proportional to w>h(x) – higher values indi-
cate high novelty of x. To learn w from a set S, all its
elements are initially set to 1. For an “inlier” point xin ∈ S
with FlyHash hin, w is updated by “decaying” (with a
multiplicative factor) the intensity of the elements in w cor-
responding to the nonzero elements in hin. This ensures that
some x ≈ xin receives a low novelty score w>h(x). For
a novel point xnv (with FlyHash hnv) not similar to any
x ∈ S, the locality sensitivity of FlyHash implies that,
with high probability, the elements of w corresponding to
the nonzero elements in hnv will be close to 1 since their
intensities will not have been decayed much, implying a
high novelty score w>hnv.
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Algorithm 1 FlyNN training with training set S ⊂ Rd ×
[L], lifted dimensionality m ∈ N, NNZ for each row in the
lifting matrix s� d, NNZ in the FlyHash ρ� m, decay
rate γ ∈ [0, 1), random seedR, and inference with test point
x ∈ Rd.

1: function TrainFlyNN (S,m, ρ, s, γ, R)

2: Sample M ∈ {0, 1}m×d with seedR
3: Initialize w1, . . . ,wL ← 1m ∈ (0, 1)m

4: for (x, y) ∈ S do
5: h← Γρ(Mx)

6: wy [i]← γ ·wy [i] ∀i ∈ [m] : h[i] = 1
7: end for
8: Return: (M, {wl, l ∈ [L]})
9: end function

10: function InferFlyNN(x,M, ρ, {wl, l ∈ [L]})
11: h← Γρ (Mx)

12: Return: argminl∈[L] w
>
l h

13: end function

2.1. FlyNN: Training and Inference

We extend the use of FBF to the classification setting, an
instance of supervised learning. Specifically, we use the
high dimensional FBF encoding to summarize each class
l ∈ [L] separately – the per-class FBF encodes the local
neighborhoods of each class, and the high dimensional
sparse nature of FlyHash (and consequently FBF) sum-
marizes classes with multi-modal distributions while mit-
igating overlap between the FBFs of other classes. Given
a training set S ⊂ Rd × [L], the learning of the per-class
FBFs wl ∈ (0, 1)m, l ∈ [L] is detailed in the TrainFlyNN
subroutine in Algorithm 1. We initialize the FlyHash by
randomly generating M (line 2). The per-class FBF wl are
initialized to 1m (line 3). For a training example (x, y) ∈ S,
we first generate the FlyHash h = h(x) ∈ {0, 1}m using
equation 2 (line 5). Then, the FBF wy (corresponding to
x’s class y) is updated with the FlyHash h as follows –
the elements of wy corresponding to the nonzero bit posi-
tions of h are decayed, and the rest of the entries of wy are
left as is (line 6); the remaining FBFs wl, l 6= y ∈ [L] are
not updated at all. The decay is achieved by multiplication
with a factor of γ ∈ [0, 1) – large γ implies slow decay
in the intensity in the FBF; a small value of γ such as 0
implies that the corresponding element in wy will decay to
0 with the first point resulting in a binary valued FBF. This
whole process ensures that x (and points similar to x) are
considered “inliers” with respect to wy .

The FBF wl for class l ∈ [L] are learned such that a
point x with label l appears as an inlier with respect to
wl (class l); the example (x, y) does not affect the other
class FBFs wl, l 6= y, l ∈ [L]. This implies that a point
x′ similar to x will have a low novelty score w>y h(x′)
motivating our inference rule – for a test point x, we com-
pute the per-class novelty scores and predict the label as
ŷ ← arg minl∈[L] w

>
l h(x). This is detailed in the In-

ferFlyNN subroutine in Algorithm 1.

2.2. Analysis of FlyNN

We first present the time complexity and memory overhead
of the subroutines in Algorithm 1 for any specific configura-
tion of its hyper-parameters. Proofs are in Appendix A.

Lemma 1. Given a training set S ⊂ Rd × [L] with n
examples, TrainFlyNN (Alg. 1) with the lifted FlyHash
dimensionality m, number of nonzeros s in each row of
M ∈ {0, 1}m×d, number of nonzeros ρ in FlyHash h(x)
for any x ∈ Rd, and decay rate γ ∈ [0, 1) takes time
O(nm · max{s, log ρ}) and has a memory overhead of
O(m ·max{s, L}).

Lemma 2. Given a trained FlyNN, the inference for any
test point x ∈ Rd with InferFlyNN (Alg. 1) takes time
O (m ·max {s, log ρ, (ρL/m)}) with a memory overhead
of O(max{m,L}).

Next we present learning theoretical properties of FlyNN.
The novelty score w>l h(x) of any test point x in FlyNN
corresponds to how “far” x is from the distribution of class
l encoded by wl, and using the minimum novelty score
arg minl∈[L] w

>
l h(x) to label x is equivalent to labeling x

with the class whose distribution is “closest” to x. This intu-
ition allows us to identify precise conditions where FlyNN
mimics the kNNC. The proof is provided in Appendix D.

We present our analysis for the binary classification set-
ting with γ = 0, where the FlyNN is trained on train-
ing set S = {(xi, yi)}ni=1 ⊂ Rd × {0, 1}. Let S0 =
{(x, y) ∈ S : y = 0}, S1 = {(x, y) ∈ S : y = 1}
and let w0,w1 ∈ {0, 1}m be the FBFs constructed using
S0 and S1 respectively. WLOG, for any test point x, as-
sume that majority of its k nearest neighbors from S has
class label 1. Thus kNNC will predict x’s class label to
be 1. We aim to show that EM(w>1 h(x)) < EM(w>0 h(x))
(expectation of the random M matrix) so that FlyNN will
predict, in expectation, x’s label to be 1. A high probabil-
ity statement will then follow using standard concentration
bounds. Unfortunately, if x’s nearest neighbor is arbitrarily
close to x and has label 0 (while the label of the majority
of its k nearest neighbors still being 1) then we would ex-
pect w>0 h(x) < w>1 h(x) with high probability, thereby,
FlyNN predicting the class label of x to be 0. To avoid
such a situation, we assume a margin η > 0 between the
classes (Gottlieb et al., 2014) defined as:

Definition 1: We define margin η of the training set S to be
η

∆
= minx∈S0,x′∈S1 ‖x− x′‖∞.

If dk+1
2 e of x’s nearest neighbors from S are at a distance

at most η/2 from x, then all of those dk+1
2 e examples must

have the same class label to which kNNC agrees. This also
ensures that the closest point to x from S having opposite
label is at least η/2 distance away. We show next that this is
enough to ensure that prediction of FlyNN on any test point
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Algorithm 2 Federated FlyNN training with τ parties
Vt, t ∈ [τ ] each with training set St and federated infer-
ence with test point x at receiving party Vtin .

