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Abstract

Graph Neural Networks (GNNs) are the first
choice methods for graph machine learning prob-
lems thanks to their ability to learn state-of-the-
art level representations from graph-structured
data. However, centralizing a massive amount of
real-world graph data for GNN training is pro-
hibitive due to user-side privacy concerns, regu-
lation restrictions, and commercial competition.
Federated Learning is the de-facto standard for
collaborative training of machine learning mod-
els over many distributed edge devices without
the need for centralization. Nevertheless, training
graph neural networks in a federated setting is
vaguely defined and brings statistical and systems
challenges. This work proposes SpreadGNN,
a novel multi-task federated training framework
capable of operating in the presence of partial la-
bels and absence of a central server for the first
time in the literature. SpreadGNN extends fed-
erated multi-task learning to realistic serverless
settings for GNNs, and utilizes a novel optimiza-
tion algorithm with a convergence guarantee, De-
centralized Periodic Averaging SGD (DPA-SGD),
to solve decentralized multi-task learning prob-
lems. We empirically demonstrate the efficacy
of our framework on a variety of non-I.I.D. dis-
tributed graph-level molecular property prediction
datasets with partial labels. Our results show that
SpreadGNN outperforms GNN models trained
over a central server-dependent federated learning
system, even in constrained topologies.
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1. Introduction
Graph Neural Networks (GNNs) (Hamilton et al., 2017) are
expressive models that can distill structural knowledge into
highly representative embeddings. While graphs are the
representation of choice in domains such as social networks
(Ma et al., 2019; Bian et al., 2020), knowledge graphs for
recommendation systems (Chen et al., 2020), in this work
we focus on molecular graphs that are the core of drug dis-
covery, molecular property prediction (Gilmer et al., 2017;
Kearnes et al., 2016) and virtual screening(Wallach et al.,
2015; Zheng et al., 2019). Molecular graphs differ from
their more well known counterparts such as social network
graphs. First, each molecule is a graph representation of
the basic atoms and bonds that constitute the molecule and
hence the size of the graph is small. Second, even though
each graph may be small there are numerous molecules
that are being developed continuously for varied use cases.
Hence, what they lack in size they make up for it in structural
heterogeneity. Third, molecules can be labeled along multi-
ple orthogonal dimensions. Since each graph has multiple
labels the learning itself can be characterized as multi-task
learning. For instance, whether a molecule has potentially
harmful interaction with a diabetics drug, or whether that
molecule can turn toxic under certain conditions are distinct
labels. Molecular property analysis and labeling requires
wet-lab experiments, which is time-consuming and resource-
costly. As a consequence, many entities may only have par-
tially labeled molecules even if they know the graph struc-
ture. Finally, molecules are coveted inventions and hence
entities often possess proprietary graph representation that
cannot be shared with other institutions for competitive and
regulatory reasons. But training collectively over a private
set of molecular graphs can have immense societal benefits
such as accelerated drug discovery.

Federated Learning (FL) is a distributed learning paradigm
that addresses this data isolation problem via collaborative
training. In this paradigm, training is an act of collabora-
tion between multiple clients (such as research institutions)
without requiring centralized local data while providing a
certain degree of user-level privacy (McMahan et al., 2017;
Kairouz et al., 2019). However there are still challenges and
shortcomings to training GNNs in a federated setting. As
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Figure 1: Serverless Multi-task Federated Learning for Graph Neural Networks.

shown in (He et al., 2021), federated GNNs perform poorly
in a non-iid setting. This setting (Figure 1) is the typical
case in molecular graphs since each owner may have differ-
ent molecules and even when they have the same molecular
graph each owner may have an incomplete set of labels for
each molecule. The left half of Figure 1 shows a simpler
case where all the clients can communicate through a central
server. But in practice the presence of a central server is not
feasible when multiple competing entities may want to col-
laboratively learn. The challenges are further compounded
by the lack of a central server as shown in the right half of
the Figure 1. Thus, it remains an open problem to design
a federated learning framework for molecular GNNs, for a
realistic setting, in which clients only have partial labels and
one in which there is no reliance on a central server. This is
the problem we seek to address in this work.

We propose a multitask federated learning framework called
SpreadGNN that operates in the presence of partial labels
and absence of a central server as shown in Figure 1. We
use the word task and class interchangeably, with each label
being composed of multiple tasks. First, we present a multi-
task learning (MTL) formulation to learn from partial labels.
Second, in our MTL formulation, we utilize decentralized
periodic averaging stochastic gradient descent (DPA-SGD)
to solve the serverless MTL optimization problem, and also
provide a theoretical guarantee on the convergence proper-
ties for DPA-SGD, which further verifies the rationality of
our design.

