
On Large-Cohort Training for Federated Learning

Zachary Charles 1 Zachary Garrett 1 Zhouyuan Huo 1 Sergei Shmulyian 1 Virginia Smith 2

Abstract

Federated learning methods typically learn a
model by iteratively sampling updates from a pop-
ulation of clients. In this work, we explore how
the number of clients sampled (the cohort size)
impacts the quality of the learned model and the
training dynamics. Our work poses three fun-
damental questions: First, what challenges arise
when scaling federated learning to larger cohorts?
Second, what parallels exist between cohort sizes
in federated learning and batch sizes in centralized
learning? Last, how can we design better large-
cohort training methods? We give partial answers
to these questions based on extensive empirical
evaluation, highlighting challenges that arise from
the use of larger cohorts. While some of these are
analogs of large-batch training challenges, others
are unique to federated learning.

1. Introduction
Federated learning (FL) (McMahan et al., 2017) considers
learning a model from clients without directly sharing data.
In this work we focus on cross-device FL, in which the
aim is to learn across a large population of edge devices
(Kairouz et al., 2021, Table 1). A distinguishing characteris-
tic of cross-device FL is partial client participation: Due to
systems constraints, the server typically only communicates
with a small subset of clients in each round1. For example,
in the popular FedAvg algorithm (McMahan et al., 2017),
at each communication round the server broadcasts its cur-
rent model to a subset of available clients (referred to as a
cohort), who use the model to initialize local optimization
and send their model updates back to the server.

1Google 2Carnegie Mellon University. Correspondence to: Zachary
Charles <zachcharles@google.com>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).
1In contrast, cross-silo settings often have a small set of clients,
most of which participate in each round (Kairouz et al., 2021).

Intuitively, larger cohort sizes have the potential to improve
the convergence of FL algorithms. By sampling more clients
per round, we can observe a more representative sample of
the underlying population—possibly reducing the number
of communication rounds needed to achieve a given accu-
racy. This intuition is reflected in many convergence anal-
yses (Khaled et al., 2019; 2020; Yang et al., 2021), which
generally show that larger cohorts improve convergence.

Larger cohorts may also provide privacy benefits. Under the
distributed differential privacy model (Shi et al., 2011; Bit-
tau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2020),
noise is often added to the updates sent from the clients to
the server (McMahan et al., 2018). By dividing the noise
among more clients, larger cohorts may mitigate detrimen-
tal effects of noise. Since privacy tends to decrease as a
function of the number of rounds (Abadi et al., 2016; Girgis
et al., 2020), larger cohorts may also improve privacy by
reducing the number of rounds needed for convergence.

Motivated by these potential benefits, we explore the impact
of cohort size in realistic cross-device settings. We show
that large-cohort training may not lead to significant con-
vergence improvements in practice, as large-cohort training
can introduce fundamental optimization issues. Our results
are reminiscent of work on large-batch training in central-
ized settings, where larger batches can stagnate convergence
improvements (Dean et al., 2012; You et al., 2017), and lead
to generalization issues (Keskar et al., 2017; Hoffer et al.,
2017). While some of the challenges we identify with are
parallel to issues of large-batch training, others are unique to
FL and have not been previously identified in the literature.

Contributions. In this work, we provide a novel examina-
tion of cohort sizes in federated learning. We give a wide
ranging empirical analysis spanning many popular federated
algorithms and datasets (Section 2). Despite the many possi-
ble benefits of large-cohort training, we find that challenges
exist in realizing these benefits (Section 3). We show that
these issues are caused in part by distinctive characteristics
of federated training dynamics (Section 4). Using these
insights, we provide partial solutions to the challenges we
identify (Section 5), focusing on how to adapt techniques
from large-batch training, and the limitations of such ap-
proaches. Our solutions are designed to serve as simple
benchmarks for future work.

On Large-Cohort Training for Federated Learning

1.1. Related Work

Large-batch training. In centralized settings, mini-batch
methods are common choices for training machine learning
models. While larger mini-batch sizes ostensibly allow for
improved convergence, in practice speedups may quickly
saturate when increasing the mini-batch size. This prop-
erty of diminishing returns has been explored both empiri-
cally (Dean et al., 2012; McCandlish et al., 2018; Golmant
et al., 2018; Shallue et al., 2019) and theoretically (Ma
et al., 2018; Yin et al., 2018). Beyond the issue of speedup
saturation, numerous works have observed a generaliza-
tion gap when training models with large batches (Keskar
et al., 2017; Hoffer et al., 2017; You et al., 2017; Masters &
Luschi, 2018; Lin et al., 2019; 2020). Our work differs from
these areas by exploring how the cohort size (the number of
selected clients) affects federated optimization methods.

Optimization for federated learning. There has been a
large amount of work on developing federated optimization
methods, often focusing on aspects such as communication-
efficiency (Konečnỳ et al., 2016; McMahan et al., 2017), het-
erogeneity (Li et al., 2020a; Karimireddy et al., 2020b; Hsu
et al., 2019), and fairness (Li et al., 2020c; Hu et al., 2020).
We describe some relevant methods in Section 2, and defer
to recent surveys for additional background (Kairouz et al.,
2021; Li et al., 2020a). Our work is connected to variance
reduction methods for FL, which can mitigate the effects
of data heterogeneity (Karimireddy et al., 2020b;a; Zhang
et al., 2020). Such methods may require clients to maintain
state across rounds, or require high participation rates, both
of which may be infeasible in cross-device settings (Kairouz
et al., 2021). Convergence analyses of FL methods often
show that larger cohorts improve convergence, even without
explicit variance reduction (Khaled et al., 2019; 2020; Yang
et al., 2021). These analyses typically focus on asymptotic
convergence, and require assumptions that may not hold
in practice (Kairouz et al., 2021). By contrast, we explore
whether increased cohort sizes improve convergence in real-
istic, communication-limited settings.

Client sampling. A number of works have explored how to
select cohorts of a fixed size in cross-device FL (Nishio &
Yonetani, 2019; Goetz et al., 2019; Cho et al., 2020; Chen
et al., 2020; Ribero & Vikalo, 2020). Such methods can
yield faster convergence than random sampling by carefully
selecting the clients that participate at each round, based on
quantities such as the client loss. However, such approaches
typically require the server to be able to choose which clients
participate in a cohort. In practice, cohort selection in cross-
device FL is often governed by client availability, and is not
controlled by the server (Bonawitz et al., 2019; Paulik et al.,
2021). In this work we instead focus on the impact of size
of the cohort, assuming the cohort is sampled at random.

2. Preliminaries
Federated optimization methods often aim to minimize a
weighted average of client loss functions:

min
x
f(x) :=

K∑
k=1

pkfk(x), (1)

where K is the total number of clients and fk is the loss
of client k. For practical reasons, pk is often set to the
number of examples in client k’s local dataset (McMahan
et al., 2017; Li et al., 2020b). To solve (1), each client in a
cohort could send∇fk(x) to the server, and the server could
perform mini-batch SGD. This approach, FedSGD (McMa-
han et al., 2017), requires communication for every model
update, which may not be desirable. To address this, McMa-
han et al. (2017) propose FedAvg, in which clients perform
multiple training steps, potentially reducing the number of
communication rounds needed for convergence.

We focus on a generalized framework, FedOpt, introduced
by Reddi et al. (2021) that uses client and server optimiza-
tion. At each round, the server sends its model x to a cohort
of clients C of size M . Each client k ∈ C performs E
epochs mini-batch SGD with client learning rate ηc, produc-
ing a local model xk. The client then sends ∆k := xk − x
to the server. The server computes a weighted average ∆ of
the client updates, and updates its own model via

x′ = SERVEROPT(x, ηs,∆) , (2)

where SERVEROPT(x, ηs, g) is some first-order optimizer,
ηs is the server learning rate, and g is a gradient estimate.
The ∆ in (2) is referred to as a pseudo-gradient (Reddi
et al., 2021) since it is not an unbiased estimate of ∇f . Full
pseudo-code of FedOpt is given in Algorithm 1.

Algorithm 1 FedOpt framework

Input: M , T E, x1, ηc, ηs, SERVEROPT, {pk}Kk=1

for t = 1, · · · , T do
Server selects a cohort Ct of M clients uniformly at random,
without replacement, and sends xt to all clients in Ct.
Each client k ∈ Ct performs E epochs of mini-batch SGD
on fk with step-size ηc, obtaining a model xtk.
Each client k ∈ Ct sends ∆t

k = xt − xtk to the server.
Server computes a pseudo-gradient ∆t and updates its model:

∆t =

∑
k∈Ct

pk∆t
k∑

k∈Ct
pk

, xt+1 = SERVEROPT(xt, ηs,∆
t).

Algorithm 1 generalizes a number of FL algorithms, in-
cluding FedAvg (McMahan et al., 2017), FedAvgM (Hsu
et al., 2019), FedAdagrad (Reddi et al., 2021), and
FedAdam (Reddi et al., 2021). These are the cases
where SERVEROPT is SGD, SGD with momentum, Ada-
grad (McMahan & Streeter, 2010; Duchi et al., 2011), and

On Large-Cohort Training for Federated Learning

Table 1. Training dataset statistics.

DATASET CLIENTS EXAMPLES

CIFAR-100 500 50,000
EMNIST 3,400 671,585
SHAKESPEARE 715 16,068
STACK OVERFLOW 342,477 135,818,730

Adam (Kingma & Ba, 2015), respectively. FedSGD is real-
ized when SERVEROPT is SGD, ηc = 1, E = 1, and each
client performs full-batch gradient descent.

2.1. Experimental Setup

We explore the impact of the cohort size M on Algorithm 1
by performing a wide-ranging empirical evaluation across
multiple datasets, models, and tasks. We discuss the key
facets of our experiments below.

Datasets, models, and tasks. We use four datasets: CIFAR-
100, EMNIST, Shakespeare, and Stack Overflow (see Ap-
pendix A.1 for details). For CIFAR-100, we use the client
partitioning from (Reddi et al., 2021). The other three
datasets have natural client partitions. The number of clients
and examples in the training sets are given in Table 1.

For CIFAR-100, we train a ResNet-18, replacing batch nor-
malization with group normalization (as proposed and val-
idated by Hsieh et al. (2020)). For EMNIST, we train a
convolutional network with two convolutional layers, max-
pooling, dropout, and two dense layers. For Shakespeare,
we train an RNN with two LSTM layers to perform next-
character-prediction. For Stack Overflow, we perform next-
word-prediction using an RNN with a single LSTM layer.
For details on models and datasets, see Appendix A.1.

Algorithms. We implement special cases of Algorithm 1,
including FedSGD, FedAvg, FedAvgM, FedAdagrad,
and FedAdam. We also develop new methods, FedLARS
and FedLamb, which are special cases of Algorithm 1
where SERVEROPT is LARS (You et al., 2017) and
Lamb (You et al., 2020), respectively.

