
Implicit Gradient Alignment
in Distributed and Federated Learning

Yatin Dandi * 1 2 Luis Barba * 2 Martin Jaggi 2

Abstract
A major obstacle to achieving global convergence
in distributed and federated learning is the mis-
alignment of gradients across clients, or mini-
batches due to heterogeneity and stochasticity of
the distributed data. One way to alleviate this
problem is to encourage the alignment of gradi-
ents across different clients throughout training.
Our analysis reveals that this goal can be accom-
plished by utilizing the right optimization method
that replicates the implicit regularization effect of
SGD, leading to gradient alignment as well as im-
provements in test accuracies. Since the existence
of this regularization in SGD completely relies on
the sequential use of different mini-batches during
training, it is inherently absent when training with
large mini-batches. To obtain the generalization
benefits of this regularization while increasing
parallelism, we propose a novel GradAlign algo-
rithm that induces the same implicit regularization
while allowing the use of arbitrarily large batches
in each update. We experimentally validate the
benefit of our algorithm in different distributed
and federated learning settings.

1. Introduction
In this paper we focus on sum structured optimization of
the form f(x) := 1

n

∑n
i=1 fi(x), where each fi is a differ-

ent function representing the loss function of either distinct
data points, mini-batches or clients. In order to achieve
convergence, many assumptions over the fi’s have been
studied. For example, one may assume fixed bounds on the
variance or dissimilarity of gradients across different fi. We
instead argue that to obtain optimal generalization perfor-

*Equal contribution 1IIT Kanpur, India 2EPFL, Switzerland.
Correspondence to: Yatin Dandi <yatin.dandi@epfl.ch>.

This work was presented at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in Con-
junction with ICML 2021 (FL-ICML’21). This workshop does not
have official proceedings and this paper is non-archival. Copyright
2021 by the author(s).

mance, it is desirable to not only converge to a solution that
minimizes the mean loss f(x), but also restrict the space
of solutions by encouraging it to be nearly optimal for the
individual components fi(x). While the existence of such a
solution is in itself a strong assumption, modern machine
learning involves highly over parametrized models, such
as deep neural networks, where a solution nearly optimal
for all components fi is likely to exist (Zhang et al., 2017).
We propose to achieve convergence to such solutions by
aligning the gradients across different fi. To this end, we in-
troduce a regularizer r(x) = 1

2n

∑n
i=1‖∇fi(x)−∇f(x)‖2

measuring the variance of gradients across the mini-batches,
and whose minimization leads to the alignment of differ-
ent gradients. While optimizing such a regularizer through
gradient descent requires expensive Hessian-gradient vec-
tor computation, as demonstrated recently by Smith et al.
(2021), stochastic gradient descent (SGD) (Robbins and
Monro, 1951) already contains an implicit regularization
effect over gradient descent (GD) corresponding to the min-
imization of r(x), when comparing updates over an entire
epoch. Our analysis applicable to arbitrary sequences of
SGD steps further reveals that the optimization trajectory
followed by SGD can be approximated through gradient
descent on the surrogate function f̂(x) := f(x) + λr(x)
with the strength of the regularization being controlled by
the step size. This motivates us to devise new algorithms
tailored to implicitly minimize this surrogate function f̂(x).

While control variates-based variance reduction techniques
can effectively reduce the variance across different updates
(Johnson and Zhang, 2013), they do not directly promote
variance reduction through the alignment of different fi’s
gradients for the current iterate, i.e., such methods do not
encourage the decrease of r(x) throughout training. A small
variance of gradients across mini-batches, i.e., small r(x),
corresponds to the alignment of gradients for different data-
points. Such alignment can benefit generalization through-
out training, since large gradient alignment across data-
points implies that gradient updates on fi corresponding to
empirical risk on a subset of the data may reduce the loss
for a much larger number of data points, even outside the
training set. A similar observation was recently utilized to
improve transfer in error reduction across datapoints in meta-
learning (Nichol et al., 2018). The gradient alignment in

Submission and Formatting Instructions for ICML 2021

SGD arises due to its sequential nature and the use of small
mini-batches, which together induce dependencies between
successive updates contributing to the implicit minimization
of r(x). These effects, however, decrease as the mini-batch
size is increased, since the variance across mini-batches
diminishes. This imposes a trade-off between using large
mini-batches per update and obtaining gradient alignment
and hence better generalization. A similar trade-off has been
observed empirically (Keskar et al., 2017; Ma et al., 2018;
Yin et al., 2018), where using larger mini-batches has been
shown to worsen the generalization performance.

We argue that the utilization of gradient alignment to im-
prove generalization can be especially beneficial in dis-
tributed and federated learning. In datacenter distributed
learning (Goyal et al., 2018; Dean et al., 2012), where the
primary bottleneck is the computation of gradients instead
of communication, (Kairouz and McMahan, 2021), it is de-
sirable to exploit the available parallelism to the maximum
extent, without losing the benefits of sequential updates on
small mini-batches provided by SGD. Our proposed algo-
rithm, GradAlign, achieves this by aligning the gradients
across clients through implicit regularization.

In a federated setting, where multiple updates for each client
are required to reduce the communication cost, data dissimi-
larity among clients plays an especially important role. One
common approach to obtain the regularization benefits of
SGD in federated learning is to run SGD on small mini-
batches in parallel on separate clients, each with a different
subset of the data, while periodically averaging the iterates
to obtain global updates (FedAvg (McMahan et al., 2017b)).
However, the local nature of optimization in each client, pre-
vents gradient alignment across mini-batches corresponding
to different clients. Such gradient alignment across clients is
particularly desirable in the presence of data heterogeneity
across clients where the convergence of Federated Aver-
aging is hindered due to the phenomenon of “client drift.”
(Karimireddy et al., 2020), corresponding to the deviation
of local updates for each client from the gradient of the
global objective. Thus gradient alignment across clients
in federated learning, analogous to the gradient alignment
across mini-batches in SGD, would not only improve the
test accuracy upon convergence, but also minimize the client
drift in the presence of heterogeneity. To achieve this, we
design a novel algorithm Federated Gradient Alignment
(FedGA), that replicates the implicit regularization effect of
SGD by promoting inter-client gradient alignment. We fur-
ther derive the existence of a similar regularization effect in
a recently proposed algorithm, SCAFFOLD (Karimireddy
et al., 2020), albeit without the ability to fine-tune the reg-
ularization coefficient. Our main contributions are thus as
follows:

1. We design a novel algorithm GradAlign that replicates

the regularization effect of a sequence of SGD steps
while allowing the use of the entire set of mini-batches
for each update.

2. We extend GradAlign to the federated learning setting
as FedGA, and derive the existence of the implicit inter-
client gradient alignment regularizer r(x) for FedGA
as well as for SCAFFOLD.

3. We derive sufficient conditions under which GradAlign
causes a decrease in the explicitly regularized objective
f̂(x).

4. We empirically demonstrate that FedGA achieves bet-
ter generalization than both FedAvg (McMahan et al.,
2017b) and SCAFFOLD (Karimireddy et al., 2020).

2. Related Work
Our work corroborates the recent empirical findings in (Lin
et al., 2020a), where the use of extrapolation for large batch
SGD lead to significant gains in generalization performance.
While Lin et al. (2020a) attributed the improved generaliza-
tion to smoothening of the landscape due to extrapolation,
our analysis and results provide a novel perspective to the
benefits of displacement through implicit regularization.

The generalization benefits of SGD have been analyzed
through a number of related perspectives such as Stochastic
Differential Equations (SDEs) (Chaudhari and Soatto, 2018;
Jastrzębski et al., 2018), Bayesian analysis (Smith and Le,
2018; Mandt et al., 2017) and flatness of minima (Yao et al.,
2018; Keskar et al., 2017), which has been challenged by
Dinh et al. (2017). Unlike these works, the implicit reg-
ularization perspectives in Barrett and Dherin (2021) and
our work directly describe a modified objective upon which
gradient flow and gradient descent respectively approximate
the updates of SGD. Moreover, our analysis incorporates the
effects of finite step sizes, whereas the SDE-based analysis
relies on infinitesimal learning rates.

The existence of shared optima in sum structured opti-
mization has previously been analyzed in the context of
a strongly convex objective, where the strong growth con-
dition (Schmidt and Roux, 2013) implies the existence of a
shared optimum and linear convergence for both determin-
istic and stochastic gradient descent. However, for general
non-convex objectives having multiple local minima, it is
desirable to encourage convergence to the set of minima to
the the ones being nearly optimal for all the components fi
without sacrificing the ability to use large amounts of data
for each update.

Submission and Formatting Instructions for ICML 2021

3. Setup
We consider the standard setting of empirical risk minimiza-
tion with parameters x, represented as a sum

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
,

where the function fi denotes the empirical risks on the ith
subset of the training data. Here the subsets correspond to
different mini-batches, clients, or clients depending on the
application. We further define the regularizer

r(x) =
1

2n

n∑
i=1

‖∇fi(x)−∇f(x)‖2.

Here r(x) represents 1
2 times the trace of the covariance

matrix for the mini-batch gradients. The gradient of r(x) is
then given by:

∇r(x) = 1

n

n∑
i=1

(
∇2fi(x)−∇2f(x)

)
(∇fi(x)−∇f(x)).