1: function TrainFlyNNFL({St, t ∈ [τ ]},m, ρ, s, γ)
2: Generate random seedR & broadcast to all Vt, t ∈ [τ ]
3: for each party Vt, t ∈ [τ ] do
4: (M, {wt

l , l ∈ [L]})← TrainFlyNN (St,m, ρ, s, γ, R)

5: end for
6: // All-reduction over all τ parties

7: ŵl[i]← γ
∑
t∈[τ] logγ wtl [i]∀i ∈ [m], ∀l ∈ [L]

8: Return: (M, {ŵl, l ∈ [L]}) on each party Vt, t ∈ [τ ]

9: end function

x coming from a permutation invariant distribution agrees
with the prediction of kNNC with high probability. Note
that P is a permutation invariant distribution over Rd if for
any permutation σ of [d] and any x ∈ Rd, P (x1, . . . , xd) =
P (xσ(1), . . . , xσ(d)).

Theorem 3. Fix s, ρ,m and k. Given a training set S of
size n and a test example x ∈ Rd sampled from a per-
mutation invariant distribution, let x∗ be its

(
dk+1

2 e
)th

nearest neighbor from S measured using `∞ metric. If
‖x−x∗‖∞ ≤ min{η2 , O(1/s}) then, ŷFlyNN = ŷkNNC with
probability ≥ 1 −

(
O(ρnm ) + e−O(ρ)

)
, where ŷFlyNN and

ŷkNNC are respectively the predictions of FlyNN and kNNC
on x.

Remark 1. For any δ ∈ (0, 1), the failure probability of
the above theorem can be restricted to at most δ by setting
ρ = Ω(log(1/δ)) and m = Ω(nρ/δ).

Remark 2. We established conditions under which predic-
tions of FlyNN agrees with that of kNNC with high prob-
ability. kNNC is a non-parametric classification method
with strong theoretical guarantee – as |S| = n → ∞, the
kNNC almost surely approaches the error rate of the Bayes
optimal error. Therefore, by establishing the connection
between FlyNN and kNNC, FlyNN has the same statistical
guarantee under the conditions of Theorem 3.

3. Federated NNC via Distributed FlyNN
For the federated learning setup where the training data
S is spread across τ parties V1, . . . , Vτ with each party Vt
having its own chunk St, we present a distributed FlyNNFL
learning in Algorithm 2, highlighting the differences from
the original FlyNN learning and inference in Blue text.

In TrainFlyNNFL, we ensure that at the end of the train-
ing procedure, all the parties Vt, t ∈ [τ ] have the complete
FlyNN model and are able to perform no-communication
inference on any new test point x independent of the other
parties. The learning commences by generating and broad-
casting a random seed R to all parties Vt, t ∈ [τ ] (line 2);
we assume that all parties already have knowledge of the
total number of labels L. Then each party Vt independently

invokes TrainFlyNN (Algorithm 1) on its chunk St and
obtains the per-class FBF {wt

l , l ∈ [L]} (lines 3-5). Finally,
a specialized all-reduce aggregates all the per-class FBFs
{wt

l , l ∈ [L]} across all parties t ∈ [τ ] to obtain the final
FBFs ŵl, l ∈ [L] on all parties (line 6). The following claim
establishes exact parity between the FlyNN learned with
distributed data St, t ∈ [τ ] and pooled data S = ∪t∈[τ ]St:

Theorem 4 (Federated training parity). Given training sets
St ⊂ Rd× [L] on each party Vt, t ∈ [τ ], and a FlyNN con-
figured as in Lemma 1, the per-party final FlyNN {ŵl, l ∈
[L]} (Alg. 2, line 7) output by TrainFlyNNFL ({St, t ∈
[τ ]},m, s, ρ, γ) with random seedR in Algorithm 2 is equal
to the FlyNN {wl, l ∈ [L]} (Alg. 1, line 8) output by
TrainFlyNN (S,m, s, ρ, c, R) subroutine in Algorithm 1
with the pooled training set S = ∪t∈[τ ]St.

This implies that FlyNNFL training (i) does not incur any
approximation and (ii) does not require any original train-
ing data to leave their respective parties, and these aggre-
gated per-class FBFs are now available on every party Vt
and used to (iii) perform inference on test points on each
party with no communication to other parties using the
InferFlyNN subroutine in Algorithm 1. The unique capa-
bilities are enabled by the learning dynamics of the FBF in
FlyNN. The following is the computational complexity:

Lemma 5 (FlyNNFL training). Given the FL
setup and FlyNN configuration in Theorem 4 with
|St| = nt, TrainFlyNNFL (Alg. 2) takes time
O (ntm ·max {s, log ρ, (L/nt) log τ}) with memory
overhead O(m · max{s, L}) on party Vt, t ∈ [τ ], and
overall communication overhead of O(mLτ).

Beyond the aforementioned unique capabilities, Claim 5
shows that, if the data is distributed evenly across all τ par-
ties (that is nt = n/τ ), FlyNNFL training almost achieves
linear scaling with respect to τ unless (L/n)τ log τ dom-
inates max{s, log ρ}. The memory overhead per party is
same as FlyNN training. The overall communication over-
head is linear in τ , m and L. After training, each party can
infer with InferFlyNN (Alg. 1) with complexities given by
Lemma 2. All proofs are in Appendix B.

Lower communication training. The above
TrainFlyNNFL can be extended to have a lower
communication overhead (as low as O(τ)) at training time.
However, this requires a more sophisticated inference
process than InferFlyNN in Algorithm 1 and incurs a small
O(Lρτ) communication overhead per inference. Note that
ρ� m given the high level of sparsity of FlyHash. This
extension is presented in detail in Appendix C.

Communication setup. The FlyNNFL algorithms are pre-
sented here in a peer-to-peer communication setup. How-
ever, they will easily transfer to a centralized setup with
a “global aggregator” that all parties communicate to. In
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that case, in TrainFlyNNFL, the aggregator (i) generates
and broadcasts the seed, and (ii) gathers & computes
{ŵl, l ∈ [L]}, and (iii) broadcasts them to all parties.

Data movement. TrainFlyNNFL does not require any orig-
inal data transfer while still performing an exact FlyNN
training on the pooled data. We transfer the per-party FBFs
to all involved parties (either peer-to-peer or through an
aggregator). It is not possible to reconstruct the original x
from h given the randomness, winner-take-all (WTA) op-
eration and binarization in FlyHash. Even if the random
matrix M is available (removing randomness), it is not pos-
sible to reconstruct x from h – the loss of information from
WTA and binarization is not recoverable; yet this hash is suf-
ficient for classification. Recovering training samples from
the per-class FBFs (which are an aggregation of per-sample
FlyHash-es) is more challenging. Thus, this process en-
sures data privacy, with no identifiable information leaving
their corresponding party.

4. Empirical Evaluation
In this section, we evaluate the empirical performance of
FlyNN. First, we compare the performance of FlyNN to
NNC to validate its ability to approximate NNC. Then, we
demonstrate the scaling of FlyNNFL training on data dis-
tributed among multiple parties.