Implementation and tuning. Throughout, clients perform
E = 1 epochs of training with mini-batch SGD. The batch
size is fixed per-task, and pk is the number of examples in
client k’s dataset. We tune learning rates for all algorithms
using held-out validation data. We provide open-source im-
plementations (link) of all simulations in TensorFlow Feder-
ated (Authors, 2019a) For more details, see Appendix A.

Presentation of results. For brevity, we present represen-
tative results to illustrate large-cohort training phenomena.
See Appendix B for all experimental results. We run 5
random trials for each experiment, varying the model initial-
ization and client sampling. In all figures, dark lines indicate

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
Ac

cu
ra

cy

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0

10

20

30

40

50

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
Ac

cu
ra

cy

EMNIST, FedAvg

0 500 1000 1500
Communication Rounds

0

10

20

30

40

50

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAvg

Figure 1. Applying FedAvg to EMNIST with cohort size 200. We
plot the train accuracy and norm of the pseudo-gradient for a trial
that ran successfully (left), and one that experienced a catastrophic
training failure (right). The trials differed only in which clients
were randomly sampled each round.

the mean across 5 trials, and shaded regions indicate one
standard deviation above and below the mean.

3. Large-Cohort Training Challenges
In this section we explore challenges that exist when using
large cohorts in FL. While some of these challenges mirror
issues in large-batch training, others are unique to federated
settings.

3.1. Catastrophic Training Failures

Due to data heterogeneity, the server model x may perform
poorly on a client’s loss fk, in which case ∇fk(x) can
blow up and lead to optimization problems. This issue
is exacerbated by large cohorts, as we are more likely to
sample misaligned clients. To demonstrate this, we apply
FedAvg to EMNIST with varying cohort sizesM . For each
M , we perform 5 trials and record whether a catastrophic
training failure occurred, in which the training accuracy
decreased by a factor of at least 1/2 in a single round.

The failure rate increased from 0% for M = 10 to 80%
for M = 800. When failures occurred, we saw a spike in
the norm of the pseudo-gradient ∆ (Figure 1). To prevent
this, we use the adaptive clipping method of (Andrew et al.,
2019). While this technique was designed for differential
privacy, it greatly improved the stability of large-cohort train-
ing. Applying FedAvg to EMNIST with adaptive clipping,
no catastrophic training failures occurred for any cohort size.
We use adaptive clipping in all subsequent experiments. See
Appendix A.3 for details.

3.2. Diminishing Returns

While increasing M in Algorithm 1 can improve conver-
gence, these improvements diminish with M . To demon-
strate this, we compute the test accuracy of FedAvg and
FedSGD for varying cohort sizes M . Results for Stack
Overflow are given in Figure 2.

The convergence benefits do not scale linearly with cohort
size. While increasing M from 1 to 10 can significantly
improve convergence, there is generally a threshold after
which point increasing M incurs little to no change in con-
vergence. We see comparable results for other tasks (despite

https://github.com/google-research/federated/tree/bcb0dadb438280fcecf733db8f894d5c645a49a9/large_cohort

On Large-Cohort Training for Federated Learning

0 500 1000 1500
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.000
0.025
0.050
0.075
0.100
0.125

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedSGD

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 2. Test accuracy of FedAvg (left) and FedSGD (right) for
various cohort sizes M on Stack Overflow.

0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Ac

cu
ra

cy

CIFAR-100
FedAvg
FedAdam
FedAdagrad

0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdam
FedAdagrad

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.550

0.575

0.600

0.625

Tr
ai

n
Ac

cu
ra

cy

Shakespeare

FedAvg
FedAdam
FedAdagrad

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.53
0.54
0.55
0.56
0.57
0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
FedAdam
FedAdagrad

Figure 3. The train and test accuracy of FedAvg, FedAdam, and
FedAdagrad on CIFAR-100 (left) and Shakespeare (right) after
training for 1500 communication rounds, for varying cohort sizes.
The x-axis denotes the percentage of training clients in each cohort.

having vastly different numbers of clients), as well as for
other optimizers, including FedAdam and FedAdagrad.
See Appendix B.1 for the full results. In short, increasing
M alone can lead to diminishing returns, or even no returns
in terms of convergence. This mirrors issues of diminishing
returns in large-batch training (McCandlish et al., 2018).

3.3. Generalization Failures

Large-batch centralized optimization methods have repeat-
edly been shown to converge to models with worse gen-
eralization ability than models found by small-batch meth-
ods (Keskar et al., 2017; Hoffer et al., 2017; You et al., 2017;
Masters & Luschi, 2018; Lin et al., 2019; 2020). Given the
parallels between batch size in centralized learning and co-
hort size in FL, this raises obvious questions about whether
similar issues occur in FL. In order to test this, we applied
FedAvg, FedAdam, and FedAdagrad with different co-
hort sizes to various models. In Figure 3, we plot the train
and test accuracy of each model after 1500 rounds.

Generalization issues do occur in FL. On Shakespeare,
larger cohorts led to worse test accuracy for all three meth-
ods. For CIFAR-100, larger cohorts led to worse test accu-

1 5 10 50 100 200 400
Cohort Size

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam

1 5 10 50 100 200 400 800
Cohort Size

0.1

0.2

0.3

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

Figure 4. Accuracy of FedAdam after training for 1500 commu-
nication rounds on CIFAR-100 (left) and Stack Overflow (right).
The box plots show the 5th, 25th, 50th, 75th, and 95th percentiles
of accuracy across test clients.

racy for FedAdam, despite having similar training accuracy
to modest cohort sizes. This resembles findings of Keskar
et al. (2017), who show that large-batch training can reduce
generalization. However, generalization issues do not occur
uniformly. It is often optimizer-dependent (as in CIFAR-
100) and does not occur on EMNIST and Stack Overflow
(Appendix B.2). Notably, CIFAR-100 and Shakespeare
have many fewer clients. Thus, large-cohort training may
reduce generalization, especially when the cohort size is
large compared to the total number of clients.

3.4. Fairness Concerns

One critical issue in FL is fairness across clients, as min-
imizing (1) may disadvantage some clients (Mohri et al.,
2019; Li et al., 2020c). Intuitively, large-cohort training
methods may be better suited for ensuring fairness, since a
greater fraction of the population is allowed to contribute to
the model at each round. As a coarse measure of fairness,
we compute percentiles of accuracy of our trained models
across test clients. Fairer algorithms should lead to higher
accuracy values for smaller percentiles. The percentiles for
FedAdam on each task are given in Figure 4.

The cohort size seems to affect all percentiles in the same
manner for a given task. On CIFAR-100, M = 50 performs
the best for all percentiles. By contrast, for Stack Overflow
(which has many more clients) M = 800 performed the
best for all percentiles. This suggests a connection between
fairness and the fraction of test clients participating at every
round. See Appendix B.4 for more results.

3.5. Decreased Data Efficiency

Despite the challenges above, large-cohort training (espe-
cially with adaptive optimizers) often leads to faster con-
vergence to given accuracy thresholds. In Figure 5, we see
that the number of rounds FedAdam requires to reach cer-
tain accuracy thresholds generally decreases with the cohort
size. While it is tempting to say that large-cohort training is
therefore “faster”, this ignores practical costs. Completing a
single training round requires more resources with larger co-
horts. To showcase this, we plot the accuracy of FedAdam

On Large-Cohort Training for Federated Learning

0 500 1000 1500
Communication Rounds

0.175

0.200

0.225

0.250

0.275

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 10
M = 50
M = 100
M = 200
M = 400
M = 800

105 106 107 108

Total Number of Examples

0.10

0.15

0.20

0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 10
M = 50
M = 100
M = 200
M = 400
M = 800

Figure 5. Test accuracy of FedAdam on Stack Overflow with var-
ious cohort sizes. We plot versus the number of communication
rounds (left) and the number of examples processed (right).

with respect to the number of examples seen in Figure 5.
This measures the data-efficiency of large-cohort training,
and shows that large cohort-training requires significantly
more examples per unit-accuracy.

While data-ineffiency also occurs in large-batch train-
ing (McCandlish et al., 2018), it is especially important
in FL. In realistic cross-device settings client compute
times can scale super-linearly with their amount of data,
so clients with more data are more likely to become strag-
glers (Bonawitz et al., 2019). This straggler effect means
that data-inefficient algorithms may require longer training
times. We show in Appendix B.5 that under the straggler
model from (Lee et al., 2017), large-cohort training can
require significantly more compute time to converge.

4. Diagnosing Large-Cohort Challenges
A key difference between FedAvg and FedSGD is what
the pseudo-gradient ∆ in (1) represents. While ∆ is an
unbiased gradient estimate in FedSGD, this does not hold
for FedAvg and related methods (Malinovskiy et al., 2020;
Pathak & Wainwright, 2020; Charles & Konečný, 2021).
While increasing the cohort size should reduce the variance
of ∆, it is unclear what this quantity represents.

To better understand ∆, we plot its norm for FedSGD
and FedAvg in Figures 6a and 6b. For FedSGD, ‖∆‖
decreases slightly with M , but has high variance. For
FedAvg larger cohorts lead to smaller norms. The de-
crease obeys an inverse square root rule: If ∆1,∆2 are
pseudo-gradients at some round for cohort sizes M1,M2,
then ‖∆1‖/‖∆2‖ ≈

√
M2/M1. We use this rule to predict

pseudo-gradient norms for FedAvg in Figure 6c. After
a small number of rounds, we obtain a remarkably good
approximation. To explain this, we plot the average co-
sine similarity between client updates ∆t

k at each round
in Figure 6d. For FedAvg, the client updates are almost
orthogonal. This explains Figure 6b, as ∆ is an average
of nearly orthogonal vectors. Similar results hold for other
tasks and optimizers (Appendix B.6).

Implications for large-cohort training. This near-
orthogonality of client updates is key to understanding the

0 500 1000 1500
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedSGD
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

(a)

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

(b)

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, Predicted Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

(c)

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Stack Overflow
FedAvg
FedSGD

(d)

Figure 6. Pseudo-gradient norm of FedSGD (a) and FedAvg (b)
on Stack Overflow. We plot the predicted norm for FedAvg using
an inverse square root scaling rule relative to M = 50 (c) and the
average cosine similarity of client updates for M = 50 (d).

challenges in Section 3. The diminishing returns in Sec-
tion 3.2 occur in part because increasing M leads to smaller
updates. This also sheds light on Section 3.5: In large-cohort
training, we average of many nearly-orthogonal vectors,
so each client’s examples contribute little. Figure 6c also
highlights an advantage of methods such as FedAdam and
FedAdagrad: Adaptive server optimizers employ a form
of normalization that makes them somewhat scale-invariant,
compensating for the norm reduction.

5. Designing Better Methods
We now explore methods aimed at improving large-cohort
training, drawing inspiration where possible from large-
batch training.