4. Analysis and Proposed Algorithms
A key component in all our subsequent analysis is the expres-
sion for the gradient of fi at a point obtained after applying
a displacement vx to a given point x, i.e.,∇fi(x+ vx). By
applying Taylor’s theorem to each component of ∇fi, we
obtain the following expression (see Appendix A.4):

Lemma 1. If fi has Lipschitz Hessian, i.e., ‖∇2fi(x) −
∇2fi(y)‖2 ≤ ρ‖x− y‖ for some ρ > 0, then

∇fi(x+ vx) = ∇fi(x) +∇2fi(x)vx +O(‖vx‖2). (1)

For instance, when vx = −α∇fi(x), we have:

∇fi(x− α∇fj(x)) =∇fi(x)− α∇2fi(x)∇fj(x)
+O(α2)

(2)

4.1. SGD over K Sequential Steps

Recall that SGD computes gradients with respect to ran-
domly sampled mini-batches in each round. After updat-
ing in the direction of the negative gradient of say fi, we
are effectively using the displacement of −∇fi(x) to com-
pute the gradient with respect to the new min-batch, say
fj , i.e., we compute ∇fj(x − α∇fi(x)) for our next up-
date. From Equation 2, we observe that, when the or-
der of gradient steps on fi and fj , is random, second-
order term due to displacement (Lemma 3) in expecta-
tion equals −α2

(
∇2fi(x)∇fj(x) +∇2fj(x)∇fi(x)

)
=

−α2∇
(
∇fi(x)>∇fj(x)

)
. Thus sequential updates on dif-

ferent functions implicitly maximize the inner product of
the corresponding gradients (Nichol et al., 2018). We refer

to this phenomenon of alignment of gradients across mini-
batches as “implicit gradient alignment”. We make this
precise by deriving the implicit regularization in SGD for a
sequence of K steps under SGD. A similar regularization
term was derived by Smith et al. (2021) in the context of
backward error analysis for the case of a sequence corre-
sponding to non-overlapping batches covering the entire
dataset. They derived a surrogate loss function upon which
gradient flow approximates the path followed by SGD when
optimizing the original loss function f . Since continuous-
time gradient flow is unusable in practice, we instead aim
to derive a surrogate loss function f̂ where a large batch
gradient descent algorithm on this surrogate loss would
approximate the path followed by SGD when optimizing f .

Moreover, our analysis applies to arbitrary K and any sam-
pling procedure symmetric w.r.t time, i.e, we only assume
that for any sequence of K mini-batches A = {ai}Ki=1, the
corresponding reverse sequence A−1 = {aK+1−i}Ki=1 has
the same probability. This allows us to conveniently eval-
uate the average effect of SGD for a particular sequence
over all possible re-orderings of the sequence. Note that this
assumption is valid both when sampling with and without re-
placement from any arbitrary distribution over mini-batches.

While each gradient update in SGD is an unbiased esti-
mate of the full gradient, the cumulative effect of multi-
ple updates on randomly sampled mini-batches can differ
from the minimization of the original objective, as illus-
trated through Equation (2). To isolate the effect of se-
quential updates on particular sequences of sampled mini-
batches, we compare the steps taken by SGD against the
same number of steps using GD on the sample mean of the
sequence’s objective. We denote the gradient and Hessian
for mini-batch ai by ∇fai(x) and ∇2fai(x) respectively
while∇fA(x),∇2fA(x) denote the mean gradient and Hes-
sian for the entire sequence A. By applying Lemma 1 to
each gradient step, we obtain the following result (proof in
the Appendix A.4):

Theorem 1. Conditioned on the (multi)set of mini-batches
in a randomly sampled sequence A of length K, the ex-
pected difference between the parameters reached after
K steps of SGD using the corresponding mini-batches in
A and K steps of GD on the mean objective fA(x) =
1
K

∑K
i=1 fai(x), both starting from the same initial param-

eters x is given by:

Submission and Formatting Instructions for ICML 2021

E [xSGD,A − xGD,A] =

−α
2

2

(K∑
i=1

(∇2fai(x) (∇fai(x)−∇fA(x))
)
+O(α3)

(3)

=− α2

4
∇x

(K∑
i=1

‖∇fai(x)−∇fA(x)‖2
)
+O(α3) (4)

− Kα2

2
∇rA(x) +O(α3) (5)

where, analogous to Section 3, we define rA(x) =
1

2K

(∑K
i=1 ‖∇fai(x)−∇fA(x)‖2

)
. For the particular case

of a sequence covering an entire epoch, i.e. K = n and
sampling without replacement, we recover the implicit reg-
ularization over gradient descent derived by Smith et al.
(2021). The above results imply that K steps of SGD not
only optimize the original objective function analogous to
GD, but additionally move the parameters opposite to the
gradient of rA(x) Thus, SGD implicitly minimizes rA(x)
along with the original objective, which leads us to call
the latter term an implicit regularizer. As we show in the
Appendix A.4, the net displacement of SGD in Equation
(5) can be approximated by K gradient descent steps on the
mean objective regularized by α

2 rA(x). Thus optimizing
the regularized objective can allow us to utilize K times
more data for each update, while still approximating the
trajectory followed by SGD. This is in contrast to the linear
scaling rule discussed in Goyal et al. (2018), which aims
to approximate the sequence of K SGD steps with a single
GD step with a step size scaled by K. However, such linear
scaling only approximates the first-order gradient terms in
the sequence, ignoring the implicit gradient alignment. We
discuss this further in Appendix A.2, and analyze a linearly
scaled approximation of SGD that incorporates implicit gra-
dient alignment. A crucial advantage of approximating SGD
using the same number of gradient steps and step size is that
it allows the use of larger total batch sizes, whereas linear
scaling is only effective for batch sizes much smaller than
the total training set size (Shallue et al., 2019).

However, explicit gradient computation of the regularized
objective rA(x) is, however, practically infeasible due to
the prohibitively expensive Hessian-gradient vector com-
putations involved. To remedy this, we observe that the
term corresponding to the Hessian for the mini-batch ai in
Equation (3) can be obtained using Lemma 1 after com-
puting the gradient of fai on the point x displayed by
vx = −α2 (∇fA(x)−∇fai(x)). Thus utilizing the right
displacement for each mini-batch allows us to approximate
the regularization effect of SGD without the explicit com-
putation of the regularization term’s gradients. In the sub-
sequent sections, we utilize this observation to design algo-
rithms for distributed and federated learning that replicate
the regularization effect of SGD while allowing parallelism

for the use of arbitrarily large batches, overcoming the gen-
eralization failure of traditional large-batch training (Shallue
et al., 2019).

4.2. Gradient Alignment under Parallel Computations

The analysis in the previous section revealed that sequential
updates on a randomly sampled set of mini-batches not only
minimize the mean sampled objective but also the variance
of gradients across the sampled mini-batches. We aim to
replicate this effect while allowing the use of parallelism
across mini-batches. Through Equation (3) and Lemma 1,
we observed that the source of gradient alignment in the
sequential updates for SGD is the evaluation of the gradient
of a mini-batch i after an additional displacement in the
direction of − (∇f(x)−∇fi(x)). Thus we can replicate
the gradient alignment of SGD by utilizing gradients for
each mini-batch i computed after an initial displacement
vi(x) = −β (∇f(x)−∇fi(x)). This ensures that the vec-
tor multiplying ∇2fi(x) due to displacement (Lemma 1)
matches the corresponding vector in the negative gradient
of βr(x) = β 1

2n

∑n
i=1‖∇fi(x)−∇f(x)‖2. Moreover, un-

like SGD, the step size for the displacement β can differ
from α

2 , enabling the fine-tuning of the regularization coef-
ficient. We refer to the resulting Algorithm 1 as GradAlign
(GA).

Algorithm 1 GradAlign (GA)

1: Learning rate α, initial model parameters :x
2: while not done do
3: ∇f(x)← 1

n

∑n
i=1∇fi(x) {Obtain the full gradient

by computing the mini-batch gradients in parallel}
4: for mini-batches i in [1, · · · , n] in parallel do
5: Obtain the displacement for the ith minibatch as

vi ← −β (∇f(x)−∇fi(x))
6: xi ← x − α∇fi(x + vi) {Obtain gradient after

displacement}
7: end for
8: x← 1

n

∑n
i=1 xi

9: end while

Theorem 2. The difference between the parameters reached
by one step of GradAlign and gradient descent objective
starting from the initial parameters x is given by

xGA − xGD =

− αβ

2n
∇x

(n∑
i=1

‖∇fi(x)−∇f(x)‖2
)
+O(αβ2).

Descent Condition. Since the displacement step size β
controls the strength of regularization as well as the error in
approximating the gradient of the regularized objective, it
is imperative to know if there exists a suitable range of β

Submission and Formatting Instructions for ICML 2021

x
(1)
2

x
(2)
2

x
(1)
1

x
(2)
1

∇f2(x)

∇f1(x)

∇f(x)−∇f1(x)

x+ v1

x+ v2

∇f2(x+ v2)

x

FedGA SCAFFOLD

x

∇f2(x)

∇f1(x)

x xGD

x+ v2

x+ v1

xGA

∇f2(x+ v2)

xGA

x2

x1

∇f(x)−∇f2(x)

v1

v2

v1

v2

Figure 1. Left: Depiction of one round of GD against one round of GradAlign (equivalent to one round of FedGA with K = 1, see
Appendix A.5) along with the computation of the displacements vi = −β(∇f(x) − ∇fi(x)). Middle: Schematic depiction of one
round of FedGA consisting of K = 2 steps. After the initial displacement of x, the algorithm follows K local updates. Right: Schematic
depiction of one round of SCAFFOLD where the displacement is applied after each local update.

under which GradAlign causes a decrease in the surrogate
objective f̂(x) = f(x) + βr(x). We prove that unless
the algorithm is at a point that is simultaneously critical
for f(x) as well as r(x), for sufficiently small step and
displacement sizes, each step of FedGA causes a decrease
in f̂(x). This lends credence to the use of GradAlign to
ensure convergence to shared optima in distributed settings
for general smooth non-convex objectives. The proof of
the theorem and the justifications for the assumptions are
provided in the Appendix A.1.

Theorem 3. Assuming L1-smoothness of f(x), L2-
smoothness of r(x), and Lipschitzness of Hessians, for x(t)

satisfying at least one of ∇f(x(t)) 6= 0 or ∇r(x(t)) 6= 0,
∃β > 0 such that updating x(t) using GradAlign with step
size α < 1

2L1
and displacement β results in updated param-

eters x(t+1) satisfying f̂(x(t+1))− f̂(x(t)) < 0.

While the above theorem suggests the possibility of requir-
ing adaptation of the displacement step size with time, in
practice, we found that a constant step size is sufficient to
achieve significant gains in test accuracy. We hypothesize
that this is due to the decrease in variance across mini-batch
gradients over time, which balances the effect of the de-
crease in the gradient norm.

