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Abstract
Recently researchers have studied input leakage
problems in Federated Learning (FL) where a ma-
licious party can reconstruct sensitive training in-
puts provided by users from shared gradient (Zhu
et al., 2019; Geiping et al., 2020; Yin et al., 2021).
It raises concerns about FL since input leakage
contradicts the privacy-preserving intention of us-
ing FL. Despite relatively rich literature on attacks
and defenses of input reconstruction in Horizontal
FL, input leakage and protection in vertical FL
starts to draw researchers attention recently. In
this paper, we study how to defend against input
leakage attack in Vertical FL. We design an ad-
versarial training based framework that contains
three modules: adversarial reconstruction, noise
regularization, and distance correlation minimiza-
tion. Those modules can not only be employed
individually but also applied together since they
are independent to each other. Through exten-
sive experiments on a large-scale industrial online
advertising dataset, we show our framework is ef-
fective in protecting input privacy while retaining
the model utility.

1. Introduction
With the increasing concerns on data security and user pri-
vacy in machine learning, Federated Learning (FL) (McMa-
han et al., 2017a) becomes a promising solution to al-
low multiple parties collaborate without sharing their data
completely. Based on how sensitive data are distributed
among various parties, FL can be classified into two cate-
gories (Yang et al., 2019): Cross-silo or Vertical FL (vFL)
and Cross-device or Horizontal FL (hFL). In contrast to
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hFL where the data are partitioned by samples or entities
(i.e. a person), vFL partitions the data by different attributes
(i.e. features and labels). In vFL, multiple parties can own
different attributes from the same entities.

One typical example of vFL is a collaboration between
general and specialized hospitals. They might hold the data
for the same patient, but the general hospital owns generic
information (i.e. private attributes such as gender and age) of
the patient while the specialized hospital owns the specific
testing results (i.e. labels) of the same patient. Therefore
they can use vFL to jointly train a model that predicts a
specific disease examined by the specialized hospital from
the features provided by the general hospital.

Under two-party vFL setting, the model is split into two
submodels and each submodel is owned by one party. Dur-
ing training, the party without labels (namely passive party)
sends the computation results (namely embedding) of the
intermediate layer (namely cut layer) rather than the raw
data to the party with labels (namely active party). The
active party takes the embedding as the input, completes
the rest of forward pass, computes backward gradient based
on the labels, and performs backward pass up to the cut
layer. Then it sends the gradient w.r.t the cut layer back to
the passive party. Finally the passive party completes the
backpropagation with the gradients of the cut layer using
chain rule.

At first glance, vFL seems private because no feature/input
or label is shared between the two parties. However, from
the viewpoint of passive party, the cut layer embedding still
contains rich information which can be exploited by a ma-
licious active party to leak the input information. Recently
researchers have identified some input leakage problems
under hFL settings. For example, Mahendran et al. showed
that an attacker can exploit the intermediate embedding to
reconstruct the input images, and hence the people who
show up in the input images can be re-identified (Mahen-
dran & Vedaldi, 2015). Furthermore, Zhu et al.; Geiping
et al.; Yin et al. showed that in hFL setting, the central
server could recover the raw inputs and labels of the clients
from the gradient sent from clients.

Despite the relatively well-studied problems of input leak-
age in hFL, defending against reconstruction attack starts to
draw researchers attention recently (Luo et al., 2020). In
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this paper, we propose an adversarial training based frame-
work that can defend against input reconstruction attack in
vFL. The proposed framework simulates the game between
an attacker (i.e. the active party) who actively reconstructs
raw input from the cut layer embedding and a defender
(i.e. the passive party) who aims to prevent the input leak-
age. Our framework consists of three modules to protect
input privacy: adversarial reconstructor, noise regulariza-
tion, and distance correlation. These modules are designed
to make the submodel owned by the passive party more
robust against potential attacks that extract sensitive infor-
mation about the raw input from the cut layer embedding.
The adversarial reconstructor is designed to maximize the
reconstruction error of the attacker. Noise regularization
is designed to reduce information about input in embed-
ding by misleading attacker’s optimization toward a random
direction. Distance correlation module is to decrease the
correlation between the raw input and the cut layer embed-
ding. We conduct extensive experiments in a large-scale
online advertising dataset collected under an industrial set-
ting to demonstrate the effectiveness of our framework in
protecting input privacy while retaining model utility.

We summarize our contributions as follows:

• We design an adversarial training based framework
with three independent modules to defend against input
reconstruction attack in vFL.