We evaluate SpreadGNN on graph level molecular property
prediction and regression tasks. We synthesize non-I.I.D.
and partially labeled datasets by using curated data from
the MoleculeNet (Wu et al., 2018) machine learning bench-
mark. With extensive experiments and analysis, we find
that SpreadGNN can achieve even better performance than
FedAvg (McMahan et al., 2016b), not only when all clients
can communicate with each other, but also when clients are
constrained to communicate with a subset of other clients.

We plan on publishing the source code of SpreadGNN as
well as related datasets for future exploration.

2. SpreadGNN Framework
2.1. Preliminary: Federated Graph Neural Networks

for Graph Level Learning

We seek to learn graph level representations in a federated
learning setting over decentralized graph datasets located in
edge servers which cannot be centralized for training due to
privacy and regulation restrictions (He et al., 2021). For
instance, compounds in molecular trials (Rong et al., 2020b)
may not be shared across entities because of intellectual
property or regulatory concerns. Under this setting, we
assume that there are K clients in the FL network, and the
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Each client owns a GNN with a readout, to learn graph-level
representations. We call this model of a GNN followed
by a readout function, a graph classifier. Multiple clients
are interested in collaborating to improve their GNN mod-
els without necessarily revealing their graph datasets. In
this work, we build our theory upon the Message Passing
Neural Network (MPNN) framework (Gilmer et al., 2017;
Rong et al., 2020c) as most spatial GNN models (Kipf and
Welling, 2016; Veličković et al., 2018; Hamilton et al., 2017)
can be unified into this framework. The forward pass of an
MPNN has two phases: a message-passing phase (Eq (1))
and an update phase (Eq (2)). For each client, we define the
graph classifier with an L-layer GNN followed by a readout
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Figure 2: Federated Graph MultiTask Learning Framework (FedGMTL).

function as follows:
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where h(k,0)
i = x

(k)
i is the kth client’s node features, ` is

the layer index, AGG is the aggregation function (e.g., in
the GCN model (Kipf and Welling, 2016), the aggregation
function is a simple SUM operation), andNi is the neighbor-
hood set of node i. In Eq. (1),M θ(k,`+1) (·) is the message
generation function which takes the hidden state of current
node hi, the hidden state of the neighbor node hj and the
edge features ei,j as inputs to gather and transform neigh-
bors’ messages. In other words, Mθ combines a vertex’s
hidden state with the edge and vertex data from its neigh-
bors to generate a new message. U (k,`+1)

Ψ (·) is the state
update function that updates the model using the aggregated
feature m(k,`+1)

i as in Eq. (2). After propagating through
L GNN layers, the final module of the graph classifier is a
readout functionRΦpool,Φtask (·) which allows clients to pre-
dict a label for the graph, given node embeddings that are
learned from Eq.(2). In general the readout is composed of
two neural networks: the pooling function parameterized by
Φpool; and a task classifier parameterized by Φtask. The role
of the pooling function is to learn a single graph embedding
given node embedding from Eq (2). The task classifier then
uses the graph level embedding to predict a label for the
graph.

To formulate GNN-based FL, using the model definition
above, we define W = {θ,Ψ,Φpool,Φtask} as the overall
learnable weights. Note that W is independent of graph
structure as both the GNN and Readout parameters make
no assumptions about the input graph. Thus, one can learn
W using a FL based approach. The the overall FL task can
be formulated as a distributed optimization problem as:

min
W

F (W )
def
= min

W

K∑
k=1

N (k)

N
· f (k)(W ) (4)

where f (k)(W ) = 1
N(k)

∑N(k)

i=1 L(ŷ
(k)
i ,y

(k)
i ) is the kth

client’s local objective function that measures the local em-
pirical risk over the heterogeneous graph dataset D(k). L is
the loss function of the global graph classifier.

With such a formulation, it might seem like an optimization
problem tailored for a FedAvg based optimizers (McMa-
han et al., 2016b; He et al., 2020a; Reddi et al., 2020).
Unfortunately, in molecular graph settings this is not the
case for the following reasons. (a) In our setting, clients
belong to a decentralized, serverless topology. There is no
central server that can average model parameters from the
clients. (b) Clients in our setting possess incomplete labels,
hence the dimensions of Φtask can be different on different
clients. For instance, a client may only have a partial tox-
icity labels for a molecule, while another client may have
a molecule’s interaction property with another drug com-
pound. Even with such incomplete information from each
client, our learning task is interested in classifying each
molecule across multiple label categories. Federated Mul-
titask Learning (FMTL) (Smith et al., 2017; Caldas et al.,
2018) is a popular framework designed to deal with such
issues. However, current approaches do not generalize to
non-convex deep models such as graph neural networks. To
combat these issues, we first introduce a centralized FMTL
framework for graph neural networks in Section 2.2. But
reliance on a central server may not be feasible in molecular
graphs owned by multiple competing entities. Hence, we
enhance this centralized FMTL to a serverless scenario in
section 2.3, which we call SpreadGNN.