4.3. Federated Learning

In the presence of large communication costs across clients,
it is desirable to allow multiple local updates for each client
before each round of communication. Such an approach is
known in the literature as Federated Averaging (FedAvg)
(McMahan et al., 2017a) or local SGD, where each round in-
volves K > 1 updates on local objectives corresponding to
the loss of randomly sampled clients. In the case of identical
data distributions across clients, parts of the generalization
benefits of SGD readily appear in FedAvg due to the sequen-
tial local update steps within each client (Zinkevich et al.,
2010), leading to significant gains in test accuracies over gra-
dient descent on large batches (Lin et al., 2020b; Woodworth

et al., 2020). However, as we prove in the appendix A.4,
local SGD steps lead to gradient alignment only across mini-
batches within the same client. We argue that extending
FedAvg to allow implicit gradient alignment across clients
is desirable for two major reasons. First, similar to SGD and
GradAlign, implicit regularization through the minimiza-
tion of inter-client variance of the gradients is expected to
improve generalization performance by encouraging conver-
gence to shared optima across the different clients’ objec-
tives. Moreover, gradient alignment across clients crucially
minimizes the effects of “client drift”, where the presence of
the heterogeneity in the data distributions across clients can
cause each client’s iterates to deviate from the optimization
trajectory of the global objective significantly (Karimireddy
et al., 2020).

We consider a federated learning setup corresponding to the
minimization of the average loss over n clients w.r.t. pa-
rameters x. For simplicity, we assume that all the n clients
are sampled in each round. We extend the GradAlign algo-
rithm to the federated setting by computing the local updates
for each client i using the gradients obtained after an ini-
tial additive displacement vi(x) = −β (∇f(x)−∇fi(x))
obtained at the beginning of each round. Since the dis-
placement for each client remains constant throughout a
round, the displacement step vi needs to be applied only
once for each client before obtaining the K local up-
dates. Furthermore, since the displacements average to
0 i.e

∑n
i=1 vi =

∑n
i=1−β (∇f(x)−∇fi(x)) = 0, they

don’t require being reverted in the end. This is illustrated
through Figure 1 and further described in the Appendix A.5.
We refer to the resulting Algorithm 2 as FedGA (Federated
Gradient Alignment).

We assume that, for the kth local update, client i obtains an
unbiased stochastic gradient of fi denoted by ∇fi(.; ζi,k)
where ζi,k for k ∈ [1, · · · ,K] are sampled i.i.d such that
fi(x) := Eζi [fi(x; ζi)]. The stochasticity in the local up-
dates allows our algorithm to retain the generalization bene-
fits of local SGD, while additionally aligning the gradients

Submission and Formatting Instructions for ICML 2021

across clients through the use of suitable displacements.
Through a derivation similar to Theorem 2 (Appendix A.4),

Algorithm 2 Federated Gradient Alignment

1: Input: Learning rate α, initial model parameters x
2: while not done do
3: ∇f(x)← 1

n

∑n
i=1∇fi(x) {Update the mean gradi-

ent computing ∇fi(x) in parallel}
4: for Client i in [1, · · · , n] do
5: Obtain the displacement of the mean gradient as

vi ← −β (∇f(x)−∇fi(x))
6: x

(0)
i ← x + vi {Displacement applied at the be-

ginning}
7: for k in [1, · · · ,K] do
8: x

(k)
i ← x

(k−1)
i − α∇fi(x(k−1)

i ; ζi,k)
9: end for

10: end for
11: x← 1

n

∑n
i=1 x

(K)
i

12: end while

we obtain the following result:

Theorem 4. The expected difference between the parame-
ters reached by FedGA and FedAvg after one round with K
local updates per client starting from the initial parameters
x is given by

E [xFedGA − xFedAvg] =

− αβK

2n
∇x

(n∑
i=1

‖∇fi(x)−∇f(x)‖2
)
+O(αβ2).

Scaffold. As noted above, unlike distributed gradient de-
scent with communication at each round, multiple local
updates for each client in federated learning can cause the
global updates to deviate from the objective’s gradient sig-
nificantly. This motivated Karimireddy et al. (2020) to use
control variate based corrections for each client’s local up-
dates. Surprisingly, our analysis reveals that the resulting
algorithm, SCAFFOLD, not only minimizes the variance
of the updates, but also leads to the alignment of the gradi-
ents across clients through implicit regularization. This is
because, as illustrated in the Appendix A.6, Scaffold and
FedGA differ only in that Scaffold directly adds the control
variates into the local update while FedGA utilizes them
for displacement. This corroborates the empirical improve-
ments in convergence rates and provides an explanation for
the improvements in test accuracies due to SCAFFOLD.
The implicit gradient alignment in SCAFFOLD is described
through the following result, proved in Appendix A.4:

Theorem 5. The expected difference between the parame-
ters reached by SCAFFOLD and FedAvg after one round
with K local updates per client starting from the initial

parameters x is given by:

xSCAFFOLD − xFedAV G =

− α2K(K − 1)

4n
∇x

(n∑
i=1

‖∇fi(x)−∇f(x)‖2
)
+O(α3).

A crucial difference between FedGA and Scaffold is that
FedGA allows the ability to utilize a displacement step size
β, different from α, enabling finer control over the effect
of the regularization term. Moreover, unlike SCAFFOLD,
FedGA does not require applying the displacement at each
local step, which improves the consistency between consec-
utive updates as well as the overall efficiency.

Table 1. Test Accuracy achieved by FedGA, SCAFFOLD and Fe-
dAvg on EMNIST and CIFAR10. For EMNIST we sample roughly
20% of the clients in each round, while for CIFAR10 100% of the
clients are used. For EMNIST we distinguish between the IID and
the heterogeneous distributions described in Section 5.1.

EMNIST
IID

10 out of 47

EMNIST
heterogeneous
10 out of 47

CIFAR10
IID

10 out of 10
FedGA 88.66± 0.1 85.95± 0.56 74.34± 0.48

SCAFFOLD 88.56± 0.12 84.67± 0.78 73.89± 0.65

FedAvg 88.32± 0.06 82.9± 0.58 73.1± 0.17

5. Experiments
Motivated by the analysis presented in previous sections, we
aim to confirm the effectiveness of implicit regularization
through a series of experiments on image classification tasks.
To this end, we evaluate the effectiveness of GradAlign in
achieving improved generalization in the following settings:
(1) Federated Learning: Data is distributed on a large num-
ber of clients (with different distributions), and only a subset
of the clients is sampled to be used in each round. (2) Data-
center distributed learning: Data is distributed (i.i.d.) among
the clients, and all clients are used on each round.

Since our primary focus is the quantitative evaluation of
generalization performance through test accuracy and test
Losses, we do not constrain the algorithms to use the same
number of local epochs (a local epoch is completed when
the entire data of a client has been used, typically in Feder-
ated Learning a client can pass more than once trough its
data before communicating). Indeed, while increasing the
number of local epochs may decrease the number of rounds
needed to train, it has no noticeable effect on the maximum
test accuracy reached by the algorithm (see Appendix B.4).
We use a constant learning rate throughout all our experi-
ments to illustrate, as has been done in several federated
learning papers (McMahan et al., 2017a; Hsu et al., 2019;

Submission and Formatting Instructions for ICML 2021

Khaled et al., 2020; Liu et al., 2020). We also do not use
batch normalization or momentum (neither server nor local
momentum) in our experiments. Throughout, we report the
best results with the hyperparameters obtained through grid
search for each of the studied algorithms. For more details,
see Appendix B.2. Moreover, each of the reported curves
and results is averaged over at least 3 different runs with dif-
ferent random seeds. All experiments were performed using
PyTorch on Tesla V100-SXM2 with 32GB of memory.

5.1. Federated Learning

For Federated learning, we use the (balanced) EMNIST
dataset (Cohen et al., 2017) consisting of 47 classes dis-
tributed among 47 clients, each receiving 2400 training
examples. We split the data using two distinct distributions:
In the IID setting, data is shuffled using a random permu-
tation and then distributed (without overlap) among the 47
clients. In the heterogeneous setting, each of the 47 clients
is assigned all the data corresponding to a unique label from
the 47 classes. This setting has been extensively studied
following the work of Hsu et al. (2019).

We use a (simple) CNN neural network architecture for our
experiments with 2 convolutional layers followed by a fully
connected layer. The exact description of the network can
be found in the Appendix B.1. In each round, we sample
10 out of 47 clients uniformly at random. We compare the
performance of three algorithms: FedAvg, Scaffold, and
FedGA. With approximately 20% of the clients sampled on
each round, FedGA achieves the highest Test accuracy and
the lowest Test Loss in both settings (see Figure 3).

IID data Since the data in each client is i.i.d. sampled, us-
ing smaller mini-batches for local steps achieves an implicit
regularization that promotes gradient alignment within the
clients’ data (see Section 4.1). Scaffold, FedGA, and Fe-
dAvg all benefit from this regularization when using smaller
mini-batches. On top of that, FedGA and Scaffold promote
inter-client gradient alignment as seen in Theorems 4 and 5.
Therefore, these algorithms with smaller mini-batches bene-
fit from both inter and intra client gradient alignment. We
believe this is the reason why they clearly outperform Fe-
dAvg; see Figure 3. Furthermore, FedGA has an additional
parameter β that can be used to tune the constant in front of
the regularizer (see Theorem 4). Thus, while the implicit
regularization term might be present in both Scaffold and
FedGA, the fine-tuning of this parameter is crucial for its im-
provements over Scaffold. Indeed, as seen in Appendix B.3,
modifying the constant β has a significant impact on the per-
formance of FedGA. This is a double-edged sword, where
on the one hand, β improves generalization, but on the other
hand, it can be quite difficult to tune. In fact, β used for
the IID and the heterogeneous settings are different, as they
depend on the magnitude of the displacement.

Gradient Variance EMNIST, Heterogeneous distribution
SCAFFOLD FedAvg FedGA

500 1k 1.5k 2k 2.5k 3k

rounds

5

10

15

20

Gradient Variance EMNIST, IID distribution
FedAvg FedGA SCAFFOLD

500 1k 1.5k 2k 2.5k 3k

rounds
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 2. Magnitude of the difference between the global objec-
tive gradient and the gradient of the first client’s objective, i.e.,
‖∇f(x)−∇fi(x)‖, over 3000 rounds of training. The magnitude
of this difference is much smaller in the IID- than in the heteroge-
neous setting. However, in both cases, FedGA and SCAFFOLD
tend to have a smaller difference than FedAvg. Moreover, not only
is this quantity lower, but it has a smaller variability.

