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Abstract
Federated Learning (FL) is a distributed ma-
chine learning paradigm where data is distributed
among clients who collaboratively train a model
in a computation process coordinated by a cen-
tral server. By assigning a weight to each client
based on the proportion of data instances it pos-
sesses, the rate of convergence to an accurate joint
model can be greatly accelerated. Some previous
works studied FL in a Byzantine setting, in which
a fraction of the clients may send arbitrary or
even malicious information regarding their model.
However, these works either ignore the issue of
data unbalancedness altogether or assume that
client weights are a priori known to the server,
whereas, in practice, it is likely that weights will
be reported to the server by the clients them-
selves and therefore cannot be relied upon. We
address this issue for the first time by proposing a
practical weight-truncation-based preprocessing
method and demonstrating empirically that it is
able to strike a good balance between model qual-
ity and Byzantine robustness. We also establish
analytically that our method can be applied to a
randomly selected sample of client weights.

1. Introduction
Federated Learning (FL) (Konečnỳ et al., 2015; McMahan
et al., 2017; Kairouz et al., 2019; Bonawitz et al., 2019)
is a distributed machine learning paradigm where training
data resides at autonomous client machines and the learn-
ing process is facilitated by a central server. The server
maintains a shared model and alternates between requesting
clients to try and improve it and integrating their suggested
improvements back into that shared model.
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A few challenges arise from this model. First, the need
for communication efficiency, both in terms of the size
of data transferred and the number of required messages
for reaching convergence. Second, clients are outside of
the control of the server and as such may be unreliable,
or even malicious. Third, while classical learning models
generally assume that data is homogeneous, here privacy
and the aforementioned communication concerns force us
to deal with the data as it is seen by the clients; that is 1)
non-IID (identically and independently distributed)—data
may depend on the client it resides at, and 2) unbalanced—
different clients may possess different amounts of data.

In previous works (Ghosh et al., 2019; Alistarh et al., 2018;
Li et al., 2019a; Haddadpour & Mahdavi, 2019; Pillutla
et al., 2019), unbalancedness is either ignored or is repre-
sented by a collection of a priori known client importance
weights that are usually derived from the amount of data
each client has. This work investigates aspects that stem
from this unbalancedness. Concretely, we focus on the case
where unreliable clients declare the amount of data they
have and may thus adversely influence their importance
weight. We show that without some mitigation, a single ma-
licious client can obstruct convergence in this manner even
in the presence of popular FL defense mechanisms. Our
experiments consider protections that replace the server step
by a robust mean estimator, such as median (Chen et al.,
2017; Yin et al., 2018; Chen et al., 2019a) and trimmed
mean (Yin et al., 2018).

The rest of this paper is organized as follows. In Section 2,
we present required definitions and formalize the problem
addressed by this work. Section 3 presents our truncation-
based preprocessing method and proves that it can be ap-
plied to a randomly-selected sample of client weights . In
Section 4, we report on the results of our empirical evalu-
ation. Conclusions and directions for future work are pre-
sented in Section 5.

2. Problem Setup
2.1. Optimization Goal

We are given K clients where each client k has a local
collection Zk of nk samples taken IID from some unknown
distribution over sample space Z. We denote the unified
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sample collection as Z =
⋃
k∈[K] Zk and the total number

of samples as n (i.e., n = |Z| =
∑
k∈[K] nk). Our objective

is global empirical risk minimization (ERM) for some loss
function class `(w; ·) : Z → R, parameterized by w ∈ Rd 1:

min
w∈Rd

F (w), where F (w) :=
1

n

∑
z∈Z

`(w; z). (1)

In the following sections we denote the vector of client sam-
ple sizes as N = (n1, n2, . . . , nK) and assume, w.l.o.g.,
that it is sorted in increasing order.

2.2. Collaboration Model

We restrict ourselves to the FL paradigm, which leaves the
training data distributed among client machines, and learns a
shared model by iterating between client updates and server
aggregation.

Additionally, a subset of the clients, marked B, can be
Byzantine, meaning they can send arbitrary and possibly
malicious results on their local updates. Moreover, unlike
previous works, we also consider clients’ sample sizes to be
unreliable because they are reported by possibly Byzantine
clients. When the distinction is important, values that are
sent by clients are marked with an overdot to signify that
they are unreliable (e.g., ṅk), while values that have been
preprocessed in some way are marked with a tilde (e.g., ñk).