2.2. Federated Multi-Task Learning with Graph
Neural Networks

Under the regularized MTL paradigm (Evgeniou and Pon-
til, 2004), we define the centralized federated graph MTL
problem (FedGMTL) as follows:
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min
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χ∈{θ,Ψ,Φpool,Φtask}

λχ||χ||2F
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is the bi-convex regularizer introduced in (Zhang and Yeung,
2012). The first term of the Eq. (5) models the summation
of different empirical loss of each client, which is what
Eq. (4) exactly tries to address. The second term serves
as a task-relationship regularizer with Ω ∈ RS×S being
the covariance matrix for S different tasks constraining the
task weights Φtask = [Φtask,1, . . . ,Φtask,S ] ∈ Rd×S through
matrix trace Tr(ΦtaskΩ

−1ΦT
task). Recall that each client in

our setting may only have a partial set of tasks in the labels
of its training dataset, but still needs to make predictions
for tasks it does not have in its labels during test time. This
regularizer helps clients relate its own tasks to tasks in other
clients. Intuitively, it determines how closely two tasks i and
j are related. The closer Φtask,i and Φtask,j are, the larger
Ωi,j will be. If Ω is an identity matrix, then each node is
independent to each other. But as our results show, there
is often a strong correlation between different molecular
properties. This compels us to use a federated learning
model.

Figure 2-a depicts the FedGMTL framework where clients’
graph classifier weights are using an FL server. While the
above formulation enhances the FMTL with a constrained
regularizer that can be used for GNN learning, we still need
to solve the final challenge, which is to remove the reliance
on a central server to perform the computations in Eq. (5).
Therefore, we propose a Decentralized Graph Multi-Task
Learning framework, SpreadGNN, and utilize our novel
optimizer, Decentralized Periodic Averaging SGD (DPA-
SGD) to extend the FMTL framework to our setting. The
decentralized framework is shown in the Figure 2-c. Note
that each client’s learning task remains the same but the
aggregation process differs in SpreadGNN.

2.3. SpreadGNN: Serverless Federated MTL for GNNs

To transition to the serverless setting, we introduce a novel
optimization method called Decentralized Periodic Aver-
aging SGD (DPA-SGD). The main idea of DPA-SGD is
that each client applies SGD locally, and synchronizes all
parameters with only its neighbors during a communication
round that occurs every τ iterations. A decentralized system
in which all clients are not necessarily connected to all other

clients also makes it impossible to maintain one single task
covariance matrix Ω. Thus we propose using distinct covari-
ance matrices Ωk in each client that are efficiently updated
using the exchange mechanism illustrated in Figure 3. We
formalize this idea as follows. Consider one particular client
m having task weights Φtask,m ∈ Rd×Sm where Sm is the
number of tasks that clientm has. Recall that the regularizer
in Eq. (6) is how various clients learn to predict tasks that
are not within its Sm.

In the decentralized setting, we emphasize that clients can
collectively learn the exhaustive set of tasks, even when
clients may not have access to some of the classes in each
multi-class label. That is and ∪iSi = S. Then, the new
non-convex objective function can be defined as:

min
θ,Ψ,Φpool,Φtask

K∑
k=1

1

Nk

[ Nk∑
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l(ŷ
(k)
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)

]
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∑
χ∈{θ,Ψ,Φpool,Φtask}

λχ||χ||2F ,

s.t. Ωk ≥ 0 and Tr(Ωk) = 1, k = 1, 2, ...,K.

(7)

where W k = {θ,Ψ,Φpool,Φtask,k} is the set of all learn-
able weights for client k, Mk = k ∪ Nk is the neigh-
bor set for client k including itself. This gives rise to:
ΦtaskMk

= [Φtask,1‖Φtask,2‖ . . . ‖Φtask,|Mk|] ∈ Rd×|SMk
|

which is the task weight matrix for client k and its neighbors
and || represents the row-wise union operation. The matrix
Ωk ∈ R|SMk

|×|SMk
| represents the correlation amongst all

the available tasks for the setMk.

To solve this non-convex problem, we apply the alternating
optimization method presented in (Zhang and Yeung, 2012),
whereW k and Ωk are updated in an alternative fashion.
Optimizing W k : For simplicity, we define Ω =
{Ω1,Ω2, . . . ,ΩK} to represent the set of correla-
tion matrices for all clients. Fixing Ω, we can
use SGD to update W k jointly. Let L =∑K
k=1

1
Nk

∑Nk
i=1 l(ŷ

(k)
i (Xk

i ,Z
k
i W k),yki ). Then, our

problem can then be reformulated as:
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+
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∑
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λχ‖χ‖2F . (8)

where the summation in (8) is amongst all the nodes con-
nected to node k. Then the gradient formulations for each
node are:

∂G(W k|Ω)

∂ΦtaskMk

=
∂L

∂ΦtaskMk

+ λ1

|Mk|∑
i=1

1

Ni
ΦtaskMk
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i + λ2ΦtaskMk

(9)
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Figure 3: Decentralized Multi-Task Learning Correlation Matrix Exchanging Algorithm
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Optimizing Ωk ∈ Ω: In (Zhang and Yeung, 2012), an an-

alytical solution for Ω is equal to Ω∗ =
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1
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Tr((ΦT
taskΦtask)

1
2 )
.