Heterogeneous data Federated learning is more challeng-
ing if each client has their own data distribution (Hsu et al.,
2019), as the gradients become less transferable between
clients. Achieving gradient alignment thus has a strong
promise to mitigate this problem and to better align the up-
dates on clients with the common objective. Indeed, FedGA
achieves a significantly better generalization than FedAvg
and SCAFFOLD, the latter ranking in the middle but closer
to FedAvg. We also found that increasing the batch size
had only a minor impact on training with FedAvg, while it
significantly impacts FedGA and SCAFFOLD.

5.2. Datacenter distributed learning

We use the CIFAR10 dataset (Krizhevsky et al., 2009) con-
sisting of 50000 training examples split among 10 classes,
which are then distributed among 10 clients, each receiv-
ing 5000 training examples. We split the data using the
same IID setting used in Federated Learning. We use a
(simple) CNN neural network architecture consisting of 2
convolutional layers followed by 2 fully connected layers.
The exact description of the network can be found in the
supplementary materials. We study two different settings:
In the first, we are interested in maximizing parallelism, i.e.,
we assume that communication is not the bottleneck, and
hence we aim to minimize the number of updates to reach

Submission and Formatting Instructions for ICML 2021

Test Accuracy on EMNIST, IID dist., 10 workers out of 47
FedGA FedAvg SCAFFOLD

500 1k 1.5k 2k 2.5k 3k

rounds
84

85

86

87

88

Test Accuracy on EMNIST, Heterogeneous dist., 10 workers out of 47
FedGA FedAvg SCAFFOLD

1k 2k 3k 4k

rounds
60

65

70

75

80

85

Figure 3. Experiments on the EMNIST dataset using a CNN ar-
chitecture for the federated learning setting with 47 clients, out of
which 10 are uniformly sampled in every round. While FedAvg
is faster and can efficiently use more local epochs, both FedGA
and SCAFFOLD generalize better. Left: Data is distributed using
the IID setting, where data for each client is drawn uniformly at
random. Right: Data is distributed heterogeneously, each client
having examples of only a single class. This is the most challeng-
ing setting for federated algorithms.

top accuracy. The second setting is equivalent to the IID
federated learning setting, with the main difference being
that every client is sampled in each round. Recall that both
FedGA and SCAFFOLD have an overhead of 2× on the
number of rounds of communication as they require one
extra round to compute the displacement. However, even
with this handicap, they outperform FedAvg.

Sampling all clients Similar to the IID federated learning
setting, FedGA obtains the highest accuracy followed by
SCAFFOLD and then by FedAvg; see Figure 4. In this set-
ting, even with the overhead of 2× in the number of rounds
used by both FedGA and Scaffold, they outperform FedAvg.
As in the federated IID setting, a smaller mini-batch size
benefits all algorithms. We believe this is explained by
the gradient alignment coming from the use of different
mini-batches sequentially during the local updates. In this
way, both FedGA and SCAFFOLD benefit from inter- and
intra-client gradient alignment.

Minimizing number of updates. In this setting, the algo-
rithm to beat is Large-Batch SGD. If communication is fast
enough, the main bottleneck is the sequential dependencies
between consecutive gradient updates. To increase paral-

lelism, the standard solution is to increase the batch-size,
but it is known to have an impact on generalization (Keskar
et al., 2017; Ma et al., 2018; Yin et al., 2018). Our algo-
rithm GradAlign (see Section 4.2) allows us to use large
mini-batches while retaining the generalization properties of
using smaller mini-batches. Indeed, our experiments show
that GradAlign noticeably achieves higher Test Accuracy
than Large-Batch SGD. Moreover, it converges faster in
terms of number of updates (see Figure 4).

Test Accuracy on CIFAR10, IID dist., 10 workers out of 10
FedGA FedAvg SCAFFOLD

1k 2k 3k 4k

rounds
66

68

70

72

74

Test Accuracy on CIFAR10, IID dist., 10 workers out of 10
GradAlign LargeBatch SGD SCAFFOLD (LargeBatch)

5k 10k 15k 20k 25k 30k

num_updates
60

62

64

66

68

70

72

Figure 4. Test accuracy on the CIFAR10 dataset using a CNN
architecture for the distributed setting where 100% of the clients
are sampled in each round. Left: FedGA is not only faster in terms
of the number of rounds, but it also achieves higher test accuracy
than its counterparts. Right: The x-axis depicts the number of
updates, i.e., the number of times the parameters of the model are
modified. With this metric, GradAlign profits from the available
parallelism better than Large-Batch SGD and SCAFFOLD.

6. Future Work
Promising directions for future work include designing al-
gorithms with implicit gradient alignment for decentralized
and asynchronous learning settings, incorporating optimiza-
tion schemes such as momentum into gradient alignment,
and developing techniques to reduce the communication
overhead in FedGA.

References
David Barrett and Benoit Dherin. Implicit gradient regulariza-

tion. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?
id=3q5IqUrkcF.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient de-
scent performs variational inference, converges to limit cycles

https://openreview.net/forum?id=3q5IqUrkcF
https://openreview.net/forum?id=3q5IqUrkcF

Submission and Formatting Instructions for ICML 2021

for deep networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/
forum?id=HyWrIgW0W.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre
Van Schaik. Emnist: Extending mnist to handwritten letters.
In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc' aurelio Ranzato, Andrew Se-
nior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng.
Large scale distributed deep networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012. URL https:
//proceedings.neurips.cc/paper/2012/file/
6aca97005c68f1206823815f66102863-Paper.
pdf.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio.
Sharp minima can generalize for deep nets. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1019–1028. PMLR, 06–
11 Aug 2017. URL http://proceedings.mlr.press/
v70/dinh17b.html.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and
Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour, 2018.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring
the effects of non-identical data distribution for federated visual
classification. arXiv preprint arXiv:1909.06335, 2019.

Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas
Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey. Three
factors influencing minima in sgd, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradi-
ent descent using predictive variance reduction. In NIPS,
pages 315–323, 2013. URL http://papers.nips.cc/
paper/4937.

Peter Kairouz and H. Brendan McMahan. Advances and open
problems in federated learning. Foundations and Trends® in
Machine Learning, 14(1):–, 2021. ISSN 1935-8237. doi:
10.1561/2200000083. URL http://dx.doi.org/10.
1561/2200000083.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.
Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank
Reddi, Sebastian Stich, and Ananda Theertha Suresh. SCAF-
FOLD: Stochastic controlled averaging for federated learning.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 5132–
5143. PMLR, 13–18 Jul 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and sharp
minima. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=H1oyRlYgg.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik.
Tighter theory for local sgd on identical and heterogeneous
data. In International Conference on Artificial Intelligence and
Statistics, pages 4519–4529. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

Tao Lin, Lingjing Kong, Sebastian Stich, and Martin Jaggi. Ex-
trapolation for large-batch training in deep learning. In ICML -
Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning
Research, pages 6094–6104. PMLR, 13–18 Jul 2020a.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi.
Don’t use large mini-batches, use local sgd. In International
Conference on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=B1eyO1BFPr.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating
federated learning via momentum gradient descent. IEEE Trans-
actions on Parallel and Distributed Systems, 31(8):1754–1766,
2020.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of
interpolation: Understanding the effectiveness of SGD in mod-
ern over-parametrized learning. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 3325–3334. PMLR, 10–
15 Jul 2018. URL http://proceedings.mlr.press/
v80/ma18a.html.

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochas-
tic gradient descent as approximate bayesian inference. 18(1):
4873–4907, January 2017. ISSN 1532-4435.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. Communication-efficient learning
of deep networks from decentralized data. In Proceedings of
AISTATS, pages 1273–1282, 2017a.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hamp-
son, and Blaise Aguera y Arcas. Communication-Efficient
Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statis-
tics, volume 54 of Proceedings of Machine Learning Research,
pages 1273–1282, Fort Lauderdale, FL, USA, 20–22 Apr 2017b.
PMLR. URL http://proceedings.mlr.press/v54/
mcmahan17a.html.

Angelia Nedic. Distributed gradient methods for convex
machine learning problems in networks: Distributed op-
timization. IEEE Signal Processing Magazine, 37(3):92–
101, 2020. URL https://ieeexplore.ieee.org/
abstract/document/9084356.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order
meta-learning algorithms, 2018.

https://openreview.net/forum?id=HyWrIgW0W
https://openreview.net/forum?id=HyWrIgW0W
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
http://proceedings.mlr.press/v70/dinh17b.html
http://proceedings.mlr.press/v70/dinh17b.html
http://papers.nips.cc/paper/4937
http://papers.nips.cc/paper/4937
http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1561/2200000083
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
http://proceedings.mlr.press/v80/ma18a.html
http://proceedings.mlr.press/v80/ma18a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://ieeexplore.ieee.org/abstract/document/9084356
https://ieeexplore.ieee.org/abstract/document/9084356

Submission and Formatting Instructions for ICML 2021

Herbert Robbins and Sutton Monro. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, 22(3):400–407,
September 1951.

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochas-
tic gradient descent under a strong growth condition, 2013.

Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha
Sohl-Dickstein, Roy Frostig, and George E. Dahl. Measuring
the effects of data parallelism on neural network training. Jour-
nal of Machine Learning Research, 20(112):1–49, 2019. URL
http://jmlr.org/papers/v20/18-789.html.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on
generalization and stochastic gradient descent. In International
Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=BJij4yg0Z.

Samuel L Smith, Benoit Dherin, David Barrett, and Soham De.
On the origin of implicit regularization in stochastic gradient
descent. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?
id=rq_Qr0c1Hyo.

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai,
Brian Bullins, Brendan Mcmahan, Ohad Shamir, and Nathan
Srebro. Is local SGD better than minibatch SGD? In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 10334–10343.
PMLR, 13–18 Jul 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Ma-
honey. Hessian-based analysis of large batch training and ro-
bustness to adversaries. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems,
NIPS’18, page 4954–4964, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopou-
los, Kannan Ramchandran, and Peter Bartlett. Gradient di-
versity: a key ingredient for scalable distributed learning. In
Amos Storkey and Fernando Perez-Cruz, editors, Proceedings
of the Twenty-First International Conference on Artificial In-
telligence and Statistics, volume 84 of Proceedings of Ma-
chine Learning Research, pages 1998–2007. PMLR, 09–11 Apr
2018. URL http://proceedings.mlr.press/v84/
yin18a.html.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking
generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=Sy8gdB9xx.