• Through extensive experiments on a real-world and
industrial-scale online advertising dataset, we show
our framework can achieve a good trade-off between
preserving input privacy and retaining model perfor-
mance.

2. Methodology
vFL Background. We begin by providing some back-
ground on how the vanilla vFL works, as shown in the
part of Figure 1. A conventional vFL framework splits the
model into two parts: feature extractor F(.) (owned by pas-
sive party) and label predictorH(.) (owned by active party).
In the forward pass, the passive party feeds the raw input X
into F(.), and then sends the cut layer embedding F(X ) to
the active party. The active party takes F(X ) as the input
for the label predictorH(.) (designed for the intended task),
and then computes the gradients based on the ground-truth
labels Y owned by it. Then, in the backward pass, the ac-
tive party sends the gradient with respect to the cut layer
back ( ∂L∂F ) to the passive party. Finally, the passive party
completes the backpropagation using chain rule and updates
F(.).

Threat Model. We assume the attacker is a malicious ac-
tive party that attempts to reconstruct input X from the cut

layer embedding F(X ) passed by the passive party. The
attacker has access to F(X ) and label Y . Our goal, as the
defender and the passive party, is to prevent the reconstruc-
tion by making feature extractor F(.) more robust. We have
access to F(X ), raw input X , and ability to modify feature
extractor F(.).

Framework Overview. Figure 1 shows the design of our
framework which consists of three modules: Adversary
Reconstructor (AR), Noise Regularization (NR), and Dis-
tance Correlation (dCor). These modules are designed to
hide privacy-sensitive information from F(.) that can be
exploited by the attacker (i.e. active party) to reconstruct
the raw input X from F(X ). Specifically, AR (Section 2.1)
is designed to simulate an attacker that actively attempts
to reconstruct the input, and then it maximizes error of the
attacker. NR (Section 2.2) is designed to reduce information
about X in F(.) and stabilize AR. dCor (Section 2.3) is
designed to decrease the correlation between X and F(X ).
Note that since these three modules are independent to each
other, they can be either implemented as separate modules
or unified into a single framework. We name this united
framework as DRAVL (Defending against Reconstruction
Attack in Vertical Federated Learning).

2.1. Adversarial Reconstructor Module

Inspired by prior work (Li et al., 2019; Feutry et al., 2018;
Goodfellow et al., 2014), AR simulates an adversarial at-
tacker who aims to train a reconstructor R(.) that maps
the embedding F(X ) to the input X by minimizing the
following reconstruction loss:

Lr = ||R(F(X ))−X )||22 (1)

whereR(.) can be any model (e.g. a MLP).

Ideally we can formulate the protection as a max-min prob-
lem that maximizes the minimized Lr. However we empiri-
cally find that such optimization is unstable and hard to tune.
Instead, we use Gradient Reversal Layer (GRL) from prior
work (Ganin & Lempitsky, 2015; Feutry et al., 2018) that
demonstrated promising results in stabilizing adversarial
training. As shown in Figure 1, GRL is inserted between
the feature extractor F(.) and the adversarial reconstructor
R(.). In forward pass, GRL just performs identity transfor-
mation. In backward pass, it multiplies the corresponding
gradient w.r.t to the cut layer by −λ (λ > 0, i.e. λ = 1)
and passes −λ∂Lr

∂F to the preceding layer. Intuitively, GRL
leads to the opposite of gradient descent that is performing
gradient ascent on the feature extractor F(.) with respect to
maximize the adversarial reconstruction loss (as an attacker).
Therefore it roughly achieves the goal of maximizing the
minimized reconstruction loss. After inserting GRL, we
just need to minimize Lr as adversarial training. We update



Defending against Reconstruction Attack in Vertical Federated Learning

.

.

Input

Cross Entropy Loss

bp.

Cut Layer

Active PartyPassive Party

GRL

Class Label

Ground Truth

bp.

Adversarial Reconstructor Module

bp.

Reconstructor

Label Predictor

Distance Correlation Module

bp.

forward

backward

GRL Gradient Reversal Layer

Vanilla vFL

Noise Regularization Module

bp.

.

.

.

.

Section 2.3

Section 2.2

Section 2.1

Feature Extractor

Figure 1: Overview of our framework DRAVL. Vanilla vFL consists of two classical modules: feature extractor F and label predictor H. DRAVL contains three additional
privacy related modules in the passive party side: Adversarial Module ( 2.1), Noise Regularization Module (Section 2.2), and Distance Correlation Module (Section 2.3).

both F(.) andR(.) during training; after training is finished,
we discard R(.) and save F(.) as the more robust feature
extractor.