Learning rate scaling. One common technique for large-
batch training is to scale the learning rate according to
the batch size. Two popular scaling methods are square
root (Krizhevsky, 2014) and linear (Goyal et al., 2017) scal-
ing. While such techniques have empirical benefits in cen-
tralized training, there are many different ways that they
could be adapted to FL. We fix the client learning rate, and
scale the server learning rate with the cohort size. We use
square root and linear scaling rules: Given a learning rate ηs
tuned for M , for M ′ ≥M we use a learning rate η′s where

η′s = ηs
√
M ′/M OR η′s = ηsM

′/M. (3)

We also use a version of the warmup strategy from (Goyal
et al., 2017), where we linearly increase the server learn-
ing rate from ηs to η′s over the first 100 rounds. In our
experiments, we use ηs tuned for M = 50. Our exper-

On Large-Cohort Training for Federated Learning

50 100 200 400
Cohort Size

0.30
0.32
0.34
0.36
0.38
0.40

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg
No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.555

0.560

0.565

0.570

0.575

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

No Scaling
Square Root Scaling

Figure 7. Test accuracy of FedAvg with and without square root
scaling, on CIFAR-100 (left) and Shakespeare (right).

0.02 0.20 1.40 5.80 23.50
Participation Rate (%)

0.750
0.775
0.800
0.825
0.850
0.875

Te
st

 A
cc

ur
ac

y

EMNIST

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.002 0.020 0.100 0.500 2.000
Participation Rate (%) 1e 1

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

Figure 8. Test accuracy of various methods, including FedLARS
and FedLamb, after 1500 rounds. The x-axis denotes percentage
of training clients in each cohort.

iments show that server learning rate scaling has mixed
efficacy. Linear scaling is often too aggressive for FL, and
caused catastrophic training failures beyond M = 100 even
with adaptive clipping. While square root scaling did not
cause training failures, its performance (Figure 7) varied.
It improved test accuracy for CIFAR-100, but decreased
test accuracy for Shakespeare, despite improving the train
accuracy for both. See Appendix B.7 for all results.

Layer-wise adaptivity. Another popular technique for
large-batch training is layer-wise adaptivity. Methods such
as LARS (You et al., 2017) and Lamb (You et al., 2020)
use layer-wise adaptive learning rates, which may converge
faster than SGD in large-batch settings (You et al., 2017;
2020). We propose two new federated versions of these
optimizers, FedLARS and FedLamb, designed for large-
cohort training. These are special cases of Algorithm 1,
where the server uses LARS and Lamb, respectively.

In Figure 8, we present the accuracy of these methods. We
see that FedLamb is generally comparable to FedAdam
for large cohort sizes. One notable exception is Stack Over-
flow, in which FedLamb performs well even for M = 1.
FedLARS has mixed performance, and does not do well
on EMNIST or Shakespeare. For the full results, see Ap-
pendix B.1. While federated layer-wise adaptive algorithms
can be better than coordinate-wise adaptive algorithms on
certain datasets in some large-cohort settings, our results do
not indicate that they are universally better.

Dynamic cohort sizes. In order to improve the data effi-
ciency of large-cohort training, we may wish to use smaller
cohorts in earlier optimization stages, and increase the co-

105 106 107

Total Number of Examples
0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam
M = 50
M = 800
Dynamic

Figure 9. Test accuracy of FedAdam on CIFAR-100 (left) and
Stack Overflow (right), with respect to the total number of exam-
ples processed, using fixed and dynamic cohort sizes.

hort size over time. This technique is analogous to dynamic
batch size techniques (Smith et al., 2018). We start with an
initial cohort size of M = 50 and double the size every 300
rounds up to M = 800 (or the maximum population size
if smaller). We plot the results for FedAvg and FedAdam
on CIFAR-100 and Stack Overflow in Figure 9. See Ap-
pendix B.8 for results on all tasks.

This dynamic strategy attains data efficiency closer to a
fixed cohort size of M = 50, while still obtaining a final ac-
curacy closer to having used a large fixed cohort size. While
our initial findings are promising, we note two important
limitations. First, the accuracy of the dynamic strategy is
bounded by the minimum and maximum cohort size used;
It never attains a better accuracy than M = 800. Second,
the doubling strategy still faces the generalization issues
discussed in Section 3.3.

Other results. In Appendix B.9 we show that the number of
local training steps is a key hyperparameter, and may need to
be tuned in tandem with the cohort size. The number of local
training steps in Algorithm 1 is a function of the number
of training epochs and the client batch size, providing an
interesting link between cohort sizes and batch sizes. We
also propose a normalized version of FedAvg, in which we
apply SGD to ∆/‖∆‖. We show in Appendix B.10 that this
can improve convergence in large-cohort training, obtaining
similar performance to server learning rate scaling without
introducing new hyperparameters.

6. Future Work
Future work involves connecting large-cohort training to
other important aspects of FL, and continuing to explore
connections with growing lines of work in large-batch train-
ing. In particular, we wish to see whether noising strate-
gies, especially differential privacy mechanisms, can help
overcome the generalization issues of large-cohort training.
Personalization may also help mitigate issues of general-
ization and fairness. Finally, although not a focus of our
work, we note that some of the findings above may extend to
cross-silo settings, especially if communication restrictions
require subsampling clients.

On Large-Cohort Training for Federated Learning

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 308–318, 2016.

Andrew, G., Thakkar, O., McMahan, H. B., and Ra-
maswamy, S. Differentially private learning with adaptive
clipping. arXiv preprint arXiv:1905.03871, 2019.

Authors, T. T. TensorFlow Federated, 2019a. URL https:
//www.tensorflow.org/federated.

Authors, T. T. F. TensorFlow Federated Stack
Overflow dataset, 2019b. URL https:
//www.tensorflow.org/federated/api_
docs/python/tff/simulation/datasets/
stackoverflow/load_data.

Bittau, A., Erlingsson, Ú., Maniatis, P., Mironov, I., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes, J.,
and Seefeld, B. PROCHLO: Strong privacy for analytics
in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 441–459, 2017.

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Inger-
man, A., Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi,
S., McMahan, B., Van Overveldt, T., Petrou, D., Ramage,
D., and Roselander, J. Towards federated learning at scale:
System design. In Proceedings of Machine Learning and
Systems. Proceedings of MLSys, 2019.

Caldas, S., Wu, P., Li, T., Konečný, J., McMahan, H. B.,
Smith, V., and Talwalkar, A. LEAF: A benchmark for fed-
erated settings. arXiv preprint arXiv:1812.01097, 2018.

Charles, Z. and Konečný, J. Convergence and accuracy
trade-offs in federated learning and meta-learning. In
Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, 2021.

Chen, W., Horvath, S., and Richtarik, P. Optimal
client sampling for federated learning. arXiv preprint
arXiv:2010.13723, 2020.

Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaev, M.
Distributed differential privacy via shuffling. In Annual
International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 375–403, 2019.

Cho, Y. J., Wang, J., and Joshi, G. Client selection in feder-
ated learning: Convergence analysis and power-of-choice
selection strategies. arXiv preprint arXiv:2010.01243,
2020.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
EMNIST: Extending MNIST to handwritten letters. In
2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2921–2926. IEEE, 2017.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
Le, Q., and Ng, A. Large scale distributed deep networks.
In Advances in Neural Information Processing Systems,
2012.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A.,
Song, S., Talwar, K., and Thakurta, A. Encode, shuffle,
analyze privacy revisited: Formalizations and empirical
evaluation. arXiv preprint arXiv:2001.03618, 2020.

Girgis, A. M., Data, D., Diggavi, S., Kairouz, P., and Suresh,
A. T. Shuffled model of federated learning: Privacy,
communication and accuracy trade-offs. arXiv preprint
arXiv:2008.07180, 2020.

Goetz, J., Malik, K., Bui, D., Moon, S., Liu, H., and
Kumar, A. Active federated learning. arXiv preprint
arXiv:1909.12641, 2019.

Golmant, N., Vemuri, N., Yao, Z., Feinberg, V., Gho-
lami, A., Rothauge, K., Mahoney, M. W., and Gonza-
lez, J. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint
arXiv:1811.12941, 2018.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch SGD: Training ImageNet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. In Advances in Neural Infor-
mation Processing Systems, 2017.

Hsieh, K., Phanishayee, A., Mutlu, O., and Gibbons, P. The
non-IID data quagmire of decentralized machine learning.
In Proceedings of the 37th International Conference on
Machine Learning, 2020.

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data

On Large-Cohort Training for Federated Learning

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Hu, Z., Shaloudegi, K., Zhang, G., and Yu, Y. FedMGDA+:
Federated learning meets multi-objective optimization.
arXiv preprint arXiv:2006.11489, 2020.

Kairouz, P., McMahan, H. B., and contributors. Advances
and open problems in federated learning. Foundations
and Trends R© in Machine Learning, 14(1), 2021. ISSN
1935-8237.

Karimireddy, S. P., Jaggi, M., Kale, S., Mohri, M., Reddi,
S. J., Stich, S. U., and Suresh, A. T. Mime: Mimicking
centralized stochastic algorithms in federated learning.
arXiv preprint arXiv:2008.03606, 2020a.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. SCAFFOLD: Stochastic controlled av-
eraging for federated learning. In Proceedings of the 37th
International Conference on Machine Learning, 2020b.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. In Inter-
national Conference on Learning Representations, 2017.

Khaled, A., Mishchenko, K., and Richtárik, P. First anal-
ysis of local GD on heterogeneous data. arXiv preprint
arXiv:1909.04715, 2019.

Khaled, A., Mishchenko, K., and Richtarik, P. Tighter
theory for local SGD on identical and heterogeneous
data. In Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding up distributed machine learn-
ing using codes. IEEE Transactions on Information The-
ory, 64(3):1514–1529, 2017.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. Federated optimization in heteroge-
neous networks. In Proceedings of Machine Learning
and Systems 2020, pp. 429–450, 2020b.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair re-
source allocation in federated learning. In International
Conference on Learning Representations, 2020c.

Li, W. and McCallum, A. Pachinko allocation: DAG-
structured mixture models of topic correlations. In Pro-
ceedings of the 23rd International Conference on Ma-
chine Learning, 2006.

Liang, G. and Kozat, U. C. Tofec: Achieving optimal
throughput-delay trade-off of cloud storage using erasure
codes. In IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, 2014.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local SGD. In International
Conference on Learning Representations, 2019.

Lin, T., Kong, L., Stich, S., and Jaggi, M. Extrapolation for
large-batch training in deep learning. In Proceedings of
the 37th International Conference on Machine Learning,
2020.

Ma, S., Bassily, R., and Belkin, M. The power of interpola-
tion: Understanding the effectiveness of SGD in modern
over-parametrized learning. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Malinovskiy, G., Kovalev, D., Gasanov, E., Condat, L., and
Richtarik, P. From local SGD to local fixed-point meth-
ods for federated learning. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Masters, D. and Luschi, C. Revisiting small batch
training for deep neural networks. arXiv preprint
arXiv:1804.07612, 2018.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162, 2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Aguera y Arcas, B. Communication-efficient learning
of deep networks from decentralized data. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54, 2017.

McMahan, H. B. and Streeter, M. J. Adaptive bound opti-
mization for online convex optimization. In COLT The
23rd Conference on Learning Theory, 2010.