Martin A. Zinkevich, Markus Weimer, Alex Smola, and Lihong
Li. Parallelized stochastic gradient descent. NIPS’10, page
2595–2603, Red Hook, NY, USA, 2010. Curran Associates Inc.

http://jmlr.org/papers/v20/18-789.html
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=rq_Qr0c1Hyo
http://proceedings.mlr.press/v84/yin18a.html
http://proceedings.mlr.press/v84/yin18a.html
https://openreview.net/forum?id=Sy8gdB9xx

Submission and Formatting Instructions for ICML 2021

A. Appendix
A.1. Descent condition

In this section, we provide sufficient conditions for the smoothness of the regularizer r(x) and subsequently prove Theorem
3.

A.1.1. SMOOTHNESS OF VARIANCE

While the smoothness of the objective f(x) is commonly used to prove the sufficient conditions for descent (decrease of
the objective value) in general non-convex settings, the smoothness of the variance regularization term r(x) requires a few
additional assumptions as illustrated through the subsequent analysis. The term ‖∇r(x) − ∇r(y)‖ can be bounded as
follows:

‖∇r(x)−∇r(y)‖

= ‖ 1
n

n∑
i=1

(∇2fi(x)−∇2f(x))(∇fi(x)−∇f(x)))−
1

n

n∑
i=1

(∇2fi(y)−∇2f(y))(∇fi(y)−∇f(y)))‖

≤ ‖ 1
n

n∑
i=1

(∇2fi(x)−∇2f(x)) ((∇fi(x)−∇f(x))− (∇fi(y)−∇f(y))))‖

+ ‖ 1
n

n∑
i=1

((
∇2fi(x)−∇2f(x)

)
−
(
∇2fi(y)−∇2f(y)

))
(∇fi(y)−∇f(y)))‖.

Thus boundedness and Lipschitzness of∇fi(x)−∇f(x) and,∇2fi(x) are sufficient conditions for the smoothness of r(x).
Moreover, since the positivity of ‖∇fi(x)−∇f(x)‖ and the Cauchy–Schwarz inequality further imply that

‖∇fi(x)−∇f(x)‖ ≤
n∑
j=1

‖∇fj(x)−∇f(x)‖ ≤
√
n

 n∑
j=1

‖∇fj(x)−∇f(x)‖2
 1

2

,

we note that boundedness of ‖∇fi(x)−∇f(x)‖ also follows from the boundedness of variance.

A.1.2. THEOREM 3

Proof. Using the L1, L2 smoothness of f(x), r(x) respectively and ∇f̂(x) = ∇f(x) + β∇r(x), we have:

f̂(x(t+1))− f̂(x(t)) ≤
〈
x(t+1) − x(t),∇f̂(x(t))

〉
+
L1

2
‖x(t+1) − x(t)‖2 + βL2

2
‖x(t+1) − x(t)‖2, (6)

where 〈·, ·〉 denotes the standard inner product in Euclidean space. Following the notation in Section 4, we denote by vi, the
displacement −β

(
∇f(x(t))−∇fi(x(t))

)
corresponding to the ith minibatch. Using the fundamental theorem of calculus

applied to each component of∇fi, we can express x(t+1) − x(t) as follows:

x(t+1) − x(t) = −α

(
1

n

n∑
i=1

∇fi(x(t) + vi)

)

= −α 1

n

n∑
i=1

(
∇fi(x(t)) +∇2fi(x

(t)) (vi) +

∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz

)

= −α∇f̂(x(t))− α 1

n

n∑
i=1

∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz. (7)

Submission and Formatting Instructions for ICML 2021

We now utilize the above expression to bound the terms in equation (6) as follows:

〈(
x(t+1) − x(t)

)
,∇f̂(x(t))

〉
=

1

α

〈
x(t+1) − x(t),−

(
x(t+1) − x(t)

)
+ α∇f̂(x(t)) +

(
x(t+1) − x(t)

)〉
= − 1

α
‖x(t+1) − x(t)‖2 − 1

n

n∑
i=1

〈∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz,

(
x(t+1) − x(t)

)〉

= − 1

α
‖x(t+1) − x(t)‖2 − 1

n

n∑
i=1

〈∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz,

(
x(t+1) − x(t)

)〉

= − 1

α
‖x(t+1) − x(t)‖2 − 1

n

n∑
i=1

∫ 1

z=0

〈(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vi,
(
x(t+1) − x(t)

)〉
dz

≤ − 1

α
‖x(t+1) − x(t)‖2 + 1

n

n∑
i=1

∫ 1

z=0

‖
(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vi‖‖x(t+1) − x(t)‖dz

≤ − 1

α
‖x(t+1) − x(t)‖2 + 1

n

n∑
i=1

∫ 1

z=0

ρz‖vi‖2‖x(t+1) − x(t)‖dz

= − 1

α
‖x(t+1) − x(t)‖2 + ρ

β2

2

(
n∑
i=1

1

n
‖∇fi(x(t))−∇f(x(t))‖2

)
‖x(t+1) − x(t)‖

= − 1

α
‖x(t+1) − x(t)‖2 + ρβ2r(x(t))‖x(t+1) − x(t)‖.

Where the last two inequalities follow from Cauchy-Schwartz and ρ-Lipschitzness of∇2fi respectively.

We can further use Equation (7) to lower bound ‖x(t+1) − x(t)‖ as follows:

‖x(t+1) − x(t)‖ = ‖−α∇f̂(x(t))− α 1

n

n∑
i=1

∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz‖

≥ ‖α∇f̂(x(t))‖ − 1

n

n∑
i=1

‖α
∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz‖

≥ ‖α∇f̂(x(t))‖ − 1

n

n∑
i=1

α

∫ 1

z=0

‖
(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vi‖dz

≥ ‖α∇f̂(x(t))‖ − 1

n

n∑
i=1

α

∫ 1

z=0

ρ‖zvi‖‖vi‖dz

= ‖α∇f̂(x(t))‖ − αρ
2

(
n∑
i=1

1

n
‖vi‖2

)

= ‖α∇f̂(x(t))‖ − αρβ
2

2

(
n∑
i=1

1

n
‖∇fi(x(t))−∇f(x(t))‖2

)
= ‖α∇f̂(x(t))‖ − αρβ2r(x(t)).

Substituting in (6), we obtain:

f̂(x(t+1))− f̂(x(t)) ≤ − 1

α
‖x(t+1) − x(t)‖2 + ρβ2r(x(t))‖x(t+1) − x(t)‖

+
L1

2
‖x(t+1) − x(t)‖2 + βL2

2
‖x(t+1) − x(t)‖2.

Submission and Formatting Instructions for ICML 2021

To ensure the negativity of the coefficient for ‖x(t+1) − x(t)‖2, we choose β < L1

L2
. Then, for α ≤ 1

2L1
, we have:

f̂(x(t+1))− f̂(x(t)) ≤ −L1‖x(t+1) − x(t)‖2 + ρβ2r(x(t))‖x(t+1) − x(t)‖

Thus a sufficient condition for f̂(x(t+1))− f̂(x(t)) < 0 is:

−L1‖x(t+1) − x(t)‖2 + ρβ2r(x(t))‖x(t+1) − x(t)‖ < 0,

or equivalently,

β2 <
L1

ρ

‖x(t+1) − x(t)‖
r(x(t))

.

We now consider the following cases:

1. ‖∇f(x(t))‖ > 0: Since limβ→0
L1

ρ
‖x(t+1)−x(t)‖

r(x(t))
= L1α

ρ
‖∇f(x(t))‖
r(x(t))

> 0, ∃β′ such that −L1‖x(t+1) − x(t)‖2 +

ρβ′2r(x(t))‖x(t+1) − x(t)‖ < 0.

2. ‖∇f(x(t))‖ = 0 and ‖∇r(x(t))‖ > 0. Then

L1

ρ

‖x(t+1) − x(t)‖
r(x(t))

=
L1

ρ

‖−αβ∇r(x(t))− α 1
n

∑n
i=1

∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz‖

r(x(t))

≥ L1

ρ

‖αβ∇r(x(t))‖ − ‖α 1
n

∑n
i=1

∫ 1

z=0

(
∇2fi(x

(t) + zvi)−∇2fi(x
(t))
)
vidz‖

r(x(t))

≥ αL1

ρ

(
β‖∇r(x(t))‖ − ρβ2r(x(t))

r(x(t))

)

Thus it is sufficient to use β′ satisfying:

β′2 ≤ αL1

ρ

(
β′‖∇r(x(t))‖ − ρβ′2r(x(t))

r(x(t))

)
,

or equivalently,

β′ ≤ αL1

ρ(1 + αL1)

‖∇r(x(t))‖
r(x(t))

.

Combining with the assumption, β < L1

L2
, we observe that in both cases, to ensure f̂(x(t+1))− f̂(x(t)) < 0, it is sufficient

to use β satisfying:

β < min{β′, L1

L2
}

A.2. Linear Scaling

The linear scaling rule (Goyal et al., 2018), when applied to a given (multi)set of K minibatches A, proposes scaling
the step size by K, while taking a gradient step on the combined objective fA(x) = 1

K

∑K
i=1∇fai(x). As explained

by Goyal et al. (2018), a single scaled gradient step approximates K SGD steps on the sequence of minibatches, since
−Kα∇fA(x) = −

∑K
i=1 α∇fai(x). Using Lemma 1, we observe that −Kα∇fA(x) only incorporates the first order

Submission and Formatting Instructions for ICML 2021

terms in −
∑K
i=1 α∇fai(x). To incorporate the second order terms within a single update using the scaled step-size Kα,

we require utilizing the displacement for each minibatch ai equal to the expectation of the displacement prior to the gradient
step on ai conditioned on the given (multi)set A. Using the symmetry w.r.t time reversal, the expected displacement, upto
the first order terms in α, E [vai] can be expressed as follows:

E [vai] = −
α

2

 K∑
j 6=i,j=1

∇faj (x)

+O(α2).

Thus the single step approximation of SGD, with a linearly scaled step size Kα is given by:

x← x− α
K∑
i=1

∇fai(x−
α

2

 K∑
j 6=i,j=1

∇faj (x)

).