Datasets. For the evaluation of FlyNN, we consider three
groups of datasets:

I We consider 70 classification datasets from
OpenML (Van Rijn et al., 2013) to evaluate the
performance of FlyNN on real datasets, thoroughly
comparing FlyNN to NNC.

I We consider high dimensional vision datasets
MNIST (Lecun, 1995), Fashion-MNIST (Xiao et al.,
2017) and CIFAR (Krizhevsky et al., 2009) from the
Tensorflow package (Abadi et al., 2016) for evaluating
the scaling of FlyNNFL training when the data is
distributed between multiple parties.

Baselines and ablation. We compare our proposed FlyNN
to two baselines:

I kNNC: This is the primary baseline. We tune over the
neighborhood size k ∈ [1, 64]. We also specifically
consider 1NNC (k = 1).

I SBFC: To ablate the effect of the high level of sparsity
in FlyHash, we utilize the binary SimHash (Charikar,
2002) based locality sensitive bloom filter for each class
in place of FBF to get SimHash Bloom Filter classifier
(SBFC). See Appendix E for further details.

FlyNN hyper-parameter search. For a dataset with d
dimensions, we tune across 60 FlyNN hyper-parameter
settings in the following ranges: m ∈ [2d, 2048d], s ∈

Figure 1: Performance of FlyNN and baselines relative
to kNNC on OpenML datasets. The scatter plots in Fig-
ure 1 compare the best tuned kNNC accuracy against that of
FlyNN, 1NNC and SBFC, with a point for each dataset, and
the red dashed diagonal marking match to kNNC accuracy.

Table 1: Comparing FlyNN to baselines on OpenML
datasets with (i) Fraction of datasets FlyNN exceed base-
lines, (ii) Number of datasets on which FlyNN has win-
s/ties/losses over baselines, (iii) Median improvement in
normalized accuracy by FlyNN over baseline across all
datasets (with p-values for the paired two-sided t-test). • de-
notes we can reject H0 at significance level 0.05; ◦ denotes
we cannot, (iv) Two-sided Wilcoxon signed rank test p-
value.

METHOD (i) FRAC. (ii) W/T/L (iii) IMP. (p-val) (iv) WSRT

kNNC 0.55 39/2/30 0.35% ◦ (5.30E-2) 7.63E-2
1NNC 0.66 47/2/22 2.36% • (1.55E-5) 2.81E-5
SBFC 0.99 70/0/1 25.4% • (<1E-8) <1E-8

[2, b0.5dc], ρ ∈ [8, 256], and γ ∈ [0, 0.8]. We use this
hyper-parameter space for all experiments, except for the
vision sets, where we use m ∈ [2d, 1024d].

Evaluation metric to compare across datasets. To com-
pare performance across different datasets, we compute
the “normalized accuracy” for a method on a dataset as
(1−a/ak) where ak is the best tuned 10-fold cross-validated
accuracy of kNNC on this dataset and a is the best tuned
10-fold cross-validated accuracy obtained by the method
on this dataset. Thus kNNC has a normalized accuracy of 0
for all datasets and a negative value denotes improvement
over kNNC. We perform this “normalization” to compare the
aggregate performance of different methods across different
datasets with distinct best achievable accuracies.

OpenML data. We consider 70 classification (binary
and multi-class) datasets from OpenML with d numerical
columns and n samples; d ∈ [20, 1000], n ∈ [1000, 20000].
The results are summarized in Figure 1. In Table 1, the nor-
malized accuracy of all baselines are compared to FlyNN
with paired t-tests for the null hypothesis H0 that FlyNN
and the baseline have similar performance at a significance
level of 0.05 (over all datasets).

In Figure 1, we can see on the left figure (kNNC vs FlyNN)
that most points are near the diagonal (implying kNNC and
FlyNN parity) with some over (better FlyNN accuracy)
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Figure 2: Scaling of FlyNNFL training with τ parties for
τ = 2, 4, 8, 16 over single-party training. The gray line
marks linear scaling.

and some under (worse accuracy). With 1NNC in the center
plot of Figure 1, we see that 1NNC either matches kNNC
(since kNNC subsumes 1NNC) or does worse (being under
the diagonal). But the right plot for SBFC in Figure 1 indi-
cates that SBFC is quite unable to match kNNC. The results
indicate that FlyNN performs very similar to kNNC with
some exceptions. We quantify this similarity in Table 1.
FlyNN performs comparably to kNNC – null hypothesis
H0 cannot be rejected – while improving the normalized
accuracy over 1NNC by a median of around 2.36% across
all 70 sets (H0 can be rejected). These results demonstrate
that the proposed FlyNN has comparable performance to
properly tuned kNNC and this behaviour is verified with a
large number of datasets. FlyNN significantly outperforms
SBFC (over 25% median improvement), again highlighting
the value of high sparsity on real datasets. The p-values are
of the similar order of magnitude between the Student t-test
and the Wilcoxon signed-rank test.

Scaling. We evaluate the scaling of the FlyNNFL training –
Alg. 2, TrainFlyNNFL – with the number of parallel parties
τ . For fixed hyper-parameters, we average runtimes (and
speedups) over 10 repetitions for each of 6 datasets (see
Appendix F) and present the results in Figure 2. The results
indicate that TrainFlyNNFL scales very well for up to 8
parties for the larger datasets, and shows up to 8× speed up
with 16 parties. There is significant gain (up to 2×) even
for the tiny DIGITS dataset (with less than 2000 total rows),
demonstrating the scalability of the FlyNN training with
very low communication overhead.

5. Related work
The k nearest neighbor classifier (kNNC) is a conceptually
simple, non-parametric classification method whose con-
sistency properties are well studied (Fix & Hodges, 1951;
Cover & Hart, 1967; Devroye et al., 1994; Chaudhuri &
Dasgupta, 2014) and extensive surveys on kNNC are widely
available (Devroye et al., 2013; Chen & Shah, 2018). While
the kNNC assumes that the training data is stored and pro-
cessed in a single machine, such assumption often becomes

unrealistic due to distributed nature of the data. An effective
way to overcome this issue is to distribute the data across
multiple machines and use distributed computing environ-
ments such as Hadoop or Spark with MapReduce paradigm
(Anchalia & Roy, 2014; Mallio et al., 2015; Gonzalez-Lopez
et al., 2018). Zhang et al. (2020) proposed a kNNC algorithm
based on the concept of distributed storage and comput-
ing for processing large datasets in cyber-physical systems
where k-nearest neighbor search is performed locally using
a kd-tree. Qiao et al. (2019) analyzed a distributed kNNC
in which data are divided into multiple smaller subsamples,
kNNC predictions are made locally in each subsamples and
these local predictions are combined via majority voting to
make the final prediction. This has been shown to achieve
the same rate of convergence as vanilla kNNC up to a mul-
tiplicative constant (in terms of regret) that depends on the
data dimension. Duan et al. (2020) demonstrated that this
multiplicative difference can be eliminated by replacing ma-
jority voting with the weighted voting scheme. Securely
computing kNNC is another closely related field when data is
stored in different local devices. Majority of the frameworks
that ensure privacy for kNNC often use secure multi-party
computation (SMC) protocols (Zhan et al., 2008; Xiong
et al., 2006; Qi & Atallah, 2008; Schoppmann et al., 2020;
Shaul et al., 2020; Chen et al., 2020).