On Large-Cohort Training for Federated Learning

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In International Conference on Learning Representations,
2018.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
Khudanpur, S. Recurrent neural network based language
model. In Eleventh Annual Conference of the Interna-
tional Speech Communication Association, 2010.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

Nacson, M. S., Lee, J., Gunasekar, S., Savarese, P. H. P.,
Srebro, N., and Soudry, D. Convergence of gradient
descent on separable data. In The 22nd International
Conference on Artificial Intelligence and Statistics, 2019.

Nishio, T. and Yonetani, R. Client selection for federated
learning with heterogeneous resources in mobile edge.
In IEEE International Conference on Communications
(ICC), 2019.

Pathak, R. and Wainwright, M. J. FedSplit: An algorithmic
framework for fast federated optimization. In Advances in
Neural Information Processing Systems, pp. 7057–7066,
2020.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R., Lau, C. W., Carlson, L., Granqvist, F.,
Vandevelde, C., et al. Federated evaluation and tuning for
on-device personalization: System design & applications.
arXiv preprint arXiv:2102.08503, 2021.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. In International Conference on
Learning Representations, 2021.

Ribero, M. and Vikalo, H. Communication-efficient feder-
ated learning via optimal client sampling. arXiv preprint
arXiv:2007.15197, 2020.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Shi, E., Chan, T. H., Rieffel, E., Chow, R., and Song, D.
Privacy-preserving aggregation of time-series data. In
Proc. NDSS, volume 2, pp. 1–17, 2011.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. In International
Conference on Learning Representations, 2018.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 3–19, 2018.

Yang, H., Fang, M., and Liu, J. Achieving linear speedup
with partial worker participation in non-IID federated
learning. In International Conference on Learning Rep-
resentations, 2021.

Yin, D., Pananjady, A., Lam, M., Papailiopoulos, D., Ram-
chandran, K., and Bartlett, P. Gradient diversity: a key in-
gredient for scalable distributed learning. In Proceedings
of the Twenty-First International Conference on Artificial
Intelligence and Statistics, 2018.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. In International Conference on Learning
Representations, 2020.

Zhang, X., Hong, M., Dhople, S., Yin, W., and Liu, Y.
FedPD: A federated learning framework with optimal
rates and adaptivity to non-IID data. arXiv preprint
arXiv:2005.11418, 2020.

On Large-Cohort Training for Federated Learning

A. Full Experimental Details
A.1. Datasets and Models

We use four datasets throughout our work: CIFAR-100 (Krizhevsky, 2009), the federated extended MNIST dataset
(EMNIST) (Cohen et al., 2017), the Shakespeare dataset (Caldas et al., 2018), and the Stack Overflow dataset (Authors,
2019b). The first two datasets are image datasets, the second two are language datasets. All datasets are publicly available.
We specifically use the versions available in TensorFlow Federated (Authors, 2019a), which gives a federated structure to all
four datasets. Below we discuss the specifics of the dataset and classification task, as well as the model used to perform
classification.

CIFAR-100 The CIFAR-100 dataset is a computer vision dataset consisting of 32 × 32 × 3 images with 100 possible
labels. While this dataset does not have a natural partition among clients, a federated version was created by Reddi et al.
(2021) using hierarchical latent Dirichlet allocation to enforce moderate amounts of heterogeneity among clients. This
partitioning among clients was based on Pachinko allocation (Li & McCallum, 2006). Note that under this partitioning, each
client typically has only a subset of the 100 possible labels. The dataset has 500 training clients and 100 test clients, each
with 100 examples in their local dataset.

We train a ResNet-18 (He et al., 2016) on this dataset, where we replace all batch normalization layers with group
normalization layers (Wu & He, 2018). The use of group norm over batch norm in federated learning was first advocated by
Hsieh et al. (2020), who showed that this helped improve classification accuracy in the presence of heterogeneous clients.
We specifically use group normalization layers with two groups. We perform small amounts of data augmentation and
preprocessing for each train and test sample. We first centrally crop each image (24, 24, 3). We then normalize the pixel
values according to their mean and standard deviation.

EMNIST The EMNIST dataset consists of images hand-written alphanumeric characters. Each image consists of 28× 28
gray-scale pixel values. There are 62 total alphanumeric characters represented in the dataset. The images are partitioned
among clients according to their author. The dataset has 3,400 clients, who have both train and test datasets. The dataset has
natural heterogeneity stemming from the writing style of each person. We train a convolutional network on the dataset (the
same one used by Reddi et al. (2021)). The network uses two convolutional layers (each with 3× 3 kernels and strides of
length 1), followed by a max pooling layer using dropout with p = 0.25, a dense layer with 128 units and dropout with
p = 0.5, and a final dense output layer.

Shakespeare The Shakespeare dataset is derived from the benchmark designed by Caldas et al. (2018). The dataset corpus
is the collected works of William Shakespeare, and the clients correspond to roles in Shakespeare’s plays with at least two
lines of dialogue. To eliminate confusion, character here will refer to alphanumeric characters (such as the letter q) and
symbols such as punctuation, while we will use client to denote the various roles in plays (such as Macbeth). There are a
total of 715 clients, whose lines are partitioned between train and test datasets.

We split each client’s lines into sequences of 80 characters, padding if necessary. We use a vocabulary size of 90, where
86 characters are contained in Shakespeare’s work, and the remaining 4 are beginning and end of line tokens, padding
tokens, and out-of-vocabulary tokens. We perform next-character prediction on the clients’ dialogue using a recurrent neural
network (RNN) (Mikolov et al., 2010). We use the same model as Reddi et al. (2021). The RNN takes as input a sequence of
80 characters, embeds it into a learned 8-dimensional space, and passes the embedding through 2 LSTM layers (Hochreiter
& Schmidhuber, 1997), each with 256 units. Finally, we use a softmax output layer with 80 units, where we try to predict a
sequence of 80 characters formed by shifting the input sequence over by one. Therefore, our output dimension is 80× 90.
We compute loss using cross-entropy loss.

Stack Overflow Stack Overflow is a language dataset consisting of question and answers from the Stack Overflow site.
The questions and answers also have associated metadata, including tags. Each client corresponds to a user. The specific
train/validation/test split from (Authors, 2019b) has 342,477 train clients, 38,758 validation clients, and 204,088 test clients.
Notably, the train clients only have examples from before 2018-01-01 UTC, while the test clients only have examples from
after 2018-01-01 UTC. The validation clients have examples with no date restrictions, and all validation examples are
held-out from both the test and train sets.

We perform next-word prediction on this dataset. We restrict each client to the first 1000 sentences in their dataset (if they

On Large-Cohort Training for Federated Learning

contain this many, otherwise we use the full dataset). We also perform padding and truncation to ensure that each sentence
has 20 words. We then represent the sentence as a sequence of indices corresponding to the 10,000 most frequently used
words, as well as indices representing padding, out-of-vocabulary words, the beginning of a sentence, and the end of a
sentence. We perform next-word-prediction on these sequences using an a recurrent neural network (RNN) (Mikolov et al.,
2010) that embeds each word in a sentence into a learned 96-dimensional space. It then feeds the embedded words into a
single LSTM layer (Hochreiter & Schmidhuber, 1997) of hidden dimension 670, followed by a densely connected softmax
output layer. Note that this is the same model used by Reddi et al. (2021). The metric used in the main body is the accuracy
over the 10,000-word vocabulary; it does not include padding, out-of-vocab, or beginning or end of sentence tokens when
computing the accuracy.

A.2. Implementation and Hyperparameters

We implement the previously proposed methods of FedAvg, FedSGD, FedAvgM, FedAdam, FedAdagrad, as well as
two novel methods, FedLARS and FedLamb. All implementations are special cases of Algorithm 1. In all cases, clients
use mini-batch SGD with batch size B. For FedSGD, the batch size B of a client is set to the size of its local dataset (so
that the client only takes a single step). For all other optimizers, we fix B at a per-task level (see Table 2). Note that we
use larger batch sizes for datasets where clients have more examples, like Stack Overflow. Except for the experiments in
Appendix B.9, we set E = 1 throughout.

Table 2. Batch sizes used for each for all algorithms (except for FedSGD) on each dataset.

DATASET BATCH SIZE

CIFAR-100 20
EMNIST 20

SHAKESPEARE 4
STACK OVERFLOW 32

For the actual implementation of the algorithms above, all methods (except for FedSGD) differ only in the choice of
SERVEROPT in Algorithm 1. For FedSGD, in addition to having clients use full-batch SGD (as mentioned above), the client
learning rate is set to be ηc = 1 in order to allow Algorithm 1 to recover the version of FedSGD proposed by McMahan
et al. (2017). For all other algorithms, we present the choice of SERVEROPT and relevant hyperparameters (except for
learning rates, see Section A.4) in Table 3. Note that here we use the notation from (Kingma & Ba, 2015), where β1 refers
to a first-moment momentum parameter, β2 refers to a second-moment momentum parameter, and ε is a numerical stability
constant used in adaptive methods. Note that for all adaptive methods, we set their initial accumulators to be 0.

Table 3. Hyperparameters and implementation details for all algorithms, relative to Algorithm 1. Here, β1 denotes a first-moment
momentum parameter, β2 denotes a second-moment momentum parameter, and ε is a value used for numerical stability purposes in
adaptive methods.

ALGORITHM SERVEROPT β1 β2 ε

FedAvg (McMahan et al., 2017) SGD 0 N/A N/A
FedAvgM (Hsieh et al., 2020) SGD 0.9 N/A N/A

FedAdagrad (Reddi et al., 2021) Adagrad (Duchi et al., 2011) N/A N/A 0.001
FedAdam (Reddi et al., 2021) Adam (Kingma & Ba, 2015) 0.9 0.99 0.001

FedLARS LARS (You et al., 2017) 0.9 N/A 0.001
FedLamb Lamb (You et al., 2020) 0.9 0.99 0.001

A.3. Adaptive Clipping

As exemplified in Figure 1, catastrophic training failures can occur when the server pseudo-gradient ∆t is too large, which
occurs more frequently for larger cohort sizes. To mitigate this issue, we use the adaptive clipping method proposed by

On Large-Cohort Training for Federated Learning

Andrew et al. (2019). While we encourage the reader to see this paper for full details and motivation, we give a brief
overview of the method below.

Recall that in Algorithm 1, ∆t is an average of client updates ∆t
k. Thus, ∆t can only be large if some client update is also

large. In order to prevent this norm blow-up, we clip the client updates before averaging them. Rather than send ∆t
k to the

server, for a clipping level ρ > 0, the clients send h(∆t
k, ρ) where

h(v, ρ) =

v, if ‖v‖ ≤ ρ
ρv

‖v‖
, if ‖v‖ > ρ.