2.3. Federated Learning Meta Algorithm

We build upon the baseline federated averaging algorithm
(FedAvg) described by McMahan et al. (2017). There, it
is suggested that in order to save communication rounds,
clients perform multiple stochastic gradient descent (SGD)
steps while a central server occasionally averages the pa-
rameter vectors.

The intuition behind this approach becomes clearer when we
mark the kth client’s ERM objective function by Fk(w) :=
1
nk

∑
z∈Zk `(w; z) and observe that the objective function

in equation (1) can be rewritten as a weighted average of
clients’ objectives:

F (w) :=
1

n

∑
k∈[K]

nkFk(w). (2)

Similarly to previous works (Pillutla et al., 2019; Chen et al.,
2019b;a), we capture a large set of algorithms by abstracting
FedAvg into a meta-algorithm for FL (Algorithm 2). We
require three procedures to be specified by any concrete
algorithm:

1. Preprocess—receives possibly byzantine ṅk’s from
clients and produces secure estimates marked as ñk’s.
To the best of our knowledge, previous works ignore
this procedure and assume that the nk’s are correct.

2. ClientUpdate—per-client wk computation. In
FedAvg, this corresponds to a few local mini-batch
SGD rounds. See Algorithm 1 for pseudocode.

3. Aggregate—the server’s strategy for updating w. In
FedAvg, this corresponds to the weighted arithmetic
mean, i.e., w ← 1

ṅ

∑
k∈[K] ṅkẇk.

Algorithm 1 FedAvg: ClientUpdate
Hyperparameters: learning rate (η), number of epochs
(E), and batch size (B).

1: for E epochs do
2: for B-sized batch bk in Zk do
3: wk ← wk − η 1

B

∑
z∈bk ∇`(wk; z)

4: end for
5: end for

Algorithm 2 Federated Learning Meta-Algorithm
Given procedures: Preprocess, ClientUpdate, and
Aggregate.

1: {ṅk}k∈[K] ← collect sample size from clients
2: {ñk}k∈[K] ← Preprocess({ṅk}k∈[K])
3: w ← initial guess
4: for t← 1 to T do
5: St ← a random set of client indices
6: for all k ∈ St do
7: ẇk ← ClientUpdate(ñk, w)
8: end for
9: w ← Aggregate({〈ñk, ẇk〉}k∈St)

10: end for

3. Preprocessing Client-Declared Sample
Sizes

3.1. Preliminaries

The following assumption is common among works on
Byzantine robustness:

Assumption 1 (Bounded Byzantine proportion). The pro-
portion of clients who are Byzantine is bounded by some
constant α; i.e., 1

K |B| ≤ α.

The next assumption is a natural generalization when con-
sidering unbalancedness:

Assumption 2 (Bounded Byzantine weight proportion).
The proportion between the combined weight of Byzantine
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clients and the total weight is bounded by some constant α∗;
i.e., 1

n

∑
b∈B nb ≤ α∗.

Previous works on robust aggregation (Ghosh et al., 2019;
Alistarh et al., 2018; Li et al., 2019a; Haddadpour & Mah-
davi, 2019; Zhao et al., 2018) either used Assumption
1, without considering the unbalancedness of the data,
or implicitly used Assumption 2. However, we observe
that Assumption 2 is unattainable in practice since Byzan-
tine clients can often influence their weight. We address
this gap with the following definition and an appropriate
Preprocess procedure.

Definition 1 (mwp). Given a proportion p, and a weights
vector V = (v1, ..., v|V |) sorted in increasing order, the
maximal weight proportion, mwp(V , p), is the maximum
combined weight for any p-proportion of the values of V :

mwp(V , p) :=
1∑
v∈V v

∑
(1−p)|V |<i

vi.

Note that this is just the weight proportion of the p|V | clients
with the largest sample sizes.