The federated learning framework involves training statis-
tical models over remote devices while keeping the data
localized. Such a framework has recently received signifi-
cant attention with the growth of the storage and computa-
tional capabilities of the remote devices within distributed
networks since learning in such setting differs significantly
from the tradition distributed environment. Excellent survey
and research questions on this new field can be found in
(Li et al., 2020; Kairouz & McMahan, 2021). In federated
learning, a global model is learned whose objective function
can be represented as any finite sum of objective functions
(including neural networks). Learning the parameters of
such global model is done in rounds, where in each round a
central server sends the current state of the global algorithm
(model parameters), each local device makes local updates
and sends the updates back to the central server (McMahan
et al., 2017). Federated learning has also been used recently
to learn collaborative representation of the data stored across
local devices for various NLP tasks (Bernal et al., 2021).

Current distributed kNNC schemes do not directly translate
to the federated learning setting since the test point needs to
be transmitted to all parties. In most secure kNNC settings
considered in the literature, the goal is to keep the training
data secure from the party making the test query (Qi &
Atallah, 2008; Shaul et al., 2018; Wu et al., 2019) and it is
not clear how those approaches extend to the multi-party
federated setting where the per-party data (train or test)
should remain localized.
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We rigorously demonstrate both theoretically and empiri-
cally how FlyNN is able to match kNNC. Hence our pro-
posed solution presents a way to perform kNNC inference on
each party without any communication, and any data trans-
fer during the training is an aggregation of the FlyHash-es
of the points. We also outlined a second solution with a
lower communication training that only requires to send the
FlyHash of the test point.

Acknowledgement: KS gratefully acknowledges funding
from “the NSF AI Institute for Foundations of Machine
Learning (IFML)” (FAIN: 2019844).
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A. Proofs for Algorithm 1 complexities
A.1. Proof for Lemma 1

Proof. We can summarize the complexities for the different
operations in TrainFlyNN (Algorithm 1) as follows:

I Line 2 takes O(ms) time and memory to generate the
random binary lifting matrix M.

I Line 3 takes O(mL) time and memory to initialize the
per-class FBFs wl, l ∈ [L].

I Each FlyHash in line 5 takes O(m(s + log ρ)) time
and O(m) memory.

I FBF wy update in line 6 takes O(ρ) time since γ is
multiplied to only ρ entries in wy since h has only ρ
non-zero entries.

I Hence the loop 4-7 takes time O(n(ms+m log ρ+ ρ))
and maximum O(m) additional memory.

I Given ρ� m and L� n, the total runtime is given by
O(n · m · max{s, log ρ}) time and O(m · max{s, L})
memory.

This proves the statement of the claim.
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A.2. Proof for Lemma 2

Proof. We can summarize the complexities for the different
operations in InferFlyNN (Algorithm 1) as follows:

I The FlyHash operation in line 11 takes time O(m(s+
log ρ)) and O(m) memory.

I The operation in line 12 takes time O(Lρ) since each
w>l h takes time O(ρ) since h only has ρ nonzero entries
and O(L) additional memory.

I This leads to an overall runtime of O(m ·
max{s, log ρ, (ρL/m)}) and memory overhead of
O(max{m,L}).

This proves the statement of the claim.

B. Proofs for Algorithm 2
B.1. Proof of Theorem 4

Proof. Given the per-party data chunk St, t ∈ [τ ], let us
consider the FBFwl ∈ (0, 1)m for any class l ∈ [L] learned
over the pooled data S = ∪t∈[τ ]St using the TrainFlyNN
subroutine in Algorithm 1. For any i ∈ [m] and l ∈ [L]:

wl[i] = 1 · γ · γ · · · · · γ︸ ︷︷ ︸
# times h[i]=1 for some (x,y)∈S,y=l

= γ|{(x,y)∈S:y=l,h=Γρ(Mx),h[i]=1}|. (3)

By the same argument, the FBFwt
l learned with data chunk

St for a class l (Algorithm 2, line 4) can be summarized as
follows for any i ∈ [m]:

wt
l [i] = γ|{(x,y)∈St:y=l,h=Γρ(Mx),h[i]=1}|. (4)

Then the all-reduced FBF ŵl for a class l (Algorithm 2, ine
6) is given by the following for any i ∈ [m]:

ŵl[i] = γ
∑
t∈[τ] logγ wt

l [i] (5)
(A)
= γ

∑
t∈[τ]|{(x,y)∈St:y=l,h=Γρ(Mx),h[i]=1}| (6)

(B)
= γ|∪t∈[τ]{(x,y)∈St:y=l,h=Γρ(Mx),h[i]=1}| (7)

(C)
= γ

∣∣∣∣∣∣∣∣
(x,y)∈∪t∈[τ ]St︸ ︷︷ ︸

S

:y=l,h=Γρ(Mx),h[i]=1


∣∣∣∣∣∣∣∣ (8)

= γ|{(x,y)∈S:y=l,h=Γρ(Mx),h[i]=1}| (9)
(D)
= wl[i], (10)

where (A) is obtained from (4), (B) is obtained from the
fact that the sets St, t ∈ [τ ] are disjoint (no data shared

between parties), (C) is from the fact that a union of subsets
of disjoint sets (St) is the same as a subset of union of
disjoint sets ∪tSt. (D) follows from (3).

Since the above holds for all i ∈ [m], we can say that
wl = ŵl∀l ∈ [L], proving the statement of the claim.

B.2. Proof of Lemma 5

Proof. We begin with recalling that the all-reduce operation
can be performed efficiently in a peer-to-peer communica-
tion setup where the τ parties can be organized as a binary
tree of depth O(log τ). Then the communication at each
level of the tree can be done in parallel for each independent
subtree at that level. Consider the object being all-reduced
to be of size O(c). Then in the first round of communi-
cation, O(τ/2) pairs of parties combine their objects in
parallel in time O(c) with total communication O(cτ/2)
and O(c) memory overhead in each of the parties. In the
second round, O(τ/4) pairs of parties combine their objects
in parallel again in time O(c) with total communication
O(cτ/4) with O(c) memory overhead in O(τ/2) of the par-
ties. Going up the tree to the root then takes time O(c log τ).
The total communication cost is O(cτ).