However, this solution is only applicable for the centralized
case. This is because The missing central node forbids aver-
aging parameters globally. So here we propose a novel way
to update each Ωk ∈ Ω:
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The first averaging term can incorporate the nearby nodes
correlation into its own. It should be noticed that each
Ωi may have a different dimension (different number of
neighbors), so this averaging algorithm is based on the node-
wised alignment in the global Ω. The falign function is
illustrated in Figure 3. Here, falign operates on each client
and The second term captures the new correlation between
its neighbors as shown in Figure 3. We refer readers to the
convergence analysis of DPA-SGD and the Algorithm 1 for
a better view of SpreadGNN in the Appendix.

3. Experiments
3.1. Setup

Implementation. All experiments are conducted on a
single GPU server equipped with 2 Nvidia Geforce GTX
1080Ti GPUs and an AMD Ryzen 7 3700X 8-Core Proces-
sor. Our models are built on top of the FedML framework
(He et al., 2020b) and PyTorch (Paszke et al., 2019).

Multi-task Dataset. We use molecular datasets from the
MoleculeNet (Wu et al., 2018) machine learning benchmark
in our evaluation described in Table 2. The label for each
molecule graph is a vector in which each element denotes a
property of the molecule.

Non-I.I.D. Partition for Quantity and Label Skew. We

introduce non-I.I.D.ness in two additive ways. The first is a
non-I.I.D. split of the training data based on quantity. Here
we use a Dirichlet distribution parameterized by α to split
the training data between clients. Specifically, the number
of training samples present in each client is non-I.I.D. The
second source of non-I.I.D.ness is a label masking scheme
designed to represent the scenario in which different clients
may possess partial labels as shown in Figure 1. More
specifically, we mask out a subset of classes in each label
on every client. In our experiments, the sets of unmasked
classes across all clients are mutually exclusive and col-
lectively exhaustive. This setting simulates a worst case
scenario where no two clients share the same task. However
our framework is just as applicable when there is label over-
lap. Such masking, introduces a class imbalance between
the clients making the label distribution non-I.I.D. as well.

Network Topology. We first evaluate our framework in
a complete topology in which all clients are connected to
all other clients to measure the efficacy of our proposed
regularizer. We then perform ablation studies on the number
of neighbors of each client to stress test our framework in
the more constrained setting1 .

3.2. Results

Our results summarized in Table 1 demonstrate that
SpreadGNN (third column) outperforms a centralized fed-
erated learning system that uses FedAvg (first column) when
all clients can communicate with all other clients. This
shows that by using the combination of the task regular-
izer in equation 6 and the DPA-SGD algorithm, we can
eliminate the dependence on a central server and enable
clients to learn more effectively in the presence of missing
molecular properties in their respective labels. Additionally,
the results also show that our framework is agnostic to the
type of GNN model being used in the molecular property
prediction task since both GraphSAGE and GAT benefit
from our framework. Our framework also works in the case
a trusted central server is available (second column). The

1A more comprehensive hyperparameter list for network topol-
ogy and models can be found in the Appendix D.
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presence of a trusted central server improves accuracy in a
few scenarios. However, SpreadGNN provides competing
performance in a more realistc setting where central server
is not feasible.

3.2.1. ABLATION STUDIES

In this section, we provide some insights on how hyperpa-
rameters affect the results. More detailed analysis can be
found in the Appendix E.

Task-Relationship Regularizer. Figure 4 illustrates the
effect of λ1 on both regression as well as classification tasks.
Interestingly, regression is much more robust to variation
in λ1 while classification demands more careful tuning of
λ1 to achieve optimal model performance. This implies
that the different properties in the regression task are more
independent than the properties in the classification task.

Period. The communication period τ is another important
hyperparameter in our framework. In general, our experi-
ments suggest that a lower period is better, but this is not
always the case. Figures 6 & 7 in the Appendix illustrate the
effect of communication period SIDER and Tox21 datasets.
As we increase the communication period τ more, model
performance decreases. However, selecting τ = 5 can some-
times be better than averaging & exchanging each round.
This indicates that, tuning τ is important for while control-
ling the tradeoff between the performance and the running
time.

Network Topology. The network topology dictates how
many neighbors each client can communicate with in a com-
munication round. While Table 1 shows that SpreadGNN
outperforms FedAvg in a complete topology, Figure 5 shows
that our framework performs outperforms FedAvg even
when clients are constrained to communicate with fewer
neighbors. We can also see that it’s not just nneighbors that
matters, the topology in which clients are connected does
too. When nneighbors = 2, a ring topology outperforms
a random topology, as a ring guarantees a path from any
client to any other client. Thus, learning is shared indi-
rectly between all clients. The same is not true in a random
topology.