In the rest of this work we assume Assumption 1 and design
a Preprocess procedure that ensures the following:

mwp(Preprocess(N), α) ≤ α∗. (3)

Observe that this requirement enables the use of weighted
robust mean estimators in a realistic setting by ensuring that
Assumption 2 holds for the preprocessed client sample sizes.
Also note that here, α is our assumption about the propor-
tion of Byzantine clients while α∗ relates to an analytical
property of the underlying robust algorithm. For example,
we may replace the federated average with a weighted me-
dian as suggested by Chen et al. (2017), in which case, α∗

must be less than 1/2.

3.2. Truncating the Values of N

Our suggested preprocessing procedure uses
element-wise truncation of the values of N
by some value U , marked trunc(N , U) =
(min(n1, U),min(n2, U), . . . ,min(nK , U)). Given α
and α∗, we search for the maximal truncation which
satisfies (3):

U∗ := argmax
U∈N

s.t. mwp(trunc(N , U), α) ≤ α∗. (4)

Here α and U∗ present a trade-off. Higher α means more
Byzantine tolerance but requires smaller truncation value

U∗, which, may cause slower and less accurate convergence,
as we demonstrate empirically in Section 4 and theoretically
in Theorem 3.2.

We note that given α and α∗, truncating N by solving (4)
is optimal in the sense that any other Preprocess proce-
dure that adheres to (3) has an equal or larger L1 distance
from the original N . This follows immediately from the
observation that, when truncating the values of N , the entire
distance is due to the truncated elements, and if there was
another applicable vector closer to N , we could have redis-
tributed the difference to the largest elements and increase
U∗ in contradiction to its maximality.

3.2.1. FINDING U∗ GIVEN α

If one has an estimate for α it is easy to calculate U∗. For
example, by going over values in N in a decreasing order
(i.e., from index K downwards) until finding a value that
satisfies the inequality in (4). Then we mark the index of
this value by u and use the fact that in the range [nu, nu+1]
we can express mwp(trunc(N , U), α) as a simple function
of the form a+bU

c+dU :

∑
(1−α)K<i≤u ni + |{ni : i > max(u, (1− α)K)}|U∑

i≤u ni + |{ni : i > u}|U
,

for which we can solve (4) with

U∗ ←
⌊
a− cα∗

dα∗ − b

⌋
. (5)

3.2.2. THE α-U∗ TRADE-OFF

When we do not know α, as a practical procedure, we sug-
gest plotting U∗ as a function of α. In order to do so, we
can start with α← α∗, U ← n1, and alternate between de-
creasing α by 1/K (one less Byzantine client tolerated) and
solving (4). This procedure can be made efficient by saving
intermediate sums and using a specialized data structure for
trimmed collections. See Algorithm 3 for pseudocode and
Figure 1 for an example output.

Algorithm 3 Report (α, U∗) Pairs
α← α∗

for u← 1 to K − 1 do
while mwp(trunc(N , nu+1), α) > α∗ do
U∗ ← solve (5) for U ∈ [nu, nu+1]
report (α, U∗)
α← α− 1

K
end while

end for
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Figure 1. Example plot of data generated by executing Algorithm
3 on unbalanced vector N and α∗ = 50% (this vector corre-
sponds to the partition used in our experiments; See Section 4.1
for details).

3.3. Truncation Given a Partial View of N

When K is very large we may want to sample only k � K
elements IID from N . In this case, we will need to test that
the inequality in (4) holds with high probability.

Theorem 3.1. Given parameter δ > 0 and ε1 =
√

ln (3/δ)
2k ,

ε2 = U
√

ln ln (3/δ)
2(k(α−ε1)+1) , ε3 = U

√
ln ln (3/δ)

2k , we have that
mwp(trunc(N , U), α) ≤ α∗ is true with 1− δ confidence
if the following holds:

α
(∑k

i←d(1−(α−ε1))keX(i)

k−d(1−(α−ε1))ke+1 + ε2
)(

1
k

∑
i∈[k]Xi − ε3

) ≤ α∗. (6)

Proof. See Appendix A.1

3.4. Convergence Analysis

After applying our Preprocess procedure we have the trun-
cated number of samples per client, marked {ñk}k∈[K]. We
can trivially ensure that any algorithm instance works as
expected by requiring that clients ignore samples that were
truncated. That is, even if an honest (non-Byzantine) client
k has nk samples it may use only ñk samples during its
ClienUpdate.