The communication first goes bottom up from the leaves to
the root, which then has the final all-reduced result. Then
this result is sent to each party top-down from the root (in
a corresponding manner) so that eventually all parties have
the all-reduced result in time O(c log τ) with total O(cτ)
communication.

Based on the above complexities of the all-reduce opera-
tion, we can summarize the complexities for the different
operations in TrainFlyNNFL (Algorithm 2) as follows:

I The broadcast of the random seed in line 2 can be done
with an all-reduce in O(log τ) time and O(τ) total com-
munication and O(1) memory overhead in each party.

I On party Vt, the invocation of TrainFlyNN in line 4 on
data chunk St of size nt takes O(nt ·m ·max{s, log ρ})
and O(m ·max{s, L}) memory from Lemma 1 and no
communication cost.

I The all-reduce of the per-party per-class FBFs in line
6 takes time O(m · L · log τ) with O(m · L · τ) total
communication, and O(m · L) memory overhead per-
party.

Putting them all together gives us the per-party time com-
plexity of O(nt ·m ·max{s, log ρ, (L/nt) log τ}), memory
overhead of O(m · max{s, L}) and total communication
among all parties of O(m · L · τ), giving us the statement
of the claim.

C. Lower communication FlyNNFL
In many situations, an all-reduce operation is not desirable,
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Algorithm 3 Federated FlyNN training with τ parties
Vt, t ∈ [τ ] each with training set St and federated infer-
ence with test point x at receiving party Vtin .

1: function LCTrainFlyNNFL({St, t ∈ [τ ]},m, ρ, s, γ)
2: Generate random seedR & broadcast to all Vt, t ∈ [τ ]
3: for each party Vt, t ∈ [τ ] do
4: (M, {wt

l , l ∈ [L]})← TrainFlyNN (St,m, ρ, s, γ, R)

5: end for
6: Return: (M, {wt

l , l ∈ [L]}) on each party Vt, t ∈ [τ ]

7: end function
8: function LCInferFlyNNFL(x,M, ρ, {wt

l , l ∈ [L], t ∈ [τ ]})
9: Generate h← Γρ(Mx) on receiving party Vtin

10: Broadcast h to all parties Vt, t 6= tin ∈ [τ ]
11: for each party Vt, t ∈ [τ ] do
12: gtl ← {} (empty dictionary)
13: gtl [i]← wt

l [i] ∀i ∈ [m] : h[i] = 1, ∀l ∈ [L]

14: end for
15: Gather {gtl∀l ∈ [L], t ∈ [τ ]} on Vtin
16: gl ← {}, l ∈ [L] (empty dictionary)

17: gl[i]← γ
∑
t∈[τ] logγ g

t
l [i], ∀i ∈ [m] : h[i] = 1, ∀l ∈ [L]

18: Return: arg minl∈[L]

∑
i:h[i]=1 gl[i]

19: end function

and lower communication at training is preferred. Hence,
we propose a second FlyNNFL learning scheme, detailed
in LCTrainFlyNNFL (Alg. 3). The algorithm starts like
TrainFlyNNFL by generating and broadcasting a random
seed R to all parties t ∈ [τ ] (line 2), each of which then
invoke TrainFlyNN (Alg. 1) on their respective chunks St
to obtain the per-class FBFs {wt

l , l ∈ [L]} (lines 3-5). The
difference is the absence of the final all-reduce step; instead,
all parties retain their own distinct set of per-class FBFs
(line 6). This setup requires a new inference procedure,
detailed in LCInferFlyNNFL (Alg. 2) which requires all
parties to participate. The party Vtin receiving the test point
x generates its FlyHash h (line 9). Then, the indices
ih of the nonzero entries in h are broadcast to all parties
Vt, t 6= tin ∈ [τ ] (line 10). Each party Vt collects the jth

elements (j ∈ ih) of their per-class FBFs {wt
l , l ∈ [L]} into

a dictionary gtl (line 11-14). Party Vtin gathers gtl , l ∈ [L]
from all parties Vt, t ∈ [τ ] into gl (line 15-17), and generates
the per-class scores by summing all entries in gl, predicting
the class with the lowest score (line 18). We show that
the predictions made by LCInferFlyNNFL are same as the
predictions made by InferFlyNN (Alg. 1) if we trained with
the pooled data S = ∪τt=1St using TrainFlyNN (Alg. 1):

Theorem 6 (Federated inference parity). Given the FL
setup and FlyNN configuration in Theorem 4 trained with
LCTrainFlyNNFL ({St, t ∈ [τ ]},m, s, ρ, c) in Alg. 2, and
any test point x ∈ Rd at party Vtin , let ŷFL(x) be the output
of LCInferFlyNNFL (x,M, ρ, {wt

l , l ∈ [L], t ∈ [τ ]}). Let
ŷ(x) be the output of InferFlyNN (x,M, ρ, {wl, l ∈ [L]})
(Alg. 1) where the FlyNN {wl, l ∈ [L]} is trained with
TrainFlyNN (S,m, s, ρ, c) (Alg. 1) with the pooled set
S = ∪t∈[τ ]St. Then, ŷFL(x) = ŷ(x).

Proof. Given a test point x and corresponding FlyHash

h = Γρ(Mx), and the per-party data chunk St, t ∈ [τ ],
let us consider its score w>l h for any class l ∈ [L] gener-
ated during the inference with InferFlyNN subroutine in
Algorithm 1 using the FBF wl ∈ (0, 1)m learned over the
pooled data S = ∪t∈[τ ]St with the TrainFlyNN subroutine
in Algorithm 1. For any l ∈ [L]:

w>l h =
∑

i∈[m]:h[i]=1

wl[i]

=
∑

i∈[m]:h[i]=1

γ|{(x
′,y′)∈S:y′=l,h′=Γρ(Mx′),h′[i]=1}|,

(11)

where the last equality is obtained from the definition
of wl[i] in (3). Given w>l h for each l ∈ [L], the pre-
dicted label generated by InferFlyNN is given by ŷ(x) =
arg minl∈[L] w

>
l h.

In the LCInferFlyNNFL subroutine in Algorithm 2, in line
21, on party Vt, the dictionary elements in gtl corresponding
to i ∈ [m] such that h[i] = 1 are set as:

gtl [i] = wt
l [i] = γ|{(x

′,y′)∈St:y′=l,h′=Γρ(Mx′),h′[i]=1}|,
(12)

where the last equality follows from wt
l [i] defined in (4).