Instead of fixing ρ a priori, we use the adaptive method proposed by Andrew et al. (2019). In this method, the clipping level
varies across rounds, and is adaptively updated via a geometric update rule, where the goal is for ρ to estimate some norm
percentile q ∈ [0, 1]. Notably, Andrew et al. (2019) show that the clipping level can be learned in a federated manner that is
directly compatible with Algorithm 1. At each round t, let ρt be the clipping level (intended to estimate the qth percentile of
norms across clients), and let Ct be the cohort of clients selected. Each client k ∈ Ct computes their local model update ∆t

k

in the same manner as in Algorithm 1. Instead of sending ∆t
k to the server, the client instead sends their clipped update

h(∆t
k, ρ

t) to the server, along with btk := I[‖∆t
k‖ ≤ ρt], where I[A] denotes the indicator function of an event A. The server

then computes:

∆t =

∑
k∈Ct

pkh(∆t
k)∑

k∈Ct
pk

, bt =
1

|Ct|
∑
k∈Ct

btk.

That is, ∆t is a weighted average of the clipped client updates, and bt is the fraction of unclipped client updates that did not
exceed the clipping threshold. The server then updates its global model as in (2), but it also updates its estimate of the qth
norm percentile using a learning rate ηa > 0 via

ρt+1 = ρt exp(−ηa(bt − q)). (4)

While Andrew et al. (2019) add noise in order to ensure that ρ is learned in a differentially private manner, we do not use
such noise. Full pseudo-code combining Algorithm 1 and the adaptive clipping mechanisms discussed above is given in
Algorithm 2.

Usage and hyperparameters. We use Algorithm 2 in all experiments (save for those in Figure 1, which illustrate the
potential failures that can occur if clipping is not used). For hyperparameters, we use a target percentile of q = 0.8, with an
initial clipping level of ρ1 = 1. In our geometric update rule, we use a learning rate of ηa = 0.2.

A.4. Learning Rates and Tuning

For our experiments, we use client and server learning rates ηs, ηc that are tuned a priori on a held-out validation dataset.
We tune both learning rates over {10i | − 3 ≤ i ≤ 1} for each algorithm and dataset, therefore resulting in 25 possible
configurations for each pair. This tuning, like the experiments following it, is based on the algorithm implementations
discussed above. In particular, the tuning also uses the adaptive clipping framework discussed in Appendix A.3 and
Algorithm 2.

While Stack Overflow has an explicit validation set distinct from the test and train datasets (Authors, 2019b), the other
three datasets do not. In order to tune on these datasets, we randomly split the training clients (not the training examples!)
into train and validation subsets according to an 80-20 split. We then use these federated datasets to perform held-out set
tuning. We select the learning rates that have the best average validation performance after 1500 communication rounds with
cohort size M = 10 over 5 random trials. A table of the resulting learning rates is given in Tables 4 and 5. Note that there is
no client learning rate for FedSGD, as we must use ηc = 1 in Algorithm 1 in order to recover the version of FedSGD in
(McMahan et al., 2017). Note that we use the same learning rates for all cohort sizes.

On Large-Cohort Training for Federated Learning

Algorithm 2 FedOpt framework with adaptive clipping

Input: M , T E, x1, ηc, ηs, ηa, q, ρ1, SERVEROPT, {pk}Kk=1

for t = 1, · · · , T do
The server selects a cohort Ct of M clients uniformly at random, without replacement.
The server sends xt, ρt to all clients in Ct.
Each client k ∈ Ct updates xt for E epochs of mini-batch SGD with step-size ηc on fk.
After training, each client has a local model xtk.
Each client k ∈ Ct computes ∆t

k = xt − xtk and btk = I[‖∆t
k‖ ≤ ρt].

Each client k ∈ Ct computes

h(∆t
k) = ∆t

k min

{
1,

ρt

‖∆t
k‖

}
.

Each client k ∈ Ct sends h(∆t
k) and btk to the server.

The server computes a pseudo-gradient ∆t and updates its model via

∆t =

∑
k∈Ct

pkh(∆t
k)∑

k∈Ct
pk

, xt+1 = SERVEROPT(xt, ηs,∆
t).

The server updates its clipping level via

bt =
1

|Ct|
∑
k∈Ct

btk, ρt+1 = ρt exp(−ηa(bt − q)).

Table 4. Server learning rate ηs used for each algorithm and dataset.

ALGORITHM DATASET

CIFAR-100 EMNIST Shakespeare Stack Overflow
FedAvg 1 1 1 1
FedAvgM 1 1 0.1 1
FedAdagrad 0.01 0.1 0.1 10
FedAdam 0.01 0.001 0.01 1
FedLARS 0.01 0.001 0.01 0.01
FedLamb 0.001 0.01 0.01 0.01
FedSGD 0.1 0.1 1 10

B. Full Experiment Results
B.1. Test Accuracy Versus Communication Round

In this section, we present the test accuracy of various federated learning methods on various tasks, for various cohort sizes.
The results are plotted in Figures 10, 11, 12, 13, 14, 15, and 16, which give the results for FedSGD, FedAvg, FedAvgM,
FedAdagrad, FedAdam, FedLARS, and FedLamb (respectively).

On Large-Cohort Training for Federated Learning

Table 5. Client learning rate ηc used for each algorithm and dataset.

ALGORITHM DATASET

CIFAR-100 EMNIST Shakespeare Stack Overflow
FedAvg 0.1 0.1 1 10
FedAvgM 0.1 0.1 1 10
FedAdagrad 0.1 0.001 10 10
FedAdam 0.1 0.1 10 10
FedLARS 0.1 0.1 10 1
FedLamb 0.01 0.1 10 10

0 500 1000 1500
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedSGD
M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedSGD

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

Shakespeare, FedSGD

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.000
0.025
0.050
0.075
0.100
0.125

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedSGD

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 10. Average test accuracy of FedSGD versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.00

0.05

0.10

0.15

0.20

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 11. Average test accuracy of FedAvg versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvgM

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvgM

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvgM

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvgM

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 12. Average test accuracy of FedAvgM versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdagrad
M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedAdagrad

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdagrad

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.00
0.05
0.10
0.15
0.20
0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdagrad

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 13. Average test accuracy of FedAdagrad versus the number of communication rounds, for various tasks and cohort sizes M .

On Large-Cohort Training for Federated Learning

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedAdam

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 14. Average test accuracy of FedAdam versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedLARS

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedLARS

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedLARS

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.00
0.05
0.10
0.15
0.20
0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedLARS

M = 1
M = 5
M = 50
M = 100
M = 400
M = 800

Figure 15. Average test accuracy of FedLARS versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedLamb

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

EMNIST, FedLamb

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Shakespeare, FedLamb

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400

0 500 1000 1500
Communication Rounds

0.00
0.05
0.10
0.15
0.20
0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedLamb

M = 1
M = 5
M = 10
M = 50
M = 100
M = 400
M = 800

Figure 16. Average test accuracy of FedLamb versus the number of communication rounds, for various tasks and cohort sizes M .

On Large-Cohort Training for Federated Learning

B.2. Accuracy Versus Cohort Size

In this section, we showcase the train and test accuracy of various methods, as a function of the cohort size. The results
are given in Figures 17 and 18, which correspond to the train and test accuracy, respectively. Both plots give the accuracy
of FedAvg, FedAdam, FedAdagrad, FedLARS, and FedLamb as a function of the participation rate. That is, the
percentage of training clients used in each cohort.

0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Ac

cu
ra

cy

CIFAR-100
FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.02 0.20 1.40 5.80 23.50
Participation Rate (%)

0.75

0.80

0.85

Tr
ai

n
Ac

cu
ra

cy

EMNIST

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.50

0.55

0.60

0.65

Tr
ai

n
Ac

cu
ra

cy

Shakespeare

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.002 0.020 0.100 0.500 2.000
Participation Rate (%) 1e 1

0.0

0.1

0.2

Tr
ai

n
Ac

cu
ra

cy

Stack Overflow

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

Figure 17. Train accuracy of FedAvg, FedAdam, FedAdagrad, FedLARS, and FedLamb after 1500 rounds, using varying cohort
sizes and tasks. The x-axis denotes the percentage of training clients in each cohort.

0.2 1.0 5.0 20.0 80.0
Participation Rate (%)

0.0

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.02 0.20 1.40 5.80 23.50
Participation Rate (%)

0.750
0.775
0.800
0.825
0.850
0.875

Te
st

 A
cc

ur
ac

y

EMNIST

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.1 0.6 3.4 13.9 55.9
Participation Rate (%)

0.50

0.52

0.54

0.56

0.58
Te

st
 A

cc
ur

ac
y

Shakespeare

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

0.002 0.020 0.100 0.500 2.000
Participation Rate (%) 1e 1

0.0

0.1

0.2

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
FedAdam
FedAdagrad
FedLARS
FedLamb

Figure 18. Test accuracy of FedAvg, FedAdam, FedAdagrad, FedLARS, and FedLamb after 1500 rounds, using varying cohort
sizes and tasks. The x-axis denotes the percentage of training clients in each cohort.

B.3. Cohort Size Speedups

In this section, we attempt to see how much increasing the cohort size can speed up a federated algorithm. In particular,
we plot the number of rounds needed to obtain a given accuracy threshold versus the cohort size. The results are given in
Figures 19, 20, 21, 22, and 23. We see that in just about all cases, the speedups incurred by increasing the cohort size do
not scale linearly. That being said, we still see that increasing the cohort size generally always leads to a reduction in the
number of rounds needed to obtain a given test accuracy, and can lead to accuracy thresholds unobtainable by small-cohort
training in communication-limited settings.

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

CIFAR-100, FedAvg

25% Accuracy
30% Accuracy
35% Accuracy
40% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

EMNIST, FedAvg
80% Accuracy
82% Accuracy
84% Accuracy
86% Accuracy

1 10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Shakespeare, FedAvg
50% Accuracy
52% Accuracy
54% Accuracy
56% Accuracy
58% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Stack Overflow, FedAvg
16% Accuracy
18% Accuracy
20% Accuracy
22% Accuracy
24% Accuracy

Figure 19. Number of communication rounds for FedAvg to obtain certain test accuracy thresholds. The x-axis denotes the cohort size.

While theory shows that in the worst-case, the cohort size leads to linear speedups, we find that this is generally not the case
in practice.

On Large-Cohort Training for Federated Learning

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

CIFAR-100, FedAdagrad

25% Accuracy
30% Accuracy
35% Accuracy
40% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

EMNIST, FedAdagrad
80% Accuracy
82% Accuracy
84% Accuracy
86% Accuracy

1 10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Shakespeare, FedAdagrad
50% Accuracy
52% Accuracy
54% Accuracy
56% Accuracy
58% Accuracy

10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Stack Overflow, FedAdagrad
16% Accuracy
18% Accuracy
20% Accuracy
22% Accuracy
24% Accuracy

Figure 20. Number of communication rounds for FedAdagrad to obtain certain test accuracy thresholds. The x-axis denotes the cohort
size.