Although this solution always preserves the semantics of
any underlying algorithm, it does hurt convergence guaran-
tees since the total number of samples decreases [Kairouz
et al. 2019, Tables 5 and 6; Yin et al. 2018; Haddadpour &
Mahdavi 2019]. Interestingly, Li et al. (2019b, Theorem 3)

analyze the baseline FedAvg and show that the convergence
bound increases with maxnk/minnk (marked there as
ν/ς). This suggests that in some cases, unbalancedness
itself deteriorates the convergence rate, a phenomenon that
may be mitigated by truncation to some degree.

Additionally, we note that in practice, the performance of
federated averaging based algorithms improves when hon-
est clients use all their original nk samples. Intuitively,
this follows easily from the observation that Aggregate
procedures are generally composite mean estimators and
ClientUpdate calls are likely to produce more accurate
results given more samples.

Lastly, as we have mentioned before, convergence is guar-
anteed, but we note that the optimization goal itself is in-
evitably skewed in our Byzantine scenario. The follow-
ing theorem bounds this difference between the original
weighted optimization goal (2) and the new goal after trun-
cation. In order to emphasize the necessity of this bound (in
terms of Assumption 2), we use overdot and tilde to signify
unreliable and truncated values, respectively, as previously
described in Subsection 2.2.

Theorem 3.2. Given the same setup as in (1) and a trunca-
tion bound U , the following holds for all w ∈ Rd:

‖ 1
ṅ

∑
i∈[K]

ṅiFi(w)−
1

ñ

∑
i∈[K]

ñiFi(w)‖ ≤

‖
∑

i:ṅi>U

( ṅi
ṅ
− 1

K

)
Fi(w) +

( 1
ṅ
− 1

ñ

) ∑
i:ṅi≤U

L(Zi)‖

Where L(Zi) is defined as
∑
z∈Zi `(w; z).

Proof. See Appendix A.2

From the bound in Theorem 3.2 we can clearly see how
the coefficients in the left term, (ṅi/ṅ− 1/K), stem from
unbalancedness in the values above the truncation threshold
while the coefficient in the right term, (1/ṅ−1/ñ), accounts
for the increase of relative weight of the values below the
truncation threshold. Additionally, note that this formulation
demonstrates how a single Byzantine client can increase this
difference arbitrarily by increasing its ṅi. Lastly, observe
how both terms vanish as U increases, which motivates our
selection of U∗ as the maximal truncation threshold for any
given α and α∗.

4. Evaluation
In this section, we demonstrate how truncating N is a cru-
cial requirement for Byzantine robustness. That is, we show
that no matter what the specific attack or aggregation method
is, using N “as-is” categorically devoids any robustness
guaranties.
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The code for the experiments is based on the Tensorflow ma-
chine learning library (Abadi et al., 2015). Specifically, the
code for the shakespeare experiments is based on the Tensor-
flow Federated sub-library of Tensorflow. It is given under
the Apache license 2.0. Our code can be found in the sup-
plementary material and is given under the MIT license. We
perform the experiments using a single NVIDIA GeForce
RTX 2080 Ti GPU, but the results are easily reproducible
on any device.

4.1. Experimental Setup

4.1.1. THE MACHINE LEARNING TASKS AND MODELS

Shakespeare: next-character-prediction partitioned by
speaker. Presented in the original FedAvg paper (McMa-
han et al., 2017) and also part of the LEAF benchmark (Cal-
das et al., 2019), the Shakespeare dataset contains 422,615
sentences taken from The Complete Works of William Shake-
speare (Shakespeare, 1996) (freely available public domain
texts). The next-character-prediction task with the per-
speaker partitioning represents a realistic scenario in the
FL domain. Each client trains using an LSTM recurrent
model (Hochreiter & Schmidhuber, 1997) with hyperparam-
eters matching those suggested by Reddi et al. (2020) for
FedAvg.