Then the aggregate entries of the aggregated dictionary gl
on Vtin for i ∈ [m] such that h[i] = 1 in line 25 are given as:

gl[i] = γ
∑
t∈[τ] logγ g

t
l [i] (13)

(A)
= γ

∑
t∈[τ]|{(x′,y′)∈St:y′=l,h′=Γρ(Mx′),h′[i]=1}| (14)

(B)
= γ|∪t∈[τ]{(x

′,y′)∈St:y′=l,h′=Γρ(Mx′),h′[i]=1}| (15)

(C)
= γ

∣∣∣∣∣∣∣∣
(x′,y′)∈∪t∈[τ ]St︸ ︷︷ ︸

S

:y′=l,h′=Γρ(Mx′),h′[i]=1


∣∣∣∣∣∣∣∣
(16)

= γ|{(x
′,y′)∈S:y′=l,h′=Γρ(Mx′),h′[i]=1}| (17)

where (A) is obtained from (12), (B) is obtained from the
fact that the sets St, t ∈ [τ ] are disjoint (no data shared
between parties), (C) is from the fact that a union of subsets
of disjoint sets (St) is the same as a subset of union of
disjoint sets ∪tSt. Then we can say that:



FlyNN: Fruit-fly Inspired Federated Nearest Neighbor Classification

∑
i∈[m]:h[i]=1

gl[i]

=
∑

i∈[m]:h[i]=1

γ|{(x
′,y′)∈S:y′=l,h′=Γρ(Mx′),h′[i]=1}|

= w>l h.

The last equality holds from (11). Since the above
holds for all l ∈ [L], and the predicted label gen-
erated by LCInferFlyNNFL is given by ŷFL(x) =
arg minl∈[L]

∑
i∈[m]:h[i]=1 gl[i] we have:

ŷFL(x) = arg min
l∈[L]

∑
i:h[i]=1

gl[i]

= arg min
l∈[L]

w>l h

= ŷ(x),

giving us the statement of the claim.

The following results show how this version of FlyNNFL
training reduces the communication overhead without in-
creasing training time, but transfers some communication
overhead to the inference:

Lemma 7 (LCFlyNNFL training). Given the FL
setup and FlyNN configuration in Theorem 4 with
|St| = nt, LCTrainFlyNNFL (Alg. 2) takes time
O (ntm ·max {s, log ρ}) with a memory overhead ofO(m·
max{s, L}) per party Vt, t ∈ [τ ], and a communication
overhead of O(τ).

Proof. Based on the complexities of the all-reduce opera-
tion described in §B.2 in the proof for Lemma 5, we can
summarize the complexities for the different operations in
LCTrainFlyNNFL (Algorithm 2) as follows:

I The broadcast of the random seed in line 10 can be done
with an all-reduce in O(log τ) time and O(τ) total com-
munication and O(1) memory overhead in each party.

I On party Vt, the invocation of TrainFlyNN in line 12 on
data chunk St of size nt takes O(nt ·m ·max{s, log ρ})
and O(m ·max{s, L}) memory from Lemma 1 and no
communication cost.

Putting them all together gives us the per-party time com-
plexity of O(nt · m · max{s, log ρ}), memory overhead
of O(m ·max{s, L}) and total communication among all
parties of O(τ), giving us the statement of the claim.

Lemma 8 (LCFlyNNFL inference). Given the partial
FlyNN on each party Vt, t ∈ [τ ], the inference for any
test point x ∈ Rd using LCInferFlyNNFL (Alg. 2) takes

time O (max {m ·max{s, log ρ}, Lρτ}), with a memory
overhead of O(max{m, ρL}) on the receiving party Vtin
and O(ρL) on the remaining parties, and a communication
overhead of O(τρL).

Proof. We can summarize the complexities for the different
operations in LCInferFlyNNFL (Algorithm 2) as follows:

I The FlyHash operation in line 17 takes time O(m(s+
log ρ)) and O(m) memory on party Vtin .

I The broadcast of h to all parties Vt, t ∈ [τ ], t 6= tin in
line 18 takes time O(ρ · log τ), O(ρ) additional memory
overhead on each party, andO(ρ·τ) total communication.
This is because h has only ρ nonzero entries, so we need
to just send the indices of the nonzero entries in h.

I The per-party creation of the dictionary gtl on party Vt
in line 20-21 takes time O(L · ρ) and O(L · ρ) memory
overhead in each party.

I The gather operation in line 23 and the computation of
the aggregated dictionary gl on Vtin in lines 24-25 can be
done with a specialized all-reduce (as described in §B.2)
in time O(L ·ρ · log τ), with additional O(L ·ρ) memory
on each party, and O(L · ρ · τ) overall communication
cost.

I The computation of the per-class novelty scores and
computation of the arg minl in line 26 takes timeO(L·ρ)
and O(L) additional memory on Vtin .

Putting it all together, we see that,

I On Vtin , the time complexity is O(max{m ·
max{s, log ρ}, L · ρ · log τ}) and the memory
overhead of O(max{m,L · ρ}).

I On each Vt, t ∈ [τ ], t 6= tin, the time complexity of
O(L · ρ) and memory overhead of O(L · ρ).

I The overall communication overhead is O(L · ρ · τ).

This gives us the statement of the claim.

Lemma 7 shows that the FlyNN training time and commu-
nication overhead is improved over the previous FlyNNFL
training (Lemma 5), with the communication overhead re-
duced from O(τmL) to just O(τ). However, Lemma 8
shows that each inference incurs a communication overhead
of O(τρL); note that ρ � m and hence O(τρL) is much
better thanO(τmL) communication in Lemma 5. The infer-
ence time (compared to Claim 2) includes Lρτ along with
m ·max{s, log ρ}.

D. Proof of Algorithm 1 learning theoretic
properties

D.1. Preliminaries & notations

We denote a single row of a lifting matrix M by θ ∈ {0, 1}d
drawn i.i.d. fromQ, the uniform distribution over all vectors
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in {0, 1}d with exactly s ones, satisfying s � d. We use
an alternate formulation of the winner-take-all strategy as
suggested in Dasgupta et al. (2018), where for any x ∈
Rd, τx is a threshold that sets largest ρ entries of Mx to one
(and the rest to zero) in expectation. Specifically, for a given
x ∈ Rd and for any fraction 0 < f < 1, we define τx(f)
to be the top f -fractile value of the distribution θ>x, where
θ ∼ Q:

τx(f) = sup{v : Prθ∼Q(θ>x ≥ v) ≥ f} (18)

We note that for any 0 < f < 1, Prθ∼Q(θ>x ≥ τx(f)) ≈
f , where the approximation arises from possible discretiza-
tion issues. For convenience, henceforth we will assume
that this is an equality:

Prθ∼Q(θ>x ≥ τx(f)) = f (19)

For any two x,x′ ∈ Rd, we define q(x,x′) =
Prθ∼Q

(
θ>x′ ≥ τx′ (ρ/m) | θ>x ≥ τx (ρ/m)

)
. This can

be interpreted as follows – with h = h(x),h′ = h(x′)
as the FlyHashes of x and x′, respectively, q(x,x′) is
the probability that h′[j] = 1 given that h[j] = 1, for any
specific j ∈ [m].