4. Conclusion
In this work, we propose SpreadGNN, a framework to
train graph neural networks in a serverless federated system.
We motivate our framework through a realistic setting, in
which clients involved in molecular machine learning re-
search cannot share data with each other due to privacy and
competition. Moreover, we further recognize that clients
may only possess partial labels of their data. Through ex-
perimental analysis, we show for the first time, that training
graph neural networks in a federated manner does not re-

quire a centralized topology and that our framework can
address the non-iidness in dataset size and label distribution
across clients. SpreadGNN can outperform a central server
depend baseline even when clients can only communicate
with a few neighbors. To support our empirical results,
we also provide a convergence analysis of the DPA-SGD
optimization algorithm used by SpreadGNN.
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Appendix
This section includes additional information that a reader might find useful. Apart from the proof of Theorem , we include
the algorithm sketch for SpreadGNN using DPA-SGD, a list of related works, a more detailed description of the datasets we
used, hyperparameter configurations used in our experiments and additional ablation studies on communication period and
network topology.

A. Algorithm Sketch

Algorithm 1 SpreadGNN : Serverless Multi-task Federated Learning for Graph Neural Networks

Require: initial parameters for each node W
(t=0)
k = {θ(t=0),Ψ(t=0),Φ

(t=0)
pool ,Φ

(t=0)
task,k } and Ω(t=0) =

(Ω
(t=0)
1 ,Ω

(t=0)
2 , ...,Ω

(t=0)
K ); learning rate η; maximum number of global iterations T , maximum number of client

epochs E; communication period τ .
1: for all nodes: k = 1, 2, ...,K in parallel do
2: for t = 1 to T do do
3: for k = 1 to E(epoch loop) do do
4: for m ∈MB (mini-batch loop) do do
5: Read a minibatch m
6: Calculate gradient: g(W t,m

k ) = ∂G(W t,m
k |Ω

t,m)/∂W t,m
k

7: Update the local kth optimization variables:
W

(t+1,m)
k ←W

(t,m)
k − ηg(W

(t,m)
k )

Ω
(t+1,m)
k ← (ΦT

taskMk
ΦtaskMk

)
1
2 /Tr((ΦT

taskMk
ΦtaskMk

)
1
2 )

8: end for
9: end for

10: if t mod τ = 0 then
11: Perform aggregation and alignment over neighbors for node k:

W
(t+1)
k ← (

∑|Mk|
j=1

1
Nj
W

(t)
k )/|Mk|,

falign(Ωt+1
k )← η(

∑
j=Mk\k

1
Nj
falign(Ω

(t)
j ) + falign(

(ΦT
taskMk

ΦtaskMk
)
1
2

Tr((ΦT
taskMk

ΦtaskMk
)
1
2 )

))/|Mk|

12: end if
13: end for
14: end for

B. Related Works
Molecular Representation Learning. (Rogers and Hahn, 2010) encode the neighbors of atoms in the molecule into
a fix-length vector to obtain vectors-space representations. To improve the expressive power of chemical fingerprints,
(Duvenaud et al., 2015; Coley et al., 2017) use CNNs to learn rich molecule embeddings for downstream tasks like property
prediction. (Kearnes et al., 2016; Schütt et al., 2017a;b) explore the graph convolutional network to encode molecular graphs
into neural fingerprints. To better capture the interactions among atoms, (Gilmer et al., 2017) proposes to use a message
passing framework and (Yang et al., 2019; Klicpera et al., 2020) extend this framework to model bond interactions.

FL. Early examples of research into federated learning include (Konečný et al., 2015; 2016; McMahan et al., 2016a). To
address both statistical and system challenges, (Smith et al., 2017) and (Caldas et al., 2018) propose a multi-task learning
framework for federated learning and its related optimization algorithm, which extends early works in distributed machine
learning (Shalev-Shwartz and Zhang, 2013; Yang, 2013; Yang et al., 2013; Jaggi et al., 2014; Ma et al., 2015; Smith et al.,
2016). The main limitation of (Smith et al., 2017) and (Caldas et al., 2018), however, is that strong duality is only guaranteed
when the objective function is convex, which can not be generalized to the non-convex setting.(Ahmed et al., 2014; Jin
et al., 2015; Mateos-Núñez et al., 2015; Wang et al., 2016; Baytas et al., 2016; Liu et al., 2017) extends federated multi-task
learning to the distributed multi-task learnings setting, but not only limitation remains same , but also nodes performing
same amount of work is prohibitive in FL.
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Federated Graph Neural Networks. (Suzumura et al., 2019) and (Mei et al., 2019) use computed graph statistics for
information exchange and aggregation to avoid node information leakage. (Jiang et al., 2020; Zhou et al., 2020) utilize
cryptographic approaches to incorporate into GNN learning. (Wang et al., 2020) propose a hybrid of federated and meta
learning to solve the semi-supervised graph node classification problem in decentralized social network datasets. (Meng
et al., 2021) uses an edge-cloud partitioned GNN model for spatio-temporal traffic forecasting tasks over sensor networks.
The previous works do not consider graph learning in a decentralized setting.