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

CIFAR-100, FedAdam
25% Accuracy
30% Accuracy
35% Accuracy
40% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

EMNIST, FedAdam
80% Accuracy
82% Accuracy
84% Accuracy
86% Accuracy

1 10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Shakespeare, FedAdam
50% Accuracy
52% Accuracy
54% Accuracy
56% Accuracy
58% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Stack Overflow, FedAdam
16% Accuracy
18% Accuracy
20% Accuracy
22% Accuracy
24% Accuracy

Figure 21. Number of communication rounds for FedAdam to obtain certain test accuracy thresholds. The x-axis denotes the cohort size.

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

CIFAR-100, FedLARS
25% Accuracy
30% Accuracy
35% Accuracy
40% Accuracy

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

EMNIST, FedLARS

80% Accuracy
82% Accuracy
84% Accuracy
86% Accuracy

1 10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Shakespeare, FedLARS
50% Accuracy
52% Accuracy
54% Accuracy
56% Accuracy
58% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Stack Overflow, FedLARS
16% Accuracy
18% Accuracy
20% Accuracy
22% Accuracy
24% Accuracy

Figure 22. Number of communication rounds for FedLARS to obtain certain test accuracy thresholds. The x-axis denotes the cohort size.

10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

CIFAR-100, FedLamb
25% Accuracy
30% Accuracy
35% Accuracy
40% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

EMNIST, FedLamb
80% Accuracy
82% Accuracy
84% Accuracy
86% Accuracy

1 10 100
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Shakespeare, FedLamb
50% Accuracy
52% Accuracy
54% Accuracy
56% Accuracy
58% Accuracy

1 10 100 1000
Cohort Size

0
200
400
600
800

1000
1200
1400
1600

Nu
m

be
r o

f R
ou

nd
s

Stack Overflow, FedLamb
16% Accuracy
18% Accuracy
20% Accuracy
22% Accuracy
24% Accuracy

Figure 23. Number of communication rounds for FedLamb to obtain certain test accuracy thresholds. The x-axis denotes the cohort size.

B.4. Measures of Accuracy Across Clients

In this section, we expand on the fairness results in Section 3. In Tables 6, 7, 8, and 9, we present percentiles of accuracy
of FedAdam across all test clients (after training for 1500 rounds, with varying cohort sizes and on varying tasks). For
example, the 50th percentile of accuracy is the median accuracy of the learned model across all test clients.

The results show that in nearly all cases, the cohort size impacts all percentiles of accuracy in the same manner. For example,
in Table 6, we see that a cohort size of M = 50 is better than other cohort sizes, for all percentiles of test accuracy. Notably,
this does not support the notion that larger cohorts learn more fair models. Instead, it seems that large cohorts can lead to
generalization failures across all percentiles, as it does on CIFAR-100 and Shakespeare (Tables 6 and 8). However, this does
not occur on EMNIST and Stack Overflow (Tables 7 and 9), which have many more train and test clients.

On Large-Cohort Training for Federated Learning

Table 6. Percentiles of accuracy across test clients for FedAdam on CIFAR-100 after 1500 communication rounds. We present the mean
and standard deviation across 5 random trials, with the largest accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400
5 27.0± 3.3 32.2± 1.1 30.6± 0.9 29.6± 1.1 29.0± 1.2
25 35.3± 1.5 39.0± 0.7 37.5± 0.9 37.2± 1.1 36.4± 1.1
50 41.1± 1.3 44.5± 0.5 43.1± 0.7 42.4± 0.5 41.6± 0.7
75 47.5± 1.1 50.1± 0.7 48.4± 0.5 47.2± 0.4 47.0± 1.0
95 54.2± 1.5 55.6± 1.5 54.6± 1.5 53.8± 1.3 53.6± 1.5

Table 7. Percentiles of accuracy across test clients for FedAdam on EMNIST after 1500 communication rounds. We present the mean
and standard deviation across 5 random trials, with the largest accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400 800
5 61.9± 2.1 62.5± 2.4 64.3± 1.2 63.8± 1.4 64.3± 1.0 65.0± 0.9
25 77.3± 0.7 77.4± 1.4 77.9± 0.4 78.2± 0.4 78.6± 0.5 78.7± 0.3
50 84.5± 0.5 85.4± 0.5 85.9± 0.2 85.9± 0.2 86.1± 0.2 86.2± 0.1
75 91.2± 0.2 92.0± 0.1 92.0± 0.2 92.3± 0.1 92.3± 0.1 92.3± 0.0
95 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Table 8. Percentiles of accuracy across test clients for FedAdam on Shakespeare after 1500 communication rounds. We present the mean
and standard deviation across 5 random trials, with the largest accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400
5 39.9± 0.8 39.2± 1.8 39.4± 1.6 37.8± 0.7 38.6± 1.2
25 54.9± 0.1 55.0± 0.2 54.9± 0.2 54.9± 0.1 54.9± 0.2
50 58.3± 0.2 58.5± 0.2 58.5± 0.2 58.3± 0.1 58.4± 0.1
75 61.8± 0.2 62.4± 0.2 62.2± 0.2 62.1± 0.2 62.1± 0.3
95 70.9± 0.6 71.2± 0.6 71.2± 0.4 71.1± 0.2 71.1± 0.2

Table 9. Percentiles of accuracy across test clients for FedAdam on Stack Overflow after 1500 communication rounds. We present the
mean and standard deviation across 5 random trials, with the largest accuracy values for each percentile in bold.

Percentile Cohort Size

10 50 100 200 400 800
5 16.7± 0.2 18.7± 0.2 19.1± 0.2 19.5± 0.1 19.8± 0.1 19.9± 0.1
25 21.0± 0.3 23.2± 0.2 23.6± 0.2 24.1± 0.1 24.4± 0.1 24.5± 0.1
50 23.5± 0.3 25.8± 0.2 26.3± 0.3 26.7± 0.1 27.0± 0.1 27.2± 0.1
75 26.1± 0.3 28.4± 0.2 29.0± 0.3 29.4± 0.1 29.7± 0.1 29.9± 0.1
95 30.8± 0.3 33.2± 0.2 33.7± 0.4 34.2± 0.1 34.6± 0.1 34.8± 0.1

B.5. Simulating Straggler Effects

As shown in Section 3.5, large-cohort training methods seem to face data-efficiency issues, where training with large cohorts
requires processing many more examples to reach accuracy thresholds than small-cohort training. While this is related to
diminishing returns (Section 3.2) and occurs in large-batch training as well (Golmant et al., 2018), we highlight this issue
due to its consequences in federated learning.

Unlike centralized learning, federated learning faces fundamental limits on parallelization. Since data cannot be shared, we
typically cannot scale up to arbitrarily large cohort sizes. Instead, the parallelization is limited by the available training clients.
In order to learn on a client’s local dataset, that client must actually perform the training on its examples. Unfortunately,

On Large-Cohort Training for Federated Learning

since clients are often lightweight in cross-device settings (Kairouz et al., 2021), clients with many examples may require
longer compute times, becoming stragglers in a given communication round. If an algorithm is data-inefficient, these
straggler clients may have to participate many times throughout training, causing the overall runtime to be greater. In short,
data inefficiency can dramatically slow down large-cohort training algorithms.

To exemplify this, we compute simulated runtimes of federated algorithms under a version of the probabilistic straggler
model from (Lee et al., 2017). We model each client’s runtime as a random variable drawn from a shifted exponential
distribution. Such models were found to be good models of runtimes for file queries in cloud storage systems (Liang &
Kozat, 2014) and mini-batch SGD on distributed compute systems (Lee et al., 2017).

In our model, we assume that the time a client requires to perform local training is some constant proportional to the number
of examples the client has, plus an exponential random variable. More formally, let Nk denote the number of examples held
by some client k, and let Xk denote the amount of time required by client k to perform their local training in Algorithm 1.
Then we assume that there are constants α, λ > 0 such that

Xk − αNk ∼ Exp
(

1

λNk

)
.

Here λ is the straggler parameter. Recall that if X ∼ Exp(1/λ), then E[X] = λ. Therefore, we assume that the expected
runtime of client k equal αN plus some random variable whose expected value is λN . Thus, larger λ means larger expected
client runtimes. By convention, we can also use λ = 0 in which case Xk = αNk. For a given round t of Algorithm 1, let Ct

denote the cohort sampled. Since Algorithm 1 requires all clients to finish before updating its global model, we model the
runtime Yt of round t as

Yt = max
k∈Ct

{Xk} .

Thus, the round runtime is the maximum of M shifted exponential random variables, where M is the cohort size. Note that
this only models the client computation time, not the server computation time or communication time. Using this model, we
plot the simulated runtime of FedAvg on various tasks, for varying cohort sizes. For simplicity, we assume α = 1 in all
experiments, and vary λ over {0.1, 1, 10, 100}. To showcase how much longer the runtime of large-cohort training may be,
we present the simulated runtime, relative to M = 10. For a ∈ [0, 1], we plot the ratio of how long it takes to reach a test
accuracy of a with a cohort size of M , versus how long it takes to reach a with M = 10. We give the results for CIFAR-100,
EMNIST, Shakespeare, and Stack Overflow in Figures 24, 25, 26, 27, respectively.

When λ is small, we see that larger cohorts can obtain higher test accuracy in a comparable amount of time to M = 10.
However, when λ is large, large-cohort training may require anywhere from 5-10 times more client compute time. This
is particularly important in cross-device settings with lightweight edge devices, as the straggler effect (which essentially
increases with λ) may be larger. Note that we see particularly large increases in relative runtimes for smaller accuracy
thresholds, which suggests that the dynamic cohort strategy from Section 5 may be useful in helping mitigate such issues.

M = 50 M = 100 M = 4000

1

2

3

4

5

6

Re
la

tiv
e

Ru
nt

im
e

CIFAR-100, FedAvg
15% Accuracy
20% Accuracy
25% Accuracy

(a) λ = 0.1

M = 50 M = 100 M = 4000

1

2

3

4

5

6

Re
la

tiv
e

Ru
nt

im
e

CIFAR-100, FedAvg
15% Accuracy
20% Accuracy
25% Accuracy

(b) λ = 1

M = 50 M = 100 M = 4000

1

2

3

4

5

6

Re
la

tiv
e

Ru
nt

im
e

CIFAR-100, FedAvg
15% Accuracy
20% Accuracy
25% Accuracy

(c) λ = 10

M = 50 M = 100 M = 4000

1

2

3

4

5

6

Re
la

tiv
e

Ru
nt

im
e

CIFAR-100, FedAvg
15% Accuracy
20% Accuracy
25% Accuracy

(d) λ = 100

Figure 24. The relative amount of time required to reach given test accuracies on CIFAR-100 with varying cohort sizes. We present the
ratio of the runtime needed for M > 10 with respect to the time needed for M = 10. Runtimes are simulated under a shifted exponential
model with α = 1 and varying λ.