We begin by analyzing the binary classification performance
of FlyNN trained on a training set S = {(xi, yi)}n0+n1

i=1 ⊂
R× {0, 1}, where S = S1 ∪ S0, S0 is a subset of S having
label 0, and S1 is a subset of S having label 1, satisfying
|S0| = n0, |S1| = n1 and n = n0 + n1. For appropriate
choice ofm, let w0,w1 ∈ {0, 1}m be the FBFs constructed
using S0 and S1 respectively.

D.2. Connection to kNNC

We first present the following lemmas which will be required
to prove Theorem 3.
Lemma 9 (Expected novelty response (Dasgupta et al.,
2018)). Suppose that inputs x1, . . . ,xn ∈ Rd are first pre-
sented with xi → yi → hi, where yi = Mxi, hi = h(xi),
and w is the FBF constructed using x1, . . . ,xn. Then a
subsequent input x is presented with x → y → h, where
y = Mx, h = h(x).

(a) The m random vectors
(y1[j], . . . ,yn[j], h1[j], . . . , hn[j],y[j], h[j],w[j]), 1 ≤
j ≤ m, (over the random choice choice of M) are
independent and identically distributed.

(b) The novelty response to x has expected value

µ = E(w>h(x)/ρ) = Prθ∼Q
(
θ>x1 < τx1 , . . . , θ

>xn < τxn | θ>x ≥ τx
)

Lemma 10 (Bounds on expected novelty response (Das-
gupta et al., 2018)). The expected value µ from Lemma 9
can be bounded as follows:

(a) Lower bound: µ ≥ 1−
∑n
i=1 q(x,xi).

(b) Upper bound: for any 1 ≤ l ≤ n, µ ≤ 1− q(x,xl).

Lemma 11 ((Dasgupta et al., 2018)). Pick any x,x′ ∈ Rd.
Suppose that for all i ∈ [d], x′[i] ≥ x[i] − ∆/s, where
∆ = 1

2 (τx(ρ/2m)− τx(ρ/m)). then q(x,x′) ≥ 1/2.

Corollary 12 ((Dasgupta et al., 2018)). Fix any x′ ∈ Rd
and pick x from any permutation invariant distribution over
Rd. then the expected value of q(x,x′), over the choice of
x is ρ/m.

Lemma 13. Fix any x ∈ Rd and let h(x) ∈ {0, 1}m be its
FlyHash using equation 2. For any integer k, let xi∗ be the(
dk+1

2 e
)th

nearest neighbor of x in Si measured using `∞
metric. Let AS1 = {θ : ∩(x′,y′)∈S1 θ>x′ < τx′(ρ/m)}
and AS0 = {θ : ∩(x′,y′)∈S0 θ>x′ < τx′(ρ/m)}. Then
the following holds, where the expectation is taken over the
random choice of projection matrix M.
(i) EM(

w>1 h(x)
ρ ) = Prθ∼Q

(
AS1 | θ>x ≥ τx(ρ/m)

)
(ii) EM(

w>0 h(x)
ρ ) = Prθ∼Q

(
AS0 | θ>x ≥ τx(ρ/m)

)
(iii) EM(

w>1 h(x)
ρ ) ≥ 1−

∑
x′∈S1 q(x,x′)

(iv) EM(
w>1 h(x)

ρ ) ≤ 1− q(x,x1
∗)

(v) EM(
w>0 h(x)

ρ ) ≥ 1−
∑

x′∈S0 q(x,x′)

(vi) EM(
w>0 h(x)

ρ ) ≤ 1− q(x,x0
∗)

Proof. Part (i) and (ii) follows from simple application of
Lemma 9 to class specific FBFs. Part (iii) and (v) follows
from simple application of Lemma 10 to class specific FBFs.
For part (iv), simple application of Lemma 10 to FBF w1

ensures that for any x′ ∈ S1,EM(
w>1 h(x)

ρ ) ≤ 1− q(x,x′).

Clearly, EM(
w>1 h(x)

ρ ) ≤ 1 − q(x,x1
∗). Applying similar

argument, part (vi) also holds.

Lemma 14. Let w0 and w1 be the FBFs constructed using
S0 and S1. For any x ∈ Rd let µ0 = EM

(
w>0 h(x)

ρ

)
and

µ1 = EM

(
w>1 h(x)

ρ

)
Then, for any ε > 0 the following

holds,
(i) Pr

(
w>1 h(x)

ρ ≥ (1 + ε)µ1

)
≤ exp(−ε2ρµ1/3)

(ii) Pr
(

w>0 h(x)
ρ ≥ (1 + ε)µ0

)
≤ exp(−ε2ρµ0/3)

(iii) Pr
(

w>1 h(x)
ρ ≤ (1− ε)µ1

)
≤ exp(−ε2ρµ1/2)

(iii) Pr
(

w>0 h(x)
ρ ≤ (1− ε)µ0

)
≤ exp(−ε2ρµ0/2)

Proof. We will only prove part (i) since part (ii) is similar.
Let h = h(x),h1 = h(x1), . . . ,hn1 = h(xn1) be the
FlyHashes of x,x1, . . . ,xn1 that belongs to S1. Define
random variables U1, . . . , Um ∈ {0, 1} as follows:

Uj =

{
1, if h1[j] = · · · = hn1

[j] = 0 and h[j] = 1

0, otherwise
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The Uj are i.i.d. and

EM(Uj)=PrM(h[j] = 1)×
PrM (h1[j] = · · · = hn1

[j] = 0 | h[j] = 1)

=
ρ

m
EM

(
w>1 h(x)

ρ

)
where we have used the fact that PrM(h(x)j =
1) = Prθ∼Q(θ>x ≥ τx(ρ/m)) = ρ/m and using
Lemma 2 of the supplementary material of (Dasgupta
et al., 2018), PrM (h1[j] = · · · = hn1

[j] = 0 | h[j] = 1) =

EM

(
w>1 h(x)

ρ

)
. Therefore, EM(U1 + · · · + Um) = ρ ·

EM

(
w>1 h(x)

ρ

)
. Let µ1 = EM

(
w>1 h(x)

ρ

)
. By multiplica-

tive Chernoff bound for any 0 < ε < 1, we have,

PrM (U1 + · · ·+ Um ≥ (1 + ε)ρµ1) ≤ exp(−ε2ρµ1/3)

PrM (U1 + · · ·+ Um ≤ (1− ε)ρµ1) ≤ exp(−ε2ρµ1/2)

Noticing that U1 + · · ·+Um = w>1 h(x), the result follows.

D.3. Proof of Theorem 3

Proof. Without loss of generality, assume that kNNC pre-
diction of x is 1. For the case when kNNC prediction is 0
is similar. Prediction of FlyNN on x agrees with the pre-
diction of kNNC whenever

(
w>1 h(x)/ρ

)
<
(
w>0 h(x)/ρ

)
.

We first show that EM

(
w>1 h(x)/ρ

)
< EM

(
w>0 h(x)/ρ

)
with high probability and then using standard concentration
bound presented in lemma 14, we achieve the desired result.