2.2. Noise Regularization Module

Noise Regularization also simulates an adversarial recon-
structor R′(.) but with a different goal. It is designed to
reduce information about X in F(X ) by misleading the
reconstructed input R′(F(X )) toward a random direction
(and therefore degrading reconstruction quality). During
training, we generate random Gaussian noise Nnoise1 and
minimize the following noise regularization loss:

Ln = ||R′(F(X ))−Nnoise||22 (2)

Note that if only NR is used, we can train an independent
reconstructor (without GRL) as R(.)′. If AR and NR are

1Random noise from other distributions such as Uniform distri-
bution are effective too.

used together, we can reuse the AR reconstructor R(.) as
R(.)′ 2 . In our experiments, we use the same reconstructor
for both AR and NR. For notation simplicity, we will use
R(.) to represent both AR and NR reconstructor.

As shown in Figure 1,F(X ) are fed into the reconstructorR
directly (without GRL). NR calculates Ln and computes the
gradients of the Ln w.r.t. F(.), i.e. ∇Ln(F), and updates
F(.) accordingly via backpropogation. Note thatR(.) only
works as a reconstructor and provides the reconstructed
result R(F(X )) as an input for Ln optimized by NR. NR
only has effects on F(.) and does not update any parameters
ofR during backpropogation phase.

2.3. Distance Correlation Module

Distance correlation is designed to make input X and em-
bedding F(X ) less dependent, and therefore reduces the

2Since the adversarial training is effective, R(.) and R(.)′ can
achieve similar reconstruction performance.
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likelihood of gaining information of X from F(X ). Dis-
tance correlation measures statistical dependence between
two vectors3 (Vepakomma et al., 2018). The distance corre-
lation loss is the following:

Ld = log (dCor(X ,F(X ))) (3)

where we minimize the (log of) distance correlation loss
(Ld) during the model training. It can be interpreted as
X being a good proxy dataset to construct F(X ) but not
as vice versa in terms of reconstructing X from F(X )
(Vepakomma et al., 2018).

Note that dCor computates pairwise distance between sam-
ples and requires O(n2) time complexity where n is the
batch size. In practice, there are some faster estimators of
dCor (Chaudhuri & Hu, 2019; Huang & Huo, 2017). In
addition, dCor is sensitive to the n and a larger n can give a
more accurate estimation of the distance correlation.

2.4. A Unified Framework

We can unify all three modules into one framework. The
overall loss function is a combination of four losses: ad-
versarial reconstruction loss (Lr), noise regularization loss
(Ln), distance correlation loss (Ld), and normal label pre-
diction loss (Lc). In this paper, we focus on classification
and use categorical cross entropy as label prediction loss.
Optimizing Lc makes sure the model maintain a good util-
ity; optimizing Lr, Ln, and Ld increases model privacy.
Uniting them in one framework can help us defend against
the reconstruction attack while maintaining the accuracy of
the primary learning task. The overall loss function is:

L = Lc + αrLr + αnLn + αdLd (4)

where αd ≥ 0, αn ≥ 0 and αr ≥ 0 are weights for distance
correlation, noise regularization, and adversarial reconstruc-
tor module respectively. Note that during training, only the
passive party optimizes these three modules while there is
no change on the active party’s training optimization.

3. Experimental Study
Dataset and Setting. We evaluate the proposed frame-
work on a large-scale industrial binary classification dataset
for conversion prediction tasks with millions of user click
records. The data was collected over a period of three
months from one of the largest online media platforms in in-
dustry (with hundreds of millions of users) that collaborates
with e-commerce advertising. In total, the dataset contains
> 42.56 million records of user conversion interactions
(samples).

3Two vectors can have different length.

In our setting, the passive party is an online media platform
that displays advertisements for an e-commerce company
(the active party) to its users. Both parties have different
attributes for the same set of users: the passive party has
features of user viewing history on the platform and the
active party has features of user product browsing history
on its website and labels indicating if the user converted or
not. Under our threat model, the goal of the passive party is
to prevent their raw input features from being reconstructed
from cut layer embedding.

Model. We train a Wide&Deep model (Cheng et al.,
2016) where the passive party’s feature extractor F(.) con-
sists of the embedding layers for the input features and
several layers of ReLU activated MLP (deep part) and the
active party’s label predictorH(.) consists of the last logit
layer of the deep part and the entire wide part of the model.
During training, in each batch the passive party sends an
embedding matrix with size 512× 64 to the passive party
where batch size is 5124 and embedding size is 64.