On Large-Cohort Training for Federated Learning

M = 50 M = 100 M = 400 M = 8000

2

4

6

8
Re

la
tiv

e
Ru

nt
im

e
EMNIST, FedAvg

70% Accuracy
75% Accuracy
80% Accuracy

(a) λ = 0.1

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

EMNIST, FedAvg
70% Accuracy
75% Accuracy
80% Accuracy

(b) λ = 1

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

EMNIST, FedAvg
70% Accuracy
75% Accuracy
80% Accuracy

(c) λ = 10

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

EMNIST, FedAvg
70% Accuracy
75% Accuracy
80% Accuracy

(d) λ = 100

Figure 25. The relative amount of time required to reach given test accuracies on EMNIST with varying cohort sizes. We present the ratio
of the runtime needed for M > 10 with respect to the time needed for M = 10. Runtimes are simulated under a shifted exponential
model with α = 1 and varying λ.

M = 50 M = 100 M = 4000.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
la

tiv
e

Ru
nt

im
e

Shakespeare, FedAvg
45% Accuracy
50% Accuracy
55% Accuracy

(a) λ = 0.1

M = 50 M = 100 M = 4000.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
la

tiv
e

Ru
nt

im
e

Shakespeare, FedAvg
45% Accuracy
50% Accuracy
55% Accuracy

(b) λ = 1

M = 50 M = 100 M = 4000.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
la

tiv
e

Ru
nt

im
e

Shakespeare, FedAvg
45% Accuracy
50% Accuracy
55% Accuracy

(c) λ = 10

M = 50 M = 100 M = 4000.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
la

tiv
e

Ru
nt

im
e

Shakespeare, FedAvg
45% Accuracy
50% Accuracy
55% Accuracy

(d) λ = 100

Figure 26. The relative amount of time required to reach given test accuracies on Shakespeare with varying cohort sizes. We present the
ratio of the runtime needed for M > 10 with respect to the time needed for M = 10. Runtimes are simulated under a shifted exponential
model with α = 1 and varying λ.

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

Stack Overflow, FedAvg
10% Accuracy
15% Accuracy
20% Accuracy

(a) λ = 0.1

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

Stack Overflow, FedAvg
10% Accuracy
15% Accuracy
20% Accuracy

(b) λ = 1

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

Stack Overflow, FedAvg
10% Accuracy
15% Accuracy
20% Accuracy

(c) λ = 10

M = 50 M = 100 M = 400 M = 8000

2

4

6

8

Re
la

tiv
e

Ru
nt

im
e

Stack Overflow, FedAvg
10% Accuracy
15% Accuracy
20% Accuracy

(d) λ = 100

Figure 27. The relative amount of time required to reach given test accuracies on Stack Overflow with varying cohort sizes. We present the
ratio of the runtime needed for M > 10 with respect to the time needed for M = 10. Runtimes are simulated under a shifted exponential
model with α = 1 and varying λ.

B.6. Pseudo-Gradient Norms

In this section, we present the norm of the server pseudo-gradient ∆ in Algorithm 1 with respect to the number of
communication rounds. We do this for varying cohort sizes and tasks across 1500 communication rounds. All plots give the
`2 norm of ∆. The results are given in Figures 28, 29, 30, 31, 32, 33, and 34. These gives the results for FedSGD, FedAvg,
FedAvgM, FedAdagrad, FedAdam, FedLARS, and FedLamb (respectively).

We find that in nearly all cases, the results for FedSGD differ from all other algorithms. While there is significant overlap
in the pseudo-gradient norm for FedSGD across all cohort sizes (Figure 28), any method that uses multiple local training
steps generally does not see such behavior. The only notable counter-example is FedAdagrad on EMNIST (Figure 31).
Otherwise, both non-adaptive and adaptive federated methods that use local training (such as FedAvg, FedAdam, and
FedLamb) see similar behavior: The pseudo-gradient norm is effectively stratified by the cohort size. Larger cohort sizes
lead to smaller pseudo-gradient norms, with little overlap. Moreover, as discussed in Section 4, we see that after enough
communication rounds occur, the pseudo-gradient norm obeys an inverse square root scaling rule.

On Large-Cohort Training for Federated Learning

0 250 500 750 1000 1250 1500
Communication Rounds

0

1

2

3

4

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedSGD

M = 10
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.5

1.0

1.5

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedSGD
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedSGD
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.3

0.4

0.5

0.6

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedSGD
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 28. Average pseudo-gradient norm of FedSGD versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

0 500 1000 1500
Communication Rounds

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, Actual Norm
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400
M = 800

Figure 29. Average pseudo-gradient norm of FedAvg versus the number of communication rounds, for various tasks and cohort sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedAvgM
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.1

0.2

0.3

0.4

0.5

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAvgM
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.5

1.0

1.5

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedAvgM
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.5

1.0

1.5

2.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedAvgM
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 30. Average pseudo-gradient norm of FedAvgM versus the number of communication rounds, for various tasks and cohort sizes
M .

0 500 1000 1500
Communication Rounds

0.15
0.20
0.25
0.30
0.35
0.40

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedAdagrad
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.005
0.010
0.015
0.020
0.025

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAdagrad
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 250 500 750 1000 1250 1500
Communication Rounds

0

2

4

6

8

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedAdagrad
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6

0.8

1.0

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedAdagrad
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 31. Average pseudo-gradient norm of FedAdagrad versus the number of communication rounds, for various tasks and cohort
sizes M .

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

0.3

0.4

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedAdam

M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedAdam
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0

200

400

600

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedAdam
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.4

0.6

0.8

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedAdam
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 32. Average pseudo-gradient norm of FedAdam versus the number of communication rounds, for various tasks and cohort sizes
M .

On Large-Cohort Training for Federated Learning

0 500 1000 1500
Communication Rounds

0.0

0.5

1.0

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedLARS
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6
Ps

eu
do

-G
ra

di
en

t N
or

m

EMNIST, FedLARS
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0

250

500

750

1000

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedLARS
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.2

0.4

0.6

0.8

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedLARS
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 33. Average pseudo-gradient norm of FedLARS versus the number of communication rounds, for various tasks and cohort sizes
M .

0 500 1000 1500
Communication Rounds

0.000

0.025

0.050

0.075

0.100

Ps
eu

do
-G

ra
di

en
t N

or
m

CIFAR-100, FedLamb
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.1

0.2

0.3

0.4

0.5

Ps
eu

do
-G

ra
di

en
t N

or
m

EMNIST, FedLamb
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0

200

400

600

800

1000

Ps
eu

do
-G

ra
di

en
t N

or
m

Shakespeare, FedLamb
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

0 500 1000 1500
Communication Rounds

0.25

0.50

0.75

1.00

1.25

1.50

Ps
eu

do
-G

ra
di

en
t N

or
m

Stack Overflow, FedLamb
M = 10
M = 25
M = 50
M = 100
M = 200
M = 400

Figure 34. Average pseudo-gradient norm of FedLamb versus the number of communication rounds, for various tasks and cohort sizes
M .

On Large-Cohort Training for Federated Learning

B.6.1. COSINE SIMILARITY OF CLIENT UPDATES

Recall that in Section 4, we showed that for FedAvg, client updates are nearly orthogonal on the Stack Overflow task. In
this section, we show that this holds across tasks. In Figure 35, we present the average cosine similarity between distinct
clients in each training round, for FedAvg and FedSGD. Thus, given a cohort size M , at each round t we compute

(|M |
2

)
cosine similarities between client updates, and take the average over all pairs. Formally, we compute, for each round t,

θt :=

(
|Ct|

2

)−1 ∑
i,j∈Ct
i6=j

〈
∆t

i,∆
t
j

〉
‖∆t

i‖2‖∆t
j‖2

(5)

where Ct is the cohort of sampled clients in round t, and ∆t
k denotes the client update of client k ∈ Ct (see Algorithm 1).

Note that because we normalize, it does not matter whether we use clipping or not (Algorithm 2). The results for θt with
cohort size M = 50 are given in Figure 35.

0 500 1000 1500
Communication Rounds

0.0

0.1

0.2

Co
sin

e
Si

m
ila

rit
y

CIFAR-100
FedAvg
FedSGD

0 500 1000 1500
Communication Rounds

0.0
0.1
0.2
0.3
0.4
0.5

Co
sin

e
Si

m
ila

rit
y

EMNIST
FedAvg
FedSGD

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Shakespeare
FedAvg
FedSGD

0 500 1000 1500
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Stack Overflow
FedAvg
FedSGD

Figure 35. Average cosine similarity θt (as in (5)) between client updates ∆t
k with respect to the number of communication rounds, for

FedAvg on EMNIST with a cohort size of M = 50.

We see that in all cases, after a small number of communication rounds, θt becomes close to zero for FedAvg. By contrast,
θt is not nearly as small for FedSGD, especially in intermediate rounds. We note that for EMNIST, the cosine similarity for
FedSGD approaches that of FedAvg as T → 1500.

B.7. Server Learning Rate Scaling

In this section, we present our full results using the learning rate scaling methods proposed in Section 5. Recall that our
methods increase the server learning rate ηs in accordance with the cohort size. To do so, we fix a learning rate ηs for some
cohort size M . As in (3), for M ′ ≥M , we use a server learning rate η′s

η′s = r

(
M ′

M

)
ηs

where r : R≥0 → R≥0 determines the scaling rate. In particular, we focus on r(a) =
√
a (square root scaling) and r(a) = a

(linear scaling). These rules both can be viewed as federated analogs of learning rate scaling techniques used for large-batch
training (Krizhevsky, 2014; Goyal et al., 2017). We use them with a federated version of the warmup technique proposed by
Goyal et al. (2017), where we linearly increase the server learning rate from 0 to η′s over the first W = 100 communication
rounds.

Despite the historical precedent for the linear scaling rule (Goyal et al., 2017), we find that it leads to catastrophic training
failures in the federated regime, even with adaptive clipping. To showcase this, we plot the accuracy of FedAvg on EMNIST
with the linear scaling rule in Figure 36. We plot the test accuracy over time, averaged across 5 random trials, for various
cohort sizes M . While M = 50, 100 see similar convergence as in Figure 11, for M = 200, we saw one catastrophic
training failure across all 5 trials. Using M ≥ 400, we found that all trials resulted in catastrophic training failures. In short,
linear scaling can be too aggressive in federated settings, potentially due to heterogeneity among clients (which intuitively
requires some amount of conservatism in server model updates).

By contrast, the square root scaling rule did not lead to such training failures. We plot the training accuracy and test accuracy
of FedAvg using the square root scaling rule in Figure 37. We plot this with respect to the cohort size, with and without the
scaling rule. We see that the performance of the scaling rule is decidedly mixed. While it leads to significant improvements
in training accuracy for CIFAR-100 and Shakespeare, it leads to only minor improvements (or a degradation in training

On Large-Cohort Training for Federated Learning

0 500 1000 1500
Communication Rounds

0.0
0.2
0.4
0.6
0.8
1.0

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvg, Linear Scaling

M = 50
M = 100
M = 200
M = 400
M = 800

Figure 36. The test accuracy of FedAvg on EMNIST with the linear scaling rule, across 5 random trials. The mean accuracy is given in
bold, with the standard deviation indicated by the pale region. We see that for M = 200, there are a number of catastrophic training
failures, while for M ≥ 400, all trials experienced catastrophic training failures.

accuracy) for EMNIST and Stack Overflow. Notably, while the training accuracy improvement also led to a test accuracy
improvement for CIFAR-100, the same is not true for Shakespeare. In fact, the training benefits of the square root scaling
there led to worse generalization across the board.