MNIST: digit recognition with synthetic client partition-
ing. The MNIST database (LeCun et al., 2010) (avail-
able under Creative Commons Attribution-ShareAlike 3.0
license) includes 28×28 grayscale labeled images of hand-
written digits split into 60,000 training images and 10,000
testing images. We randomly partition the training set
among 100 clients. The partition sizes are determined by
taking 100 samples from a Lognormal distribution with
µ = 1.5, σ = 3.45, and then interpolating corresponding
integers that sum to 60,000. This produces a right-skewed,
fat-tailed partition size distribution that emphasizes the im-
portance of correctly weighting aggregation rules and the
effects of truncation. Clients train a classifier using a 64-unit
perceptron with RelU activation and 20% dropout, followed
by a softmax layer. Following Yin et al. (2018), on every
communication round, all clients perform mini-batch SGD
with 10% of their examples.

Note that the Shakespeare and MNIST synthetic tasks were
selected because they are relatively simple, unbalanced tasks.
Simple, because we want to evaluate a preprocessing phase
and avoid tuning of the underlying algorithms we compare.
Unbalanced, since as can be understood from Theorem 3.2,
when the client sample sizes are spread mostly evenly, ig-
noring the client sample size altogether is a viable approach.
See Figure 2 for the histograms of the partitions.

4.1.2. THE SERVER

We show three Aggregate procedures. Arithmetic mean,
as used by the original FedAvg, and two additional pro-
cedures that replace the arithmetic mean with robust mean
estimators. The first of the latter uses the coordinatewise
median (Chen et al., 2017; Yin et al., 2018). That is, each
server model coordinate is taken as the median of the clients’
corresponding coordinates. The second robust aggregation
method uses the coordinatewise trimmed mean (Yin et al.,
2018) that, for a given hyperparameter β, first removes β-
proportion lowest and β-proportion highest values in each
coordinate and only then calculates the arithmetic mean of
the remaining values.

When preprocessing the client-declared sample size, we
compare three options: We either ignore client sample size,
truncate according to α = 10% and α∗ = 50%, or just
passthrough client sample size as reported.

4.1.3. THE CLIENTS AND ATTACKERS

We examine a model negation attack (Blanchard et al., 2017).
In this attack, each attacker “pushes” the model towards
zero by always returning a negation of the server’s model.
When the data distribution is balanced, this attack is easily
neutralized since Byzantine clients typically send easily
detectable extreme values. However, in our unbalanced
case, we demonstrate that without our preprocessing step,
this attack cannot be mitigated even by robust aggregation
methods.

In order to provide comparability, we additionally follow
the experiment shown by Yin et al. (2018) in which 10% of
the clients use a label shifting attack on the MNIST task.
In this attack, Byzantine clients train normally except for
the fact that they replace every training label y with 9−y.
The values sent by these clients are then incorrect but are
relatively moderate in value, making their attack somewhat
harder to detect.

We first execute our experiment without any attacks for
every server aggregation and preprocessing combination.
Then, for each attack type, we repeat the process two ad-
ditional times: 1) with a single attacker that declares 10
million samples, and 2) with 10% attackers that declare 1
million samples each.

4.2. Results

The Shakespeare experiments without any attackers is
shown in Figure 3 and the executions with attackers are
shown in Figure 4. The results of the MNIST experiments
were almost identical. All figures are deferred to Appendix
B for brevity.

The results from the first experiment, running without any
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Figure 2. Histogram of the sample partitions of the MNIST (left) and Shakespeare (right) datasets.

attackers (Figure 3), demonstrate that ignoring client sample
size results in reduced accuracy, especially when median
aggregation is used, whereas truncating according to our
procedure is significantly better and is on par with properly
using all weights. These results highlight the imperative-
ness of using sample size weights when performing server
aggregations.

While Figure 3 shows that truncation-based preprocessing
performs on par with that of taking all weights into consid-
eration when all clients are honest, Figure 4 demonstrates
that the results are very different when there is an attack. In
this case, we see that when even a single attacker reports a
highly exaggerated sample size and the server relies on all
the values of N , the performance of all aggregation meth-
ods including robust median and trimmed mean quickly
degrades.

In contrast, in our experiments robustness is maintained
when truncation-based preprocessing is used in conjunction
with robust mean aggregations, even when Byzantine clients
attain the maximal supported proportion (α=10%).