Since ‖x − x∗‖ ≤ η
2 , all the dk+1

2 e nearest neighbors
of x have same label. Let ‖x − x∗‖∞ ≤ ∆/s, where
∆ = 1

2 (τx(ρ/2m)− τx(ρ/m)). Using lemma 11, we get
q(x,x∗) ≥ 1/2. Combining this with part (iv) of lemma
13, we get µ1 = EM

(
w>1 h(x)/ρ

)
≤ 1− q(x,x∗) ≤ 1/2.

If x is sampled from a permutation invariant distribu-
tion, using corollary 12, we get Exq(x,xi) = ρ/m for
each x′ ∈ S0, and thus using linearity of expectation,
Ex

(∑
x′∈S0 q(x,x′)

)
=
∑

x′∈S0 Exq(x,x
′) = ρn0/m.

For any α > 0, using Markov’s inequality,

pr

( ∑
x′∈S0

q(x,x′) > α

)
≤

Ex

(∑
x′∈S0 q(x,x′

)
α

=
ρn0

mα
.

(20)

Specifically, choose α = 1/4. Then with probability ≥ 1−
4ρn0

m , we have
∑

x′∈S0 q(x,x′) ≤ 1
4 . Combining this with

part (v) of lemma 13, we immediately get, with probability
≥ 1− 4ρn0

m , we have µ0 = EM

(
w>0 h(x)/ρ

)
≥ 3/4.

Next we show that w>1 h(x)
ρ ≤ 3/5 with high probability.

If we set ε = 1
10µ1

, then we get (1 + ε)µ1 = µ1 + εµ1 ≤
1
2 +εµ1 = 1

2 + 1
10 = 3

5 . For this choice of ε, µ1(1+ε) ≤ 3/5.

Therefore,

Pr

(
w>1 h(x)

ρ
> 3/5

)
≤ Pr

(
w>1 h(x)

ρ
> (1 + ε)µ1

)
≤ exp(−ε2ρµ1/3)

= exp

(
− ρ

300µ1

)
≤ exp

(
− ρ

150

)
where the first inequality follows from our choice of ε, the
second inequality follows from Lemma 14, the equality
follows from our choice of ε and the third inequality follows
since µ1 ≤ 1

2 .

Next, we would like to show w>0 h(x)
ρ ≥ 5

8 >
3
5 with high

probability. If we set set ε1 = 1
6 and using the fact that

µ0 ≥ 3
4 , we get (1− ε1)µ0 = 5

6µ0 ≥ 5
6 ·

3
4 = 5

8 .

Now we have,

Pr

(
w>0 h(x)

ρ
< 5/8

)
≤ Pr

(
w>0 h(x)

ρ
< (1− ε1)µ1

)
≤ exp(−ε2ρµ0/2)

= exp
(
−ρµ0

72

)
≤ exp

(
− ρ

96

)
where the first inequality follows from our choice of ε1,
the second inequality follows from Lemma 14, the equality
follows again from our choice of ε1 and the third inequality
follows from the fact that µ1 ≤ 1.

Therefore, with probability at least 1 −(
4ρn0

m + e−
ρ

150 + e−
ρ
96

)
we have, (i) w>0 h(x)

ρ ≥ 5
8 ,

and (ii) 3
5 ≥

w>1 h(x)
ρ . Since 5

8 >
3
5 , the result follows.

E. Details on SBFC baseline
To ablate the effect of the high level of sparsity in FlyHash,
we utilize the binary SimHash (Charikar, 2002) based lo-
cality sensitive bloom filter for each class in place of FBF
to get SimHash Bloom Filter classifier (SBFC). SimHash
is binary like the FlyHash we consider, however, it is not
explicitly sparse as FlyHash. In fact, the number of non-
zeros in FlyHash is ρ, while for SimHash with dimen-
sionality m, in expectation, we would expect ≈ m/2 non-
zeros in the SimHash. We tune over the SimHash pro-
jected dimension m, considering m < d (traditional regime
where SimHash is usually employed) and m > d (as in
FlyHash). For the same m, SimHash is more costly
(∼ O(md) per point) than FlyHash (∼ O(ms+m log ρ))
since s � d, involving a dense matrix-vector product in-
stead of a sparse matrix-vector one. The dimensionality of
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Table 2: Details of a subset of the data sets. For CIFAR-10
and CIFAR-100, we collapse the 3 color channels and then
flatten the 32× 32 images to points in R1024. For MNIST
and Fashion-MNIST, we flatten the 28×28 images to points
in R784.

Dataset n d L Obtained from

Digits 1797 64 10 OpenML
Letters 20000 16 26 OpenML
MNIST 60000 784 10 Tensorflow
Fashion-MNIST 60000 784 10 Tensorflow
CIFAR-10 50000 1024 10 Tensorflow
CIFAR-100 50000 1024 100 Tensorflow

the SimHashm is the hyper-parameter we search over – we
consider both projecting down in the range m ∈ [1, d] (the
traditional use) and projecting up m ∈ [d, 2048d], where d
is the data dimensionality.

F. Details on TrainFlyNNFL scaling
We consider the 6 datasets for evaluating the scaling of
TrainFlyNNFL (Algorithm 2) with the number of parties τ ,
when the data is evenly split between all parties. The details
regarding the datasets are provided in Table 2.

Raw runtimes. We also present the raw runtimes that
were used to generate the speedup plot in Figure 2 in Table 3.
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Table 3: Raw runtimes T (in seconds) and speedups S.

Dataset T (τ = 1) T (τ = 2) S(τ = 2) T (τ = 4) S(τ = 4) T (τ = 8) S(τ = 8) T (τ = 16) S(τ = 16)

Digits 3.63±0.06 3.26±0.10 1.11±0.04 1.84±0.06 1.97±0.07 1.36±0.05 2.67±0.11 1.16±0.03 3.12±0.06
Letter 25.72±0.41 14.74±0.42 1.75±0.04 7.72±0.20 3.33±0.11 4.06±0.33 6.38±0.50 2.91±0.07 8.85±0.25
MNIST 1023.59±14.88 518.85±8.19 1.97±0.04 262.68±5.98 3.90±0.08 163.75±5.99 6.26±0.29 122.30±6.80 8.39±0.44
Fashion-MNIST 1410.29±13.66 712.98±3.59 1.98±0.02 360.74±5.47 3.91±0.07 241.70±8.33 5.84±0.18 191.15±1.42 7.38±0.09
CIFAR-10 1300.90±36.63 644.99±4.70 2.02±0.06 330.35±7.21 3.94±0.10 207.57±8.27 6.28±0.33 151.67±3.70 8.58±0.23
CIFAR-100 1268.86±7.85 649.20±5.43 1.95±0.02 333.33±9.36 3.81±0.11 211.20±11.73 6.03±0.33 162.80±1.26 7.79±0.08