50 100 200 400
Cohort Size

0.35

0.40

0.45

0.50

Tr
ai

n
Ac

cu
ra

cy

CIFAR-100, FedAvg
No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.850

0.855

0.860

0.865

Tr
ai

n
Ac

cu
ra

cy

EMNIST, FedAvg
No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.61

0.62

0.63

0.64

0.65

Tr
ai

n
Ac

cu
ra

cy

Shakespeare, FedAvg
No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Tr
ai

n
Ac

cu
ra

cy

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.30
0.32
0.34
0.36
0.38
0.40

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg
No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.845

0.850

0.855

0.860

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvg
No Scaling
Square Root Scaling

50 100 200 400
Cohort Size

0.555

0.560

0.565

0.570

0.575

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

No Scaling
Square Root Scaling

50 100 200 400 800
Cohort Size

0.00

0.05

0.10

0.15

0.20

0.25

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg

No Scaling
Square Root Scaling

Figure 37. The train accuracy (top) and test accuracy (bottom) of FedAvg using square root scaling with warmup, versus no scaling, after
training for 1500 communication rounds. Results are given for various cohort sizes and tasks

B.8. Dynamic Cohort Sizes

In this section, we plot the full results of using the dynamic cohort size strategy from Section 5. Recall that there, we use an
analog of dynamic batch size methods for centralized learning, where the cohort size is increased over time. We specifically
start with a cohort size of M = 50, and double every 300 communication rounds. If doubling would ever make the cohort
size larger than the number of training clients, we simply use the full set of training clients in a cohort.

We plot the test accuracy of FedAdam and FedAvg using the dynamic cohort size, as well as fixed cohort sizes of M = 50
and M = 400 (for CIFAR-100 and Shakespeare) or M = 800. In Figure 38, the test accuracy is plotted with respect to the
number of examples processed by the clients, in order to measure the data-efficiency of the various methods. We find that
while the dynamic cohort strategy can help interpolate the data efficiency between small and large cohort sizes, obtaining
the same data efficiency as M = 50 for most accuracy thresholds, then transitioning to the data efficiency of larger M .

On Large-Cohort Training for Federated Learning

105 106 107

Total Number of Examples
0.1

0.2

0.3

0.4

0.5
Te

st
 A

cc
ur

ac
y

CIFAR-100, FedAvg
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvg
M = 50
M = 800
Dynamic

105 106 107

Total Number of Examples
0.50

0.52

0.54

0.56

0.58

0.60

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAvg
M = 50
M = 800
Dynamic

105 106 107

Total Number of Examples
0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

EMNIST, FedAdam
M = 50
M = 800
Dynamic

105 106 107

Total Number of Examples
0.50

0.52

0.54

0.56

0.58

0.60

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam
M = 50
M = 400
Dynamic

105 106 107 108

Total Number of Examples
0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam
M = 50
M = 800
Dynamic

Figure 38. Test accuracy of FedAvg (top) and FedAdam (bottom) with respect to the total number of examples. Both algorithms are
applied to various tasks, with various fixed cohort sizes, and the dynamically increasing cohort strategy.

In Figure 39, we plot the test accuracy of the methods discussed above with respect to the number of communication rounds,
in order to better visualize the generalization behavior of the dynamic cohort strategy. We see that for FedAvg, there is little
to no difference between the test accuracy for M = 50 and M = 400 or M = 800, and that the dynamic cohort strategy
generally lays in-between these two. This is partially a consequence of the diminishing returns discussed in Section 3.2. For
FedAdam, we see that there are more returns to be had for increasing the cohort size. Moreover, we see that the dynamic
cohort strategy typically begins at the accuracy level of M = 50, and later matches that of the larger cohort. This can be
beneficial such as in the case of Stack Overflow, or it can be detrimental as in the case of CIFAR-100, where we see that the
dynamic cohort strategy faces the generalization issues in Section 3.3. Thus, we see that the dynamic cohort strategy can
help improve the data efficiency of large cohort training, but cannot remedy issues of diminishing returns or generalization
failures.

0 500 1000 1500
Communication Rounds

0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAvg
M = 50
M = 400
Dynamic

0 500 1000 1500
Communication Rounds

0.82

0.83

0.84

0.85

0.86

Te
st

 A
cc

ur
ac

y

EMNIST, FedAvg
M = 50
M = 800
Dynamic

0 500 1000 1500
Communication Rounds

0.560

0.565

0.570

0.575

0.580

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAvg

M = 50
M = 400
Dynamic

0 500 1000 1500
Communication Rounds

0.16

0.18

0.20

0.22

0.24
Te

st
 A

cc
ur

ac
y

Stack Overflow, FedAvg

M = 50
M = 800
Dynamic

0 500 1000 1500
Communication Rounds

0.30

0.35

0.40

0.45

0.50

Te
st

 A
cc

ur
ac

y

CIFAR-100, FedAdam

M = 50
M = 400
Dynamic

0 500 1000 1500
Communication Rounds

0.80
0.81
0.82
0.83
0.84
0.85
0.86

Te
st

 A
cc

ur
ac

y

EMNIST, FedAdam
M = 50
M = 800
Dynamic

0 500 1000 1500
Communication Rounds

0.55

0.56

0.57

0.58

0.59

Te
st

 A
cc

ur
ac

y

Shakespeare, FedAdam

M = 50
M = 400
Dynamic

0 500 1000 1500
Communication Rounds

0.20

0.22

0.24

0.26

0.28

Te
st

 A
cc

ur
ac

y

Stack Overflow, FedAdam

M = 50
M = 800
Dynamic

Figure 39. Test accuracy of FedAvg (top) and FedAdam (bottom) with respect to the total number of communication rounds. Both
algorithms are applied to various tasks, with various fixed cohort sizes, and the dynamically increasing cohort strategy.

B.9. Changing the Number of Local Steps

While the cohort size has clear parallels to batch size, it is not the only factor determining the number of examples seen per
round in Algorithm 1. The number of client epochs E and the client batch size also affect this. To study this “effective batch
size” in FL, we fix the client batch size, and investigate how the cohort size and number of local steps simultaneously impact
the performance of FedAvg.

On Large-Cohort Training for Federated Learning

In particular, we fix a local batch size of 1 and vary the cohort size over {16, 32, . . . , 1024}. We vary the number of local
steps over {1, 2, 4, . . . , 256}. We plot the number of rounds needed for convergence, and the final test accuracy in Figure 40.
By construction, each square on an anti-diagonal corresponds to the same number of examples per round.

In the left figure, we see that if we fix the cohort size, then increasing the number of local steps can accelerate convergence,
but only up to a point, after which catastrophic training failures occur. By contrast, if we have convergence for some
number of local steps and cohort size, convergence occurs for all cohort sizes. Similarly, we see in the right hand figure
that increasing the number of local steps can drastically reduce generalization, more so than increasing the cohort size. In
essence, we see that the number of local steps obeys many of the same issues outlined in Section 3. Therefore, correctly
tuning the number of local steps in unison with the cohort size may be critical to ensuring good performance of large-cohort
methods.

Figure 40. The number of rounds for to reach a test accuracy of 70% (left) and the test accuracy after 1500 rounds (right). Results are for
FedAvg on EMNIST with varying numbers of local steps (x-axis) and cohort sizes (y-axis).

B.10. Normalized FedAvg

While the methods above show promise in resolving some of the issues of large-cohort training, they also introduce extra
hyperparameters (such as what type of learning rate scaling to use, or how often to double the cohort size). Notably,
hyperparameter tuning can be difficult in federated learning, especially cross-device federated learning (Kairouz et al., 2021).
Even adaptive methods like FedAdam introduce a number of new hyperparameters that can be challenging to contend with.
We are therefore motivated to design a large-cohort training method that does not introduce any new hyperparameters.

Recall that in Section 4, we showed that for FedAvg, the client updates (∆t
k in Algorithm 1 and Algorithm 2) are nearly

orthogonal in expectation. By averaging nearly orthogonal updates in large-cohort training, we get a server pseudo-gradient
∆t that is close to zero, meaning that the server does not make much progress at each communication round. In order to
compensate for this without having to tune a learning rate scaling strategy, we propose a simple variant of FedAvg that
tries to account for this near-orthogonality of client updates. Rather than applying SGD to the server pseudo-gradient (as in
Algorithm 1), we apply SGD to the normalized server pseudo-gradient. That is, the server updates its model via

x′ = x− ηs
∆

‖∆‖2
.

This is a kind of federated analog of normalized SGD methods used for centralized learning (Nacson et al., 2019). It
introduces no new hyperparameters with respect to Algorithm 1. To test this method, which we refer to as normalized
FedAvg, we present its training and test accuracy versus cohort size in Figure 41. Notably, we do not re-tune any learning
rates. We simply use the same learning rates tuned for (unnormalized) FedAvg.

We find that for most cohort sizes and on most tasks, normalized FedAvg achieves better training accuracy for larger
cohorts. Thus, this helps mitigate the diminishing returns issue in Section 3.2. We note two important exceptions: for
EMNIST, the normalized FedAvg is slightly worse for all cohort sizes. For Stack Overflow, it obtains worse training
accuracy for the largest cohort size. However, we see significant improvements on CIFAR-100 and all but the largest cohort

On Large-Cohort Training for Federated Learning

1 10 100
Cohort Size

0.0
0.1
0.2
0.3
0.4
0.5

Tr
ai

n
Ac

cu
ra

cy
CIFAR-100

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.78

0.80

0.82

0.84

0.86

Tr
ai

n
Ac

cu
ra

cy

EMNIST

FedAvg
Normalized FedAvg

1 10 100
Cohort Size

0.525
0.550
0.575
0.600
0.625
0.650

Tr
ai

n
Ac

cu
ra

cy

Shakespeare

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.18

0.20

0.22

0.24

Tr
ai

n
Ac

cu
ra

cy

Stack Overflow

FedAvg
Normalized FedAvg

1 10 100
Cohort Size

0.1

0.2

0.3

0.4

Te
st

 A
cc

ur
ac

y

CIFAR-100

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.78

0.80

0.82

0.84

0.86

Te
st

 A
cc

ur
ac

y

EMNIST

FedAvg
Normalized FedAvg

1 10 100
Cohort Size

0.52

0.54

0.56

0.58

Te
st

 A
cc

ur
ac

y

Shakespeare

FedAvg
Normalized FedAvg

1 10 100 1000
Cohort Size

0.18

0.20

0.22

0.24

Te
st

 A
cc

ur
ac

y

Stack Overflow

FedAvg
Normalized FedAvg

Figure 41. The train accuracy (top) and test accuracy (bottom) of FedAvg and the normalized variant of FedAvg, after training for 1500
communication rounds. Results are given for various cohort sizes and tasks

sizes for Stack Overflow. We believe that the method therefore exhibits promising results, and may be improved in future
work.