Stochastic Gradient Descent Optimization. In large scale distributed machine learning problems learning, synchronized
mini-batch SGD is a well-known method to address the communication bottleneck by increasing the computation to
communication ratio (Dean et al.; Li et al., 2014; Cui et al., 2014). It is shown that FedAvg (Konečný et al., 2016) is a
special case of local SGD which allow nodes to perform local updates and infrequent synchronization between them to
communicate less while converging fast (Stich, 2018; Wang and Joshi, 2018; Yu et al., 2018; Lin et al., 2018). Decentralized
SGD, another approach to reducing communication, was successfully applied to deep learning [Jin et al., 2016; Jiang et al.,
2017; Lian et al., 2017]. Asynchronous SGD is a potential method that can alleviate synchronization delays in distributed
learning [Recht et al., 2011; Cui et al., 2014; Gupta et al., 2016; Mitliagkas et al., 2016; Dutta et al., 2018], but existing
asynchronous SGD doesn’t fit for federated learning because the staleness problem is particularly severe due to the reason of
heterogeneity in the federated setting (Dai et al., 2018).

C. Dataset Details

Table 2: Dataset summary used in our experiments.

Dataset # Molecules Avg # Nodes Avg # Edges # Tasks Task Type Evaluation Metric

SIDER 1427 33.64 35.36 27 Classification ROC-AUC
Tox21 7831 18.51 25.94 12 Classification ROC-AUC
MUV 93087 24.23 76.80 17 Classification ROC-AUC
QM8 21786 7.77 23.95 12 Regression MAE

Table 2 summarizes the necessary information of benchmark datasets (Wu et al., 2018). The details of each dataset are listed
below:

• SIDER (Kuhn et al., 2016), or Side Effect Resource, the dataset consists of marketed drugs with their adverse drug
reactions.

• Tox21(tox, 2017) is a dataset which records the toxicity of compounds.

• MUV (Rohrer and Baumann, 2009) is a subset of PubChem BioAssay processed via refined nearest neighbor analysis.
Contains 17 tasks for around 90 thousand compounds and is specifically designed for validation of virtual screening
techniques.

• QM8 (Ramakrishnan et al., 2015) is composed from a recent study on modeling quantum mechanical calculations of
electronic spectra and excited state energy of small molecules.

C.1. Feature Extraction Procedure for Molecules

The feature extraction is in two steps:

1. Atom-level feature extraction and Molecule object construction using RDKit (Landrum, 2006).

2. Constructing graphs from molecule objects using NetworkX (Hagberg et al., 2008).

Atom features, shown in Table 3, are the atom features we used. It’s exactly the same set of features as used in (Rong et al.,
2020a).
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Table 3: Atom features

Features Size Description

atom type 100 Representation of atom (e.g., C, N, O), by its atomic number
formal charge 5 An integer electronic charge assigned to atom
number of bonds 6 Number of bonds the atom is involved in
chirality 5 Number of bonded hydrogen atoms
number of H 5 Number of bonded hydrogen atoms
atomic mass 1 Mass of the atom, divided by 100
aromaticity 1 Whether this atom is part of an aromatic system
hybridization 5 SP, SP2, SP3, SP3D, or SP3D2

D. Model Hyperparameters
D.1. Model Architecture

As explained in section 2.1 our model is made up of a GNN and Readout. The GNNs we use are GAT (Veličković et al.,
2018) and GraphSAGE (Hamilton et al., 2017). Each accepts input node features Xv ∈ R|VM |×dinput and outputs node
embeddings hv ∈ R|VM |×dnode , v ∈ VM . Where VM is the set of atoms in molecule M . Given the output node embeddings
from the GNN the Readout function we use is defined as follows:

RΦpool,Φtask (hv, Xv) = MEAN (ReLU (Φtask (ReLU (Φpool (Xv‖hv)))))

where ‖ represents the row wise concatenation operation. Φpool ∈ R(dnode+dinput)×dpool and Φtask ∈ Rdpool×dout are
learnable transformation matrices. dout represents the number of classes/tasks present in the classification label. The MEAN
operation here is a column wise mean. Note that while our general description of the readout in section 2.1 does not include
the input features as part of the input, we find that including the input features leads to better generalization.

D.2. Hyperparameter Configurations

For each task, we utilize grid search to find the best results. Table 4 lists all the hyper-parameters ranges used in our
experiments. All hyper-parameter tuning is run on a single GPU. The best hyperparameters for each dataset and model are
listed in Table 5. The batch-size is kept 1. This pertains to processing a single molecule at a time. The number of GNN
layers were fixed to 2 because having too many GNN layers result in over-smoothing phenomenon as shown in (Li et al.,
2018). For all experiments, we used Adam optimizer.