5. Conclusion and Future Work
Our method is based on truncating the weight values re-
ported by clients in a manner that bounds from above the
proportion α∗ of weights that can be attributed to Byzantine
clients, given an upper bound on the proportion of clients α
that may be Byzantine. Different values of parameter α rep-
resent different points in the trade-off between model quality
and Byzantine-robustness, where higher values increase ro-
bustness when attacks do occur but decrease convergence
rate even in the lack of attacks.

We evaluated the performance of our truncation method
empirically when applied as a preprocessing stage, prior
to several aggregation methods. The results of our exper-
iments establish that: 1) in the absence of attacks, model
convergence is on par with that of properly using all reported
weights, and 2) when attacks do occur, the performance of
combining truncation-based preprocessing and robust ag-
gregations incurs almost no penalty in comparison with the
performance of using of all weights in the lack of attacks,
whereas without preprocessing, even robust aggregation
methods collapse to a performance that is worse than that
of a random classifier.

When the number of clients is very large, performing server
preprocessing and aggregation on the server may become
computationally infeasible. We prove that, in this case,
truncation-based preprocessing can achieve the same upper
bound on α∗ w.h.p. based on the weight values reported
from a sufficiently large number of the clients selected IID.

As with many Byzantine-robust algorithms, the selection
of α has a significant impact on the underlying model and,
specifically, on fairness towards clients that hold underrepre-
sented data, which may inadvertently be considered outliers.
In future work, we plan to further analyze the trade-off
between robustness and the usage of client sample size in
rectifying data unbalancedness. We also plan to investigate
alternative forms of estimating client importance that may
avoid client sample size altogether.
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Appendix

A. Proofs
A.1. Proof of Theorem 3.1

First, in the scope of this proof we use a couple of additional
notations:

• top(V , p): The collection of p|V | largest values in V .

•
∑∑∑

V : The sum of all elements in V .

We observe that mwp(trunc(N , U), α) ≤ α∗ can be rewrit-
ten as

mwp(trunc(N , U), α) =

∑∑∑
top(trunc(N , U), α)∑∑∑

trunc(N , U)
=

αE[top(trunc(N , U), α)]

E[trunc(N , U)]
≤ α∗

(7)

Then we note that membership in top(trunc(N , U), α) can
be viewed as a simple Bernoulli random variable with prob-
ability α, for which we obtain the following bound using
Hoeffding’s inequality, t ≥ 0:

Pr
[
|{i ∈ [k] : Xi ∈ top(trunc(N , U), α)}| ≤ (α− t)k

]
≤ e−2t

2k

(8)

Therefore with t = ε1, we have the following with 1 − δ
3

confidence:

∑∑∑
top({Xi | i ∈ [k]}, α) ≤∑∑∑
{X(i) | d(1− (α− ε1))ke ≤ i ≤ k}

(9)

Using Hoeffding’s inequality again, we can bound the ex-
pectation of X(i) | d(1 − (α − ε1))ke ≤ i ≤ k by ε2 with
1− δ

3 confidence and together with (9) have that:

E[top(trunc(N , U), α)] ≤∑k
i←d(1−(α−ε1))keX(i)

k − d(1− (α− ε1))ke+ 1
+ ε2

(10)

Then, using Hoeffding’s inequality for the third time,
E[trunc(N , U)] is bound from below by ε3 with 1 − δ

3
confidence:

E[trunc(N , U)] ≥ 1

k

∑
i∈[k]

Xi − ε3 (11)

The proof is concluded by applying (9-11) to (7) using the
union bound.

A.2. Proof of Theorem 3.2

Using the fact that ñ ≤ UK we get:

‖ 1
ṅ

∑
i∈[K]

ṅiFi(w)−
1

ñ

∑
i∈[K]

ñiFi(w)‖ =

‖
∑

i:ṅi>U

ṅi
ṅ
Fi(w) +

1

ṅ

∑
i:ṅi≤U

L(Zi)

−
∑

i:ṅi>U

U

ñ
Fi(w)−

1

ñ

∑
i:ṅi≤U

L(Zi)‖ ≤

‖
∑

i:ṅi>U

ṅi
ṅ
Fi(w) +

1

ṅ

∑
i:ṅi≤U

L(Zi)

−
∑

i:ṅi>U

1

K
Fi(w)−

1

ñ

∑
i:ṅi≤U

L(Zi)‖ =

‖
∑

i:ṅi>U

( ṅi
ṅ
− 1

K

)
Fi(w) +

( 1
ṅ
− 1

ñ

) ∑
i:ṅi≤U

L(Zi)‖.