Evaluation Metrics. To measure the privacy, we train an
independent reconstructorR(.)I that minimizes eq 15. Note
that R(.)I is different from R(.) in AR or R′(.) in NR;
it is the simulated attack used for evaluation purpose and
agnostic during our defense. The input privacy is measured
byR(.)I ’s reconstruction loss, i.e. the mean squared error
(MSE) between its reconstructed input and real input6. A
larger MSE means more privacy is preserved. We also
measure the privacy with dCor(X ,F(X )) as described in
Section 2.3. A lower dCor means less dependency between
X and F(X ) and therefore better privacy. To measure the
model utility, we use AUC of conversion prediction. We use
the online stream training to train the vFL model along with
our framework. We average dCor, MSE and AUC in a daily
basis and report them on evaluation data from Jan to Feb
2020.

We first show experimental results of optimizing individ-
ual NR and dCor module alone. Then we combine them
with AR as a united framework (DRAVL) and measure its
performance.

4The batch size is 512 if not specified.
5In practice, the attacker cannot train R(.)I since as the passive

party, he does not have access to the ground truth input X . For
evaluation purpose, our experiment simulates the most powerful
attacker, and therefore the privacy-preserving performance when
facing real attacks should only be higher than what we report.

6Different from existing reconstruction attacks on image mod-
els, our input is a set of user related features rather than humanly
perceptible images. Therefore it is infeasible to show how well
the reconstructed inputs look like visually. Instead we use MSE to
quantify the reconstruction quality.
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Figure 2: Figure (a) and (b) show MSE and AUC of optimizing NR module with different values of αn. Figure (c) and (d) show the results of optimizing dCor module
with different values of αd. Figure (c) shows dCor(X ,F(X )). Figure (d) shows the model AUC. log(dCor) represents that we use log(dCor(X ,F(X ))) in the loss
function.

3.1. Evaluating Noise Regularization Module

We evaluate the performance of using noise regularization
module alone, i.e. minimizing Lc + αnLn. First, we evalu-
ate the impact of noise choice on model privacy and utility.
In Figure 2 (a) and (b), we compare two different types of
random noise: Gaussian noise and Uniform noise . With
the same αr, both random noises achieve similar MSE and
AUC. Therefore the NR module is not sensitive to the type
of the random noise. In addition, we can see the tradeoff be-
tween privacy (MSE) and utility (AUC) by varying the value
of αr. A larger αr leads to a higher MSE (therefore better
privacy) but a lower AUC score (therefore worse utility).

3.2. Evaluating Distance Correlation Module

We evaluate the performance of minimizing distance corre-
lation alone, i.e. minimizing L = Lc + αdLd. Figure 2 (c)
and (d) show the dCor performance with different values of
αd. First, vanilla vFL without any privacy protection,
can naturally reduce the dCor(X ,F(X )) during the train-
ing (dropping from 0.6 at the beginning of the training to
0.45). Second, unsurprisingly optimizing dCor can reduce
dCor(X ,F(X )) more than vanilla (0.45 for vanilla and 0.2
for dCor with αd = 0.1) while AUC drops less than 0.01. It
indicates that dCor module can achieve a reasonable privacy-
utility tradeoff with an appropriate αd. Third, log(dCor) is
more robust to αd than dCor since the gap of log(dCor)
between αd = 0.01 and αd = 0.1 is much smaller.

3.3. Effectiveness of DRAVL

We now demonstrate the effectiveness of optimizing all
losses together, i.e. DRAVL, by comparing it with individu-
ally optimizing each module. Figure 3 (a) shows that using
NR module alone can reduce more dCor(X ,F(X )) than
vanilla but its AUC is lower than dCor (Figure 3 (c)). Fig-
ure 3 (b) shows that dCor has lower MSE than NR, meaning
NR preserves more privacy. This is unsurprising given NR
is specifically designed to degrade the reconstruction qual-
ity. In addition, DRAVL helps gain the advantages of each
module-it can reduce dCor(X ,F(X )) and increase MSE

simultaneously. Unfortunately, DRAVL also hurts AUC
more than optimizing any of modules alone. However, in
terms of finding the best overall tradeoff, DRAVL shows
more promising results among all competitors: compared
to vanilla, on average DRAVL increases MSE by 9.5% and
decreases the dCor by 41.44% with a cost of AUC drop by
only 2.25%.