However, a major drawback of the above approximation is that for largeK, the increase in step size amplifies the errors in the
Taylor’s theorem-based approximation for each gradient step. Therefore, to accurately assess the validity and effectiveness
of the Taylor’s theorem-based implicit regularization, we design algorithms GradAlign and FedGA compatible with small
step sizes and arbitrarily large batches.

A.3. Main Assumptions

For Theorems 1,2,4,5, and the starting parameters x under consideration, we assume that within a neighbourhood of x, the
following conditions are satisfied: differentiability of fi(·) ∀i, differentiability of r(·) and ρ-Lipschitzness of ∇2fi for some
ρ > 0. We use the big-O notation p(β) = O(q(β)) for a positive scalar β to represent the boundedness of p(β) by q(β) as
β → 0 i.e p(β) = O(q(β)) implies that ∃β′ > 0 such that |p(β)| ≤ C|q(β)| for all 0 ≤ β ≤ β′ for some positive constant
C.

A.4. Main Proofs

A.4.1. LEMMA 1

Proof. By applying the fundamental theorem of calculus to each component of fi, we obtain:

∇fi(x+ vx) = ∇fi(x) +∇2fi(x)vx +

∫ 1

z=0

(
∇2fi(x+ zvi)−∇2fi(x)

)
vidz.

We bound the norm of the error term as follows:

‖∇fi(x+ vx)−
(
∇fi(x) +∇2fi(x)vx

)
‖ = ‖

∫ 1

z=0

(
∇2fi(x+ zvi)−∇2fi(x)

)
vidz‖

≤
∫ 1

z=0

‖
(
∇2fi(x+ zvi)−∇2fi(x)

)
vi‖dz

≤
∫ 1

z=0

‖ρ‖zvi‖vi‖dz

=
ρ

2
‖vi‖2.

Where the last inequality follows from the ρ-Lipschitzness of ∇2fi.

A.4.2. THEOREM 1: SGD OVER K SEQUENTIAL STEPS

Proof. The distribution over the sequences of K steps, conditioned on the (multi)set A = {ai}Ki=1 of the sampled
minibatches can be described through the corresponding distribution over re-orderings of {ai}Ki=1. We denote a randomly
sampled re-ordering of A as A′ = {a′i}Ki=1, and the corresponding reverse ordering by A′−1. The symmetry w.r.t time-
reversal implies that the probability distribution P over A′ satisfies P (A′) = P (A′−1). For a sequence of SGD steps under a
given ordering A′, we denote by gA′,i(x), the ith gradient step corresponding to A′ and the starting parameters x and the

Submission and Formatting Instructions for ICML 2021

displacement from the starting point x prior to the ith gradient step by v
(i)
A′ (x). Similarly, we denote the ith gradient step

and the corresponding displacement for K sequential gradient steps on the mean objective by g(i)GD(x) and v
(i)
GD(x). Using

Lemma 1, we have:

g
(i)
A′ (x) = −α∇fa′i(x+ v

(i)
A′ (x)) = −α

(
∇fa′i(x) +∇

2fa′i(x)v
(i)
A′ (x) +O(‖v

(i)
A′ (x)‖

2)
)

= −α∇fa′i(x)− α∇
2fa′i(x)v

(i)
A′ (x) + αO(‖v(i)

A′ (x)‖
2).

(8)

Where v
(i)
A′ (x) =

∑i−1
j=1 g

(j)
A′ (x). For i = 2, we obtain:

g
(2)
A′ (x) = −α

(
∇fa′2(x) +∇

2fa′1(x)∇fa′1(x) +O(‖α∇fa′1(x)‖
2)
)

= −α∇fa′2(x) + α2∇fa′1(x)∇fa′1(x) +O(α
3).

By applying Equation (8) inductively for i = 3, . . . ,K, we obtain:

v
(i)
A′ (x) =

i−1∑
j=1

g
(j)
A′ (x)

=

i−1∑
j=1

−α∇fa′j (x)− α∇
2fa′j (x)v

(j)
A′ (x) +O(α

3)

=

i−1∑
j=1

−α∇fa′j (x)− α∇
2fa′j (x)

(
−α

(
j−1∑
l=1

g
(l)
A′ (x)

))
+O(α3)

=

i−1∑
j=1

−α∇fa′j (x) +O(α
2),

(9)

and as a result:

g
(i)
A′ (x) = −α∇fa′i(x)− α∇

2fa′i(x)
(
v
(i)
A′ (x)

)
+O(α3)

= −α∇fa′i(x) + α∇2fa′1(x)

i−1∑
j=1

∇fa′j (x)

+O(α3).
(10)

Similarly, for gradient descent on the mean objective, we have:

v
(i)
GD(x) =

i−1∑
j=1

g
(j)
GD(x)

=

i−1∑
j=1

−α∇fA(x)− α∇2fA(x)v
(j)
A (x) +O(α3)

=

i−1∑
j=1

−α∇fA(x)− α∇2fA(x)

(
−α

(
j−1∑
l=1

g
(l)
GD(x)

))
+O(α3)

=

i−1∑
j=1

−α∇fA(x) +O(α2).

Therefore, the ith gradient step for gradient descent on the mean objective is given by:

g
(i)
GD(x) = −α∇fA(x)− α∇

2fA(x)v
(i)
GD(x) +O(α

3)

= −α∇fA(x) + α2∇fA(x)

i−1∑
j=1

∇fA(x)

+O(α3)

= −α∇fA(x) + α2∇fA(x) ((i− 1)∇fA(x)) +O(α3).

Submission and Formatting Instructions for ICML 2021

The expected difference between the parameters reached after K steps of SGD using the corresponding mini-batches in A
and K steps of GD on the mean objective fA(x) = 1

K

∑K
i=1 fai(x) with initial parameters x is then given by:

EA′
[
K∑
i=1

(g
(i)
A′ (x)− g

(i)
GD(x))

]

=EA′

−α∇fa′i(x) + α∇2fa′1(x)

i−1∑
j=1

∇fa′j (x)

+O(α3)

+EA′

[
K∑
i=1

α∇fA(x) + α2∇fA(x) ((i− 1)∇fA(x)) +O(α3)

]

=
∑

A′∈SK

P (A′)

α2(

K∑
i=1

i−1∑
j=1

∇2fa′i(x)∇a′jf(x))− α
K(K − 1)

2
∇2f(x)A∇fA(x) +O(α3)

=
1

2

 ∑
A∈[m]K

P (A′)

α2(

K∑
i=1

i−1∑
j=1

∇2fa′i(x)∇a′jf(x))− α
K(K − 1)

2
∇2f(x)A∇fA(x) +O(α3)

+

∑
A∈[m]K

P (A′−1)

α2(

K∑
i=1

i−1∑
j=1

∇2
a′K+1−i

f(x)∇aK+1−j
f(x))− αK(K − 1)

2
∇2f(x)A∇fA(x) +O(α3)

=
∑

A′∈SK

P (A′)

α2(

K∑
i=1

K∑
j=1

∇2fa′i(x)∇a′jf(x))−
α2

2
(

K∑
i=1

K∑
j=1

∇2fa′i(x)∇fa′j (x)) + α2K

2
∇2fA(x)∇fA(x) +O(α3)

 .

Now, since each A′ corresponds to a re-ordering of the given (multi)set A, the above expression simplifies to:

EA′
[
K∑
i=1

(g
(i)
A′ (x)− g

(i)
GD(x))

]

=α2K
2

2
∇2fA(x)∇fA(x)−

α2

2

K∑
i=1

∇2fai(x)∇fai(x)− α2K
2

2
∇2fA(x)∇fA(x) + α2K

2
∇2fA(x)∇fA(x) +O(α3)

=− EA′
[
α2

2
(

K∑
i=1

(∇2fai(x)∇fai(x)−∇2fai(x)∇fA(x)−∇2fA(x)∇fai(x) +∇2fA(x)∇f(x)))

]
+O(α3)

=− α2

4
(

K∑
i=1

(∇2fai(x)−∇2fA(x))(∇fai(x)−∇fA(x))) +O(α3)

=− α2

4
(

K∑
i=1

(∇2fai(x)−∇2fA(x))(∇fai(x)−∇fA(x))) +O(α3)

=− α2

4
∇x

(K∑
i=1

‖∇fai(x)−∇fA(x)‖2
)
= −Kα

2

2
∇rA(x) +O(α3).

A.4.3. APPROXIMATING K SGD STEPS WITH K GD STEPS ON THE REGULARIZED OBJECTIVE

In this section, we prove that for a given sequence A of K minibatches, the expected difference between K updates using
SGD and gradient descent on the mean objective (Equation (5)) can be approximated through gradient descent on the
regularized mean objective f̂A(x) = fA(x) +

α
2 rA(x) Similar to the proof for Theorem 1, for a given sequence A, we

Submission and Formatting Instructions for ICML 2021

denote the ith gradient step and the displacement from x prior to it under the mean objective fA(x) and the regularized
mean objective f̂A(x) by g(i)GD(x),v

(i)
GD(x) and ĝ(i)GD(x), v̂

(i)
GD(x) respectively.

We have:

ĝ
(i)
GD = −α∇f̂A(x+ v̂

(i)
GD(x)) = −α

(
∇fA(x+ v̂

(i)
GD(x)) +

α

2
∇r(x+ v̂

(i)
GD(x))

)
= −α

(
∇fA(x) +∇2fA(x)v̂

(i)
GD(x) +O(‖

ˆ
v
(i)
GD‖

2) +
α

2
∇r(x)− α

2
∇2r(x)v̂

(i)
GD(x) +O(‖v̂

(i)
GD‖

2)

) (11)

For i = 2, we get:

ĝ
(2)
GD = −α

(
∇fA(x)− α∇2fA(x)

(
∇fA(x) +

α

2
∇rA(x)

)
+O(α2)

)
− α

(
α

2
∇r(x)− α2

2
∇2r(x)

(
∇fA(x) +

α

2
∇rA(x)

)
+O(α2)

)
− α∇fA(x) + α2∇2fA(x)∇fA(x))−

α2

2
∇r(x) +O(α3).