B. Experiment Results
This appendix provides the output figures of our experiments
conducted on the Shakespeare and MNIST datasets.

The Shakespeare experiments without any attackers is
shown in Figure 3 and the executions with attackers are
shown in Figure 4. The MNIST experiment without any
attackers is shown in Figure 5 and the executions with at-
tackers are shown in Figure 6.
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Figure 3. Accuracy by round without any attackers for the Shakespeare experiments. Curves correspond to preprocessing procedures and
columns correspond to different aggregation methods. It can be seen that our method (dashed orange curve) remains comparable to the
properly weighted mean estimators (solid blue curve) while ignoring clients’ sample sizes (dotted green curve) is sub-optimal. This effect
is pronounced when the unweighted median is used, since with our unbalanced partition it is generally very far from the mean. Figure 5
shows similar results for the MNIST experiments.
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Figure 4. Accuracy by round under Byzantine attacks for the Shakespeare experiments. Curves correspond to preprocessing procedures
and columns correspond to different aggregation methods. In the two rows of the experiment the Byzantine clients perform a model
negation attack with one and 10% attackers, respectively.
We observe that even with a single attacker performing a trivial attack (first row), using the weights directly (solid blue curve) is devastating
while when our preprocessing method is used in conjunction with robust mean aggregations (dashed orange curve, two last columns)
convergence remains stable even when there are actual α (=10%) attackers (second row). In contrast, the same cannot be said for the
regular mean aggregator, as can be seen by the sub-optimal accuracy (2nd row) and occasional dips in accuracy (1st row) in the leftmost
column (the dips can be explained by the fact that in each round we randomly select clients for training, and so the byzantine clients
have varying effects across different rounds). We note that in some cases our method may be slightly less efficient compared with the
preprocessing method that ignores sample size altogether (dotted green curve, second row, middle column). This is to be expected because
we allow Byzantine clients to potentially get close to α∗-proportion (50%, in this case) of the weight. However, our method is significantly
closer to the optimal solution when there are no or only a few attackers (see Figure 3). Moreover, when used in conjunction with robust
mean aggregation methods it maintains their robustness properties. Figure 6 shows similar results for the MNIST experiments.
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Figure 5. Accuracy by round without any attackers for the MNIST experiments. Curves correspond to preprocessing procedures and
columns correspond to different aggregation methods. It can be seen that our method (dashed orange curve) remains comparable to the
properly weighted mean estimators (solid blue curve) while ignoring clients’ sample sizes (dotted green curve) is sub-optimal. This effect
is pronounced when the unweighted median is used, since with our unbalanced partition it is generally very far from the mean.
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Figure 6. Accuracy by round under Byzantine attacks for the MNIST experiments. Curves correspond to preprocessing procedures and
columns correspond to different aggregation methods. In the first two rows Byzantine clients perform a label shifting attack with one and
10% attackers, respectively. In the last two rows we repeat the experiment with a model negation attack.
We observe that even with a single attacker performing a trivial attack (first and third rows), using the weights directly (solid blue curve)
is devastating while when our preprocessing method is used in conjunction with robust mean aggregations (dashed orange curve, two
last columns) convergence remains stable even when there are actual α (=10%) attackers (second and forth rows). In contrast, the same
cannot be said for the regular mean aggregator, as can be seen by the sub-optimal accuracy (2nd and 3rd rows) and complete failure to
converge (last row) in the leftmost column. We note that in some cases our method may be slightly less efficient compared with the
preprocessing method that ignores sample size altogether (dotted green curve, second row, last column). This is to be expected because we
allow Byzantine clients to potentially get close to α∗-proportion (50%, in this case) of the weight. However, our method is significantly
closer to the optimal solution when there are no or only a few attackers (see Figure 5). Moreover, when used in conjunction with robust
mean aggregation methods it maintains their robustness properties.