We also compare DRAVL with a straightforward yet effec-
tive protection baseline: adding random noise to the cut
layer embedding. We generate a random noise from a zero-
mean Gaussian and add it to the embedding. We only tune
the standard deviation of the Gaussian noise to control the
noise strength. As shown in Figure 3 (d), (e), and (f), with
increasing the amount of noise added to the embedding, we
can get a better privacy protection (lower dCor and higher
MSE) but worse model utility (lower AUC). When noise
strength is large enough (standard deviation ≥ 25), the cut
layer embedding is covered by the noise . As a result, the
AUC drops to 0.5, which is equivalent with a random guess.
Overall, with a good control of the amount of the random
noise added to the cut layer embedding, it might be an
effective protection strategy.

We compare this noise perturbation with DRAVL in Figure 3
(d), (e), and (f). DRAVL and noise perturbation method with
std = 12.5 can achieve similar AUC and MSE, since both
models can make the reconstructed input be similar to the
mean of the raw input. However, DRAVL reduces dCor
more than the noise perturbation. Another drawback of
perturbation based is that compared to DRAVL, empirically
it is much harder to tune in order to find a good trade-off
between model utility and privacy.

4. Related Work
Input Reconstruction Attack in FL. Most of input re-
construction attacks are designed for Horizontal FL where a
malicious server can reconstruct raw input from gradients
sent from clients. Zhu et al. showed that an honest-but-
curious server can jointly reconstruct raw data and its label
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Figure 3: Figure (a), (b), and (c) demonstrate the effectiveness of DRAVL by comparing it with optimizing each module individually. The performance is evaluated by
dCor(X , F(X )) (Fig. (a)), MSE (Fig. (b)), and AUC (Fig. (c)). We compare the performance of the baseline (vanilla), minimizing the dCor module only with αd = 0.01
(dCor_0.01), NR module with αn = 0.001 (NR_0.001), and our DRAVL with αd = 0.01 and αr = 0.01 . Figure (d), (e), and (f) demonstrate the effectiveness of
DRAVL by comparing it with adding noise to embedding. The performance is evaluated by dCor(X , F(X )) (Fig. (d)), MSE (Fig. (e)), and AUC (Fig. (f)). We compare the
performance of the baseline (vanilla), DRAVL, and adding 0-mean Gaussian noise to embedding with different standard deviations.

from gradient on a 4-layer CNN (Zhu et al., 2019). Geiping
et al. extended the attack on deep models with ability to
reconstruct high-resolution images (Geiping et al., 2020).
Yin et al. proposed the state-of-the-art method that is able to
reconstruct high-resolution images in batches (in contrast to
single-image optimization) from averaged gradient in a deep
model (Yin et al., 2021). We do not include those attacks in
our experiments because they are designed for Horizontal
FL and cannot be applied to Vertical FL. Luo et al. (Luo
et al., 2020) studied the feature inference problem in the
settings of vFL. The biggest differences with DRAVL is that
they leverage prediction outputs in the prediction/inference
stage of vFL to conduct the feature inference attacks. How-
ever, when some specific conditions are satisfied, e.g. the
number of classes is large or the active party’s features and
the passive party’s are highly correlated, their attack meth-
ods can infer the passive party’s features well.

Privacy-enhancement in FL. There are mainly three cat-
egories of approaches to enhance privacy within existing
FL framework: 1) cryptography methods such as Secure
Multi-party Computation (Agrawal et al., 2019; Du et al.,
2004; Bonawitz et al., 2017; Nikolaenko et al., 2013) and
homomorphic encryption(Aono et al., 2017; Sathya et al.,

2018); 2) system-based methods such as Trusted Execution
Environments (Subramanyan et al., 2017; Tramer & Boneh,
2018); 3) perturbation methods such as randomly perturbing
the communicated message (Abadi et al., 2016; McMahan
et al., 2017b), shuffling the messages (Erlingsson et al.,
2019; Cheu et al., 2019), reducing message’s data-precision,
compressing and sparsifying the message (Zhu et al., 2019).

5. Conclusion
In this paper, we design a defense framework that miti-
gates input leakage problems in Vertical FL. Our frame-
work contains three modules: adversarial reconstruction,
noise regularization, and distance correlation minimization.
Those modules can not only be employed individually but
also applied together since they are independent to each
other. We conduct extensive experiments on a industrial-
scale online advertising dataset to show that our framework
is effective in protecting input privacy while maintain a rea-
sonable model utility. We urge the community to study more
about privacy leakage problems in the context of Vertical
FL, and to continue efforts to develop more defenses against
input reconstruction attacks and provide robustness against
malicious parties.
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