By inductively applying Equation (11) for i = 3, · · · ,K, we obtain:

v̂
(i)
GD(x) =

i−1∑
j=1

ĝ
(j)
GD(x)

=

i−1∑
j=1

−α∇fA(x)− α∇2fA(x)v
(j)
A (x) +O(α3)

=

i−1∑
j=1

−α∇fA(x)− α∇2fA(x)

(
−α

(
j−1∑
l=1

g
(l)
GD(x)

))
+O(α3)

=

i−1∑
j=1

−α∇fA(x) +O(α2),

and therefore,

ĝ
(i)
GD(x) = −α∇f̂A(x+ v̂

(i)
GD(x))

= −α∇fA(x)− α∇2fA(x)v̂
(i)
GD(x)−

α2

2
∇r(x)− α2

2
∇2r(x)v̂

(i)
GD(x) +O(α

3)

= −α∇fA(x) + α2∇2fA(x)

i−1∑
j=1

∇fA(x)

− α2

2
∇r(x) +O(α3).

Thus the difference between the parameters reached by K gradient descent steps on the regularized mean objective and the
mean objective, denoted by x̂GD,A and xGD,A respectively is given by:

x̂GD,A − xGD,A =

K∑
i=1

(
ĝ
(i)
GD − g

(i)
GD

)

=

K∑
i=1

−α∇fA(x) + α2∇2fA(x)

i−1∑
j=1

∇fA(x)

− α2

2
∇r(x) +O(α3)

−
(
−α∇fA(x) + α2∇fA(x) ((i− 1)∇fA(x)) +O(α3)

)
=

K∑
i=1

−α
2

2
∇r(x) +O(α3)

= −α
2K

2
∇r(x) +O(α3).

Submission and Formatting Instructions for ICML 2021

A.4.4. THEOREM 2: GRADALIGN

Proof. Using Lemma 1, the gradient step gi(x) for the ith mini-batch obtained after displacement through vi(x) =
−β (∇f(x)−∇fi(x)) with starting parameters x, can be expressed as:

gi = −α∇fi(x+ vi(x)) = −α
(
∇fi(x) +∇2fi(x)vi(x) +O(‖vi‖2)

)
= −α

(
∇fi(x)− β∇2fi(x) (∇f(x)−∇fi(x)) +O(‖β (∇f(x)−∇fi(x))‖2)

)
= −α∇fi(x) + αβ∇2fi(x) (∇f(x)−∇fi(x)) +O(αβ2).

(12)

Therefore, we obtain:

xGA − xGD

= −α
n

n∑
i=1

∇fi(x) +
α

n

n∑
i=1

β∇2fi(x) (∇f(x)−∇fi(x)) +O(αβ2) +
α

n

n∑
i=1

∇fi(x)

− αβ

n
(

n∑
i=1

(∇2fi(x)∇fi(x)−∇2f(x)∇f(x))) +O(αβ2)

=− αβ

n
(

n∑
i=1

(∇2fi(x)∇fi(x)−∇2fi(x)∇f(x)−∇2f(x)∇fi(x) +∇2f(x)∇f(x))) +O(αβ2)

=− αβ

n
(

n∑
i=1

(∇2fi(x)−∇2f(x))(∇fi(x)−∇f(x)))) +O(αβ2)

=− αβ

2n
∇x((

n∑
i=1

‖∇fi(x)−∇f(x)‖2) +O(αβ2).

A.4.5. THEOREM 4: FEDGA

Proof. Analogous to the proof for 1, we denote the local displacement for client i from the starting point x prior to
the kth step for FedAvg and FedGA by v

(k)
i,FedAvg,v

(k)
i,FedGA respectively and the corresponding kth gradient step by

g
(k)
i,FedAvg(x), g

(k)
i,FedGA(x) respectively. For a given client i, the K local updates in FedAvg are equivalent to a sequnce of

SGD updates on the sampled K minibatches. Thus, using Equations (9),(10), we have:

v
(k)
i,FedAvg(x) =

k−1∑
j=1

g
(j)
i,FedAvg(x)

=

k−1∑
j=1

−α∇fi(x; ζi,j)− α∇2fi(x; ζi,j)v
(j)
i (x) +O(α3)

=

k−1∑
j=1

−α∇fi(x; ζi,j)− α∇2fi(x; ζi,j)

(
j−1∑
l=1

g
(l)
i,FedAvg(x)

)
+O(α3)

=

i−1∑
j=1

−α∇fi(x; ζi,j) +O(α2),

and

g
(k)
i,FedAvg(x) = −α∇fi(x; ζi,k)− α∇

2fi(x)
(
v
(k)
i,FedAvg(x)

)
+O(α3)

= −α∇fi(x; ζi,k) + α∇2fi(x; ζi,k)

k−1∑
j=1

∇fi(x; ζi,j)

+O(α3).

Submission and Formatting Instructions for ICML 2021

Whereas for FedGA, we include an additional gradient alignment displacement−β (∇f(x)−∇fi(x)) for each local update
to obtain:

v
(k)
i,FedGA(x) = −β (∇f(x)−∇fi(x)) +

k−1∑
j=1

g
(j)
i,FedGA(x)

= −β (∇f(x)−∇fi(x))−
k−1∑
j=1

α∇fi(x; ζi,j) +O(α2) +O(αβ)

and

g
(k)
i,FedGA(x) = −α∇fi(x; ζi,k)− α∇

2fi(x)
(
v
(k)
i,FedGA(x)

)
+O(α3) +O(αβ2)

= −α∇fi(x; ζi,k)− α∇2fi(x; ζi,k)

−β (∇f(x)−∇fi(x))− k−1∑
j=1

α∇fi(x; ζi,j)

+O(α3) +O(αβ2).

The expected difference between the parameters obtained after one round of FedGA and FedAvg is then given by:

E [xFedGA − xFedAV G] = E

[
1

n

n∑
i=1

K∑
k=1

g
(k)
i,FedGA(x)−

1

n

n∑
i=1

K∑
k=1

g
(k)
i,FedAvg(x)

]
.

Where the expectation is over random variables {ζi,k}Kk=1 controlling the stochasticity of the local updates for each client i.
Linearity of expectation allows us to couple the local updates for FedGA and FedAvg by using the same ζi,k for both the
algorithms for each client i and update k. We obtain:

E [xFedGA − xFedAV G] = −E

[
α

n

n∑
i=1

K∑
k=1

∇fi(x; ζi,l)

]

+ E

[
α

n

n∑
i=1

K∑
k=1

∇2fi(x; ζi,k)

(
β (∇f(x)−∇fi(x)) + α

k−1∑
l=1

∇fi(x; ζi,l)

)]
+O(αβ2)

− E

[
(−α

n

n∑
i=1

K∑
k=1

∇fi(x; ζi,k) +
α

n

n∑
i=1

K∑
k=1

∇2fi(x; ζi,k)(α

k−1∑
l=1

∇fi(x; ζi,l))

]
+O(αβ2)

= Ea
αβ

n

n∑
i=1

(
K∑
k=1

∇2fi(x; ζi,k) (∇f(x)−∇fi(x)))

)
+O(αβ2)

=− αβK

n
(

n∑
i=1

(∇2fi(x)∇fi(x)−∇2fi(x)∇f(x)−∇2f(x)∇fi(x) +∇2f(x)∇f(x))) +O(αβ2)

=− αβK

n
(

n∑
i=1

(∇2fi(x)−∇2f(x))(∇fi(x)−∇f(x)))) +O(αβ2)

=− αβK

2n
∇x

(
n∑
i=1

‖∇fi(x)−∇f(x)‖2
)

+O(αβ2)

A.5. Implicit cancellation in FedGA

In this section, we describe the equivalence between using the displacement −β (∇f(x)−∇fi(x)) only once at the
beginning of each round for each client i in FedGA,and using the same displacement, but on each of the K local updates.
The former version of the algorithm is described in Algorithm 2 while the latter is described below in Algorithm 3.

Submission and Formatting Instructions for ICML 2021

Algorithm 3 Federated Gradient Alignment (FedGA)

1: learning rate α
2: Initial model parameters :x
3: Mean of initial gradients for clients in [n]: ∇f(x) = 1

n

∑n
i=1∇fi(x)

4: while not done do
5: ∇f(x)← 1

n

∑n
i=1∇fi(x) {Update the mean gradient}

6: for Client i in [1, · · · , n] do
7: Obtain the displacement of the mean gradient as vi ← −β (∇f(x)−∇fi(x))
8: x

(0)
i ← x

9: for k in [1, · · · ,K] do
10: x

(k)
i ← x

(k−1)
i − α∇fi(x(k−1)

i + vi; ζi,k) {Obtain gradient after displacement}
11: end for
12: end for
13: x← 1

n

∑n
i=1 x

(K)
i

14: end while

Notice that to compute x
(k)
i in line 3 of Algorithm 3 we could instead follow these 3 steps: (1) x(k)

i ← x
(k)
i + vi, then (2)

x
(k)
i ← x

(k)
i − α∇fi(x

(k)
i), and finally x

(k)
i ← x

(k)
i − vi to arrive at the same point obtained in line 3. Since vi remains

constant throughout the K steps in one round, the displacement in step (1) and step (3) cancel between consecutive local
updates. Thus, we are left with the first and last displacement only. Furthermore, since the displacements average to 0 i.e∑n
i=1 vi =

∑n
i=1−β (∇f(x)−∇fi(x)) = 0, we do not need to take the final step either, and hence we are left with the

formulation of Algorithm 2.

A.6. SCAFFOLD

The full SCAFFOLD algorithm (Karimireddy et al., 2020) is described in Algorithm 4. For simplicity, we assume that the
displacement we use is computed only among the sampled clients.