Table 4: Hyperparameter Range for Experiments

hyper-parameter Description Range

Learning rate Rate of speed at which the model learns. [0.00015, 0.001, 0.0015, 0.0025, 0.015, 0.15]
Dropout rate Dropout ratio [0.3, 0.5, 0.6]
Node embedding dimension (dnode) Dimensionality of the node embedding 64
Hidden layer dimension GNN hidden layer dimensionality 64
Readout embedding dimension (dpool) Readout Hidden Layer Dimensionality 64
Graph embedding dimension (dout) Dimensionality of the final graph embedding 64
Attention heads Number of attention heads required for GAT 1-7
Alpha LeakyRELU parameter used in GAT model 0.2
Rounds Number of federating learning rounds 150
Epoch Epoch of clients 1
Number of clients Number of users in a federated learning round 4-10
Communication Period Exchanging Period between clients 1
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Table 5: Hyperparameters used in our experiments. For SpreadGNN we use a communication period τ = 1 and a complete
topology (all clients connected to all other clients) in all experiments.

GraphSAGE GAT
Parameters FedAvg FedGMTL SpreadGNN FedAvg FedGMTL SpreadGNN

SIDER

ROC-AUC Score 0.582 0.629 0.5873 0.5857 0.61 0.603
Partition alpha 0.2 0.2 0.2 0.2 0.2 0.2
Learning rate 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Dropout rate 0.3 0.3 0.3 0.3 0.3 0.3

Node embedding dimension 64 64 64 64 64 64
Hidden layer dimension 64 64 64 64 64 64

Readout embedding dimension 64 64 64 64 64 64
Graph embedding dimension 64 64 64 64 64 64

Attention Heads NA NA NA 2 2 2
Leaky ReLU alpha NA NA NA 0.2 0.2 0.2
Number of Clients 4 4 4 4 4 4
Task Regularizer NA 0.001 0.001 NA 0.001 0.001

Tox21

ROC-AUC Score 0.5548 0.6644 0.585 0.6035 0.6594 0.6056
Partition alpha 0.1 0.1 0.1 0.1 0.1 0.1
Learning rate 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Dropout rate 0.3 0.3 0.3 0.3 0.3 0.3

Node embedding dimension 64 64 64 64 64 64
Hidden layer dimension 64 64 64 64 64 64

Readout embedding dimension 64 64 64 64 64 64
Graph embedding dimension 64 64 64 64 64 64

Attention Heads NA NA NA 2 2 2
Leaky ReLU alpha NA NA NA 0.2 0.2 0.2
Number of Clients 8 8 8 8 8 8
Task Regularizer NA 0.001 0.001 NA 0.001 0.001

MUV

ROC-AUC Score 0.6578 0.6856 0.703 0.709 0.6899 0.713
Partition alpha 0.3 0.3 0.3 0.3 0.3 0.3
Learning rate 0.001 0.001 0.001 0.0025 0.0025 0.0025
Dropout rate 0.3 0.3 0.3 0.3 0.3 0.3

Node embedding dimension 64 64 64 64 64 64
Hidden layer dimension 64 64 64 64 64 64

Readout embedding dimension 64 64 64 64 64 64
Graph embedding dimension 64 64 64 64 64 64

Attention Heads NA NA NA 2 2 2
Leaky ReLU alpha NA NA NA 0.2 0.2 0.2
Number of Clients 8 8 8 8 8 8
Task Regularizer NA 0.001 0.001 NA 0.002 0.002

QM8

RMSE Score 0.02982 0.03624 0.02824 0.0392 0.0488 0.0333
Partition alpha 0.5 0.5 0.5 0.5 0.5 0.5
Learning rate 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015
Dropout rate 0.3 0.3 0.3 0.3 0.3 0.3

Node embedding dimension 64 64 64 64 64 64
Hidden layer dimension 64 64 64 64 64 64

Readout embedding dimension 64 64 64 64 64 64
Graph embedding dimension 64 64 64 64 64 64

Attention Heads NA NA NA 2 2 2
Leaky ReLU alpha NA NA NA 0.2 0.2 0.2
Number of Clients 8 8 8 8 8 8
Task Regularizer NA 0.3 0.3 NA 0.3 0.3
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E. Detailed Ablation Studies
E.1. Effect of Communication Period τ
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Figure 6: Effect of Communication Period τ on GraphSAGE Model
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Figure 7: Effect of Communication Period τ on GAT Model

E.2. Effect of Serverless Network Topology
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Figure 8: Effect of Topology on Graphsage + Sider using a 4 client network

Figure 8 illustrates the effect of varying topologies on SpreadGNN on the Sider dataset when using Graphsage as the GNN.
The qualitative behavior is similar to Figure 5, in that when each client is connected to more neighbors, the local model
on each client is more robust. However, when the total number of clients involved in the network is smaller, the effect of
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topology is understated and the total number of neighbors matters more. Recall that in an 8 client network, when each client
was restricted to being connected to only 2 neighbors, random connections performed worse than a ring topology, meaning
that the topology mattered as much as mere number of neighbors. However, in the case of the 4 client network in Figure 8
there is a minimal difference between a 2 neighbor random configuration and a 2 neighbor ring configuration.