Algorithm 4 Scaffold

1: learning rate α
2: Initial model parameters :x
3: while not done do
4: ∇f(x) = 1

n

∑n
i=1∇fi(x) {Compute each ∇fi(x;) in parallel}

5: for Client i in [1, · · · , n] do
6: x

(0)
i ← x

7: for k in [1, · · · ,K] do
8: x

(k)
i ← x

(k−1)
i − α

(
∇fi(x(k−1)

i ; ζi,k) +∇f(x)−∇fi(x)
)

9: end for
10: end for
11: x← 1

n

∑n
i=1 x

(K)
i

12: end while

We observe that unlike FedGA, the displacement v(k)
i,SCAFFOLD from the starting parameters x prior to the kth gradient

step for SCAFFOLD, involves k − 1 drift correction terms −α (∇f(x)−∇fi(x)) in addition to the k − 1 local gradient
steps. Thus we have:

v
(k)
i,SCAFFOLD(x) = −(k − 1)α (∇f(x)−∇fi(x)) +

k−1∑
j=1

g
(j)
i,SCAFFOLD(x),

where g(j)i,SCAFFOLD(x) denotes the jth gradient step for client i. Smilar to FedGA and SGD, g(j)i,SCAFFOLD(x) can be

Submission and Formatting Instructions for ICML 2021

evaluated by inductively computing the local displacements and gradient steps to obtain:

g
(k)
i,SCAFFOLD(x) = −α∇fi(x; ζi,k)

− α∇2fi(x)
(
v
(k)
i,SCAFFOLD(x)

)
+O(α3)

= −α∇fi(x; ζi,k)− α∇2fi(x; ζi,k)

−(k − 1)α (∇f(x)−∇fi(x))−
k−1∑
j=1

α∇fi(x; ζi,j)

+O(α3).

The expected difference between the parameters obtained after one round of SCAFFOLD and FedAvg is then given by:

E [xSCAFFOLD − xFedAV G]

= E

[
1

n

n∑
i=1

(
K∑
k=1

g
(k)
i,SCAFFOLD(x)− α (∇f(x)−∇fi(x))

)
− 1

n

n∑
i=1

K∑
k=1

g
(k)
i,FedAvg(x)

]

=− E

[
α

n

n∑
i=1

K∑
k=1

(∇fi(x; ζi,k) + (∇f(x)−∇fi(x)))

]

+ E

[
α

n

n∑
i=1

K∑
k=1

∇2fi(x; ζi,k)

(
α(k − 1) (∇f(x)−∇fi(x)) + α

k−1∑
l=1

∇fi(x; ζi,l)

)]
+O(α3)

+ E

[
(
α

n

n∑
i=1

K∑
k=1

∇fi(x; ζi,k)−
α

n

n∑
i=1

K∑
k=1

∇2fi(x; ζi,k)(α

k−1∑
l=1

∇fi(x; ζi,l)) +O(α3))

]

= −E

[
α2K(K − 1)

2n
(

n∑
i=1

(∇2fi(x; ζi,l) (∇fi(x)−∇f(x))))

]
+O(α3)

=− α2K(K − 1)

2n
(

n∑
i=1

(∇2fi(x)∇fi(x)−∇2fi(x)∇f(x)−∇2f(x)∇fi(x) +∇2f(x)∇f(x))) +O(α3)

=− α2K(K − 1)

2n
(

n∑
i=1

(∇2fi(x)−∇2f(x))(∇fi(x)−∇f(x)))) +O(α3)

=− α2K(K − 1)

4n
∇x((

n∑
i=1

‖∇fi(x)−∇f(x)‖2) +O(α3).

A.7. Limitations

While we present concrete and sound theoretical results, they heavily rely on Taylor’s theorem, which only provides accurate
information in the vicinity of the studied point. Thus, one might need to account for the impact of the error term once
we start moving away from the studied point. Nevertheless, our experiments with finite step sizes, strongly support our
theoretical analysis.

Indeed, the main point of our experiments is to show that our theoretical results carry on to practical settings. We do not
claim, however that our algorithm achieves state-of-the-art results, but sheds light on the impact that implicit regularization
might have on the training of neural networks on non-artificial data sets.

Both federated learning and distributed datacenter settings studied in this work heavily depend on many hyperparameters
(server momentum, normalization, learning rate decay scheduling, etc.) that we decided to ignore in this work. This allowed
us to isolate the effect of implicit regularization, but it remains to study the interplay they have with FedGA.

Lastly, the overhead in communication and computation cost in federated and distributed learning due to the calculation of the
drift limits the scalability of our approach. Nevertheless, several techniques could be used to alleviate this issue (Karimireddy
et al., 2020).

Submission and Formatting Instructions for ICML 2021

A.8. Societal Impact

We believe that collaborative learning schemes such as federated learning are an important element towards enabling
privacy-preserving training of ML models, as well as for a better alignment of each participating individual’s data ownership
with the resulting utility from a jointly trained machine learning model, especially in applications where data is user-provided
and privacy sensitive (Kairouz et al., 2019; Nedic, 2020).

In addition to privacy, efficiency gains in distributed training reduce the environmental impact of training large machine
learning models. The study of limitations of such methods in the realistic setting of heterogeneous data and algorithmic
and practical improvements to the efficiency of such methods, is expected to help as a step towards achieving the goal of
collaborative privacy-preserving and efficient decentralized learning.

B. Experiments Appendix
B.1. Model architectures

For the EMNIST experiments, we trained a CNN model with 2 convolutional layers followed by a fully connected layer.

For the CIFAR10 experiments, we trained a CNN model with 2 convolutional layers followed by three fully connected
layers.

B.2. Experiment Hyperparameters

B.2.1. FEDERATED LEARNING

We used a constant learning rate for each experiment, and we did not use momentum. For each algorithm we tuned the
learning rate from {0.05, 0.1, 0.2, 0.4}. We tuned our algorithms with two batch sizes: 2400 corresponding to the entire
dataset in each of the 47 workers, and 240 corresponding to 10% of the worker’s data. Weight decay (L2 regularization) was
tuned from {0.001, 0.0001}, where the former achieved better test accuracy in all reported cases.

The number of local steps of each algorithm was tuned from {1, 10, 20, 40}, which corresponds to 1, 10, 20, and 40 local
epochs with batch-size 2400, respectively, and 0.1, 1, 2, and 4 local epochs with batch-size 240, respectively. In the IID
setting, using batch-size 240 always achieved higher test accuracy. Furthermore, better generalization was achieved using
either 10 local steps. Thus, the use of more local epochs might increase convergence speed in terms of the number of rounds,
but has only a detrimental effect on the maximum test accuracy achievable; see Section B.4.

The most challenging parameter to tune was β, the constant in front of the displacement in FedGA; see Algorithm 2. We
started with a coarse grid search with β tuned from {0.01, 0.1, 1.0, 5.0}. After finding the best value in each of the two
settings (IID and heterogeneous), we perform a fine grid search around it. For the IID setting where the gradient variance is
much smaller, we used a fine grid search with β tuned from {0.5, 1.5, 2.5, 3.5}, with the best results for β between 1.5 and
2.5. In the heterogeneous setting, where the variance is much larger, we used a fine grid search with β in {0.01, 0.025 0.05,
0.1}, with the best results between 0.025 and 0.05; orders of magnitude smaller than for the IID case. For more details, see
Section B.3.

B.2.2. DATACENTER DISTRIBUTED LEARNING

We used a constant learning rate for each experiment, and we did not use momentum. For each algorithm we tuned the
learning rate from {0.05, 0.1, 0.2, 0.4}. Weight decay (L2 regularization) was tuned from {0.001, 0.0001}, where the former
achieved better Test Accuracy in all reported cases.

Sampling all clients Due to hardware and time constraints, we limited our search to a batch size of 125, which represents
2.5% of the 5000 data examples in each worker. The number of local steps of each algorithm was tuned within {10, 20}. In
a federated learning setting, one might try to increase these numbers, but in the datacenter distributed setting, we assume
that communication is not the bottleneck. Thus, while further experiments could be done, we believe our settings represent
well the objectives of this paper. Furthermore, while we did not perform an exhaustive study for this task/architecture as in
Section B.4, we also notice that an increase in local steps has not further benefit in test accuracy.

As in the federated learning setting, the most challenging parameter to tune was β. We started with a coarse grid search

Submission and Formatting Instructions for ICML 2021

with β tuned from {0.01, 0.1, 1.0, 5.0}. After finding the best interval, we perform a fine grid search. For this datacenter
distributed setting, we found the gradient variance to be also quite small. Thus, we used a fine grid search with β tuned from
{0.5, 1.5, 2.5, 3.5}, with the best results for β = 2.5.

Minimizing number of updates. In these settings, we are restricted to use exactly one local step in each round. We tuned
our algorithms with two batch sizes: 1000 and 5000, corresponding to 20% and 100% of the worker’s data, respectively.
The tuning of the β parameter was performed in the same way as in the above setting, and the results were quite similar,
with β between 1.5 and 2.5 being the best range of values.

B.3. Tuning the β parameter of FedGA

As mentioned in Section B.2, it was challenging to tune β as it depends heavily on the variance of the gradients. In our
experiments, we used a coarse level grid search, follower by a fine-tuning. However, as depicted in Figure 5, it might seem
that the test accuracy as a function of beta might be a concave function, which can greatly help with its optimization. While
the possibility of modifying β seems to offer an advantage over SCAFFOLD, it brings along the additional challenge of
tuning it.

EMNIST FedGA Test Accuracy
5 2.5 1.5 1.0 0.5 0.1 0.01

1k 2k 3k

rounds
85

86

87

88

EMNIST FedGA Test Accuracy

88.0

88.2

88.4

88.6

88.8

5 2.5 1.5 1.0 0.5 0.1 0.0
1

Figure 5. Depicts the effect of tuning the parameter β for one of the gird search settings we tried. For this example, we fix the batch size to
240 in the IID setting, weight decay 0.001, learning rate 0.2, and 10 local steps. From our experiments, it seems that the test accuracy as a
function of beta is concave, which might help with its optimization. The experiments were performed with the same initial random seed.

B.4. Effect of local epochs

For our grid-search with the number of steps in {1,10,20,40}, which corresponds to 0.1, 1, 2, and 4 local epochs, we
notice that beyond 10 local steps, there is no generalization benefit. Moreover, we can see a detriment in the maximum test
accuracy; see Figure 6. There is, however, a much faster convergence using more local steps, but to a model with worse test
accuracy. Similar behavior was spotted in FedGA and Scaffold. While this phenomenon might be overcome by a further
reduction of the learning rate, this was beyond the parameters in our grid search.

FedAvg EMNIST Test Accuracy
10 steps 1 step 20 steps 40 steps

2k 4k 6k 8k 10k

num_updates
82

83

84

85

86

87

88

FedAvg EMNIST Test Loss
10 steps 1 step 20 steps 40 steps

2k 4k 6k 8k 10k

num_updates
0.35

0.4

0.45

0.5

Figure 6. Best performances of FedAvg with batch size 240 and IID data distribution within our grid search. The x-axis shows the total
number of (local) updates performed by the algorithm.