F. Proof for Convergence of DPA-SGD
In our analysis, we assume that following properties hold (Bottou et al., 2018):

• The objective function F (·) is L-Lipschitz.

• F (·) is lower bounded by Finf such that F (·) ≥ Finf .

• The full gradient of the objective function F (·) is approximated by stochastic gradient g on a mini-batch εi with an
unbiased estimate: Eεk [g(x)] = ∇F (x).

• The variance of stochastic gradient g(x) given a mini-batch εk is upper bounded and Varεk(g(x)) ≤ β‖∇F (x)‖2 +
σ2, ∃β, σ2 ≥ 0, ∀k.

In order to get a more clear view of our algorithm, we reformulate the loss function on each worker as follows:

fk
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where we include all the parameters that is different on each worker to be δ(k) := {ΦtaskMk
}, Γ denotes the shared

parameters, and ξ(k)
i is the random variable that denotes the data samples (Xi,k,Zi,k,y

(k)
i ).

Therefore, the original objective function an be cast into the following form:
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Notice that the updating rule for Γ, δ(1:K), and Ω(1:K) are different in that:
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where the overline ∗ denotes the expectation operation E, σ2
Γ and σ2

δ are the variance bounds for the stochastic gradients

of Γt and δt respectively. To estimate the upper bound for E
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follows:
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Therefore, we re-write the lower bound (12) as
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Summing the inequality above for all time-steps t = 0, . . . , T , we get
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The main challenge however now becomes bounding the term with
∑T
t=0 Et

∑n
i=1

∥∥∥Γt − Γ
(i)
t

∥∥∥2

F
. Bounding it requires

to derive another lower bound and using an available result. First re-write the E
∥∥∥ ∂f
∂Γt

∥∥∥2

F
by utilizing Frobenius-norm

properties:

E
∥∥∥∥ ∂f∂Γt

∥∥∥∥2

F

=E
∥∥∥∥( ∂f

∂Γt
− ∂F

∂Γt

)
+
∂F

∂Γt

∥∥∥∥2

F

=E
∥∥∥∥ ∂f∂Γt

− ∂F

∂Γt

∥∥∥∥2

F

+ E
∥∥∥∥ ∂F∂Γt

∥∥∥∥2

F

+ 2E
〈
∂f

∂Γt
− ∂F

∂Γt
,
∂F

∂Γt

〉
=E

∥∥∥∥ ∂f∂Γt
− ∂F

∂Γt

∥∥∥∥2

F

+ E
∥∥∥∥ ∂F∂Γt

∥∥∥∥2

F

Then bound each term as follows:

≤nσ2
Γ + E

n∑
i=1

∥∥∥∥∥
(
∂Fi

∂Γ
(i)
t

− ∂Fi

∂Γt

)
+

(
∂Fi

∂Γt
− ∂F

∂Γt

)
+
∂F

∂Γt

∥∥∥∥∥
2

F

≤nσ2
Γ +

n∑
i=1

E

∥∥∥∥∥ ∂Fi

∂Γ
(i)
t

− ∂Fi

∂Γt

∥∥∥∥∥
2

F

+

n∑
i=1

E
∥∥∥∥ ∂Fi∂Γt

− ∂F

∂Γt

∥∥∥∥2

F

+ E
∥∥∥∥ ∂F∂Γt

∥∥∥∥2

F

≤nσ2
Γ + L2

n∑
i=1

E
∥∥∥Γt − Γ

(i)
t

∥∥∥2

F
+ nζ2 + nE

∥∥∥∥ ∂F∂Γt

∥∥∥∥2

F

,

where first term is bounded by its stochastic gradient variance. To bound the second term E
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above, first bound the

term with sum of the individual components’ norm and then use add-subtract trick used with ∂F
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where C1 being a function of the spectral gap.

Finally, combining (13) with the intermediate bound (14) together first, bounding the Frobenius norms, and dividing both
sides by T (to average in the end), we get the desired lower bound

2[F (x0)− Finf ]
ηT

+
ηLσ2

K
+ η2L2σ2

(
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1− ζ2
τ − 1

)

where η is the learning rate that satisfies the given conditions, x0 = {Γ0, δ
(1:K)
0 ,Ω

(1:K)
0 } is the initial starting point and

σ2 = σ2
Γ + σ2

δ is the total variance bound over stochastic gradients of Γ & δ�

Our work differs from (Wang and Joshi, 2018) in that it does not provide adequate theoretical analysis and empirical
evaluation for federated learning.
